Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Procedure
2.2. Rainwater Sampling and Sample Preparation
2.3. Analytical Instrumentation
3. Results and Discussion
3.1. Degradation of 3,5-DHBA by Different Processes
3.2. Effect of H2O2 Concentration on the Degradation of 3,5-DHBA by the UV/H2O2 Process
3.3. Effect of pH on the Degradation of 3,5-DHBA Using the UV/H2O2 Process
3.4. Degradation of 3,5-DHBA in Rainwater by the UV/H2O2 and UV/Fenton-like Processes
No. | Reaction | Occurrence Process | Reference |
---|---|---|---|
1 | H2O2 + hv → 2•OH | UV/H2O2, UV/Fenton-like | [35] |
2 | Fe(III) + H2O + hv → Fe(II) + •OH + H+ | UV/Fenton-like | [36] |
3 | Fe(III) + H2O2 + hv → Fe(O2H)2+ + H+ | UV/Fenton-like | [36] |
4 | Fe(O2H)2+→ Fe(II) + HO2• | UV/Fenton-like | [37] |
5 | Fe(II) + H2O2 → Fe(III) + •OH + OH− | UV/Fenton-like | [38] |
6 | Fe(III) + H2O → FeOH2+ + H+ | UV/Fenton-like | [39] |
7 | FeOH2+ + hv → Fe(II) + •OH | UV/Fenton-like | [36] |
8 | •OH + •OH → H2O2 | UV/H2O2, UV/Fenton-like | [40] |
9 | OH• + (C6H5O2)COOH → Products | UV/H2O2, UV/Fenton-like | [20] |
10 | (C6H5O2)COOH + hυ → (C6H5O2)COOH* | UV/H2O2, UV/Fenton-like | [13] |
11 | (C6H5O2)COOH* → Products | UV/H2O2, UV/Fenton-like | [13] |
12 | S + hυ → S* | UV/H2O2, UV/Fenton-like | [13] |
13 | S* + (C6H5O2)COOH → S + (C6H5O2)COOH* | UV/H2O2, UV/Fenton-like | [13] |
14 | S* + (C6H5O2)COOH → S-H• + (C6H5O2)COO• | UV/H2O2, UV/Fenton-like | [13] |
15 | S-H• + O2 → S + HO2• | UV/H2O2, UV/Fenton-like | [13] |
16 | HO2• → H2O2 + O2 | UV/H2O2, UV/Fenton-like | [13] |
17 | (C6H5O2)COO• → Products | UV/H2O2, UV/Fenton-like | [13] |
18 | S-H• → Products | UV/H2O2, UV/Fenton-like | [12,13] |
19 | S* + S → Products | UV/H2O2, UV/Fenton-like | [12,13] |
20 | S + OH• → Products | UV/H2O2, UV/Fenton-like | [12] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO World Water Assessment Programme. United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; UNESCO Publishing: Paris, France, 2023; Available online: https://www.unwater.org/publications/un-world-water-development-report-2023 (accessed on 12 May 2025).
- Sukanya, S.; Joseph, S. Alternative water resources in rural areas: Smart solutions for a sustainable future. In Water Resources Management for Rural Development: Challenges and Mitigation; Madhav, S., Srivastav, A.L., Izah, S.C., Hullebusch, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 107–116. [Google Scholar] [CrossRef]
- Casas, G.; Martinez-Varela, A.; Vila-Costa, M.; Jiménez, B.; Dachs, J. Rain Amplification of Persistent Organic Pollutants. Environ. Sci. Technol. 2021, 55, 12961–12972. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, D.; Kasimov, N.; Eremina, I.; Shinkareva, G.; Chubarova, N. Partitioning and solubilities of metals and metalloids in spring rains in Moscow megacity. Atmos. Pollut. Res. 2021, 12, 255–271. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Santos, B.H.E.; Duarte, A.C. First Spectroscopic Study on the Structural Features of Dissolved Organic Matter Isolated from Rainwater in Different Seasons. Sci. Total Environ. 2012, 426, 172–179. [Google Scholar] [CrossRef]
- Pinxteren, D.V.; Herrmann, H. Determination of Functionalised Carboxylic Acids in Atmospheric Particles and Cloud Water Using Capillary Electrophoresis/Mass Spectrometry. J. Chromatogr. A 2007, 1171, 112–123. [Google Scholar] [CrossRef]
- Cottrell, B.A.; Gonsior, M.; Isabelle, L.M.; Luo, W.; Perraud, V.; McIntire, T.M.; Pankow, J.F.; Schmitt-Kopplin, P.; Cooper, W.J.; Simpson, A.J. A regional study of the seasonal variation in the molecular composition of rainwater. Atmos. Environ. 2013, 77, 588–597. [Google Scholar] [CrossRef]
- Chon, K.; Kim, Y.; Bae, D.H.; Cho, J. Confirming anthropogenic influences on the major organic and inorganic constituents of rainwater in an urban area. Drink. Water Eng. Sci. 2015, 8, 35–48. [Google Scholar] [CrossRef]
- Polyokova, O.V.; Artaev, V.B.; Lebedev, A.T. Priority and Emerging Pollutants in the Moscow Rain. Sci. Total Environ. 2018, 645, 1126–1134. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, K.; Chen, H.; Wu, T.; Krzyaniak, M.; Wellons, A.; Bolla, D.; Douglas, K.; Zuo, Y. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms. Atmos. Environ. 2006, 40, 3665–3676. [Google Scholar] [CrossRef]
- Yu, L.; Smith, J.; Laskin, A.; George, K.M.; Anastasio, C.; Laskin, J.; Dillner, A.M.; Zhang, Q. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation. Atmos. Chem. Phys. 2016, 16, 4511–4527. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Cardoso, H.B.; Rocha-Santos, T.A.P.; Duarte, A.C. Oxidation of Benzoic Acid from Biomass Burning in Atmospheric Waters. Environ. Pollut. 2019, 244, 693–704. [Google Scholar] [CrossRef]
- Vione, D.; Maurino, V.; Minero, C.; Pelizzetti, E.; Harrison, M.A.J.; Olariu, R.-I.; Arsene, C. Photochemical Reactions in the Tropospheric Aqueous Phase and on Particulate Matter. Chem. Soc. Rev. 2006, 35, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Hoffmann, D.; Schaefer, T.; Braeuer, P.; Tilgner, A. Tropospheric Aqueous-Phase Free-Radical Chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction Tools. ChemPhysChem 2010, 11, 3796–3822. [Google Scholar] [CrossRef]
- Graham, B.; Mayol-Bracero, O.L.; Guyon, P.; Roberts, G.C.; Decesari, S.; Facchini, M.C.; Artaxo, P.; Maenhaut, W.; Köll, P.; Andreae, M.O. Water-Soluble Organic Compounds in Biomass Burning Aerosols over Amazonia 1. Characterization by NMR and GC-MS. J. Geophys. Res. Atmos. 2002, 107, 8047. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass Burning—A Review of Organic Tracers for Smoke from Incomplete Combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Gelencsér, A.; Hoffer, A.; Kiss, G.; Tombácz, E.; Kurdi, R.; Bencze, L. In-Situ Formation of Light-Absorbing Organic Matter in Cloud Water. J. Atmos. Chem. 2003, 45, 25–33. [Google Scholar] [CrossRef]
- Hoffer, A.; Kiss, G.; Blazsó, M.; Gelencsér, A. Chemical Characterization of Humic-Like Substances (HULIS) Formed from a Lignin-Type Precursor in Model Cloud Water. Geophys. Res. Lett. 2004, 31, L06115. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Duarte, A.C. Fenton-Like Oxidation of Small Aromatic Acids from Biomass Burning in Water and in the Absence of Light: Implications for Atmospheric Chemistry. Chemosphere 2015, 119, 786–793. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Domingues, M.R.M.; Duarte, A.C. Fenton-Like Oxidation of Small Aromatic Acids from Biomass Burning in Atmospheric Water and in the Absence of Light: Identification of Intermediates and Reaction Pathways. Chemosphere 2016, 154, 599–603. [Google Scholar] [CrossRef]
- Ferreira, M.P.S.; Santos, P.S.M.; Duarte, A.C. Oxidation of Small Aromatic Compounds in Rainwater by UV/H2O2: Optimization by Response Surface Methodology. Sci. Total Environ. 2022, 815, 152857. [Google Scholar] [CrossRef]
- Zhai, J.; Ma, H.; Liao, J.; Rahaman, M.H.; Yang, Z.; Chen, Z. Comparison of Fenton, Ultraviolet–Fenton and Ultrasonic–Fenton Processes on Organics and Colour Removal from Pre-Treated Natural Gas Produced Water. Int. J. Environ. Sci. Technol. 2018, 15, 2411–2422. [Google Scholar] [CrossRef]
- Beltran-Heredia, J.; Torregrosa, J.; Dominguez, J.R.; Peres, J.A. Comparison of the degradation of p-hydroxybenzoic acid in aqueous solution by several oxidation processes. Chemosphere 2001, 42, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, X.; Ban, Y.; Ren, B. A Comparative Study of UV–Fenton, UV–H2O2 and Fenton Reaction Treatment of Landfill Leachate. Environ. Technol. 2011, 32, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.H.; Gul, N.S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N.S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; et al. Removal of Organic Pollutants through Hydroxyl Radical-Based Advanced Oxidation Processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Williams, D.H.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 2nd ed.; McGraw-Hill: London, UK, 1973. [Google Scholar]
- Cao, T.; Li, M.; Xu, C.; Song, J.; Fan, X.; Li, J.; Jia, W.; Peng, P. Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation-emission matrix spectroscopy with parallel factor analysis—potential limitations and applications. Atmos. Chem. Phys. 2023, 23, 2613–2625. [Google Scholar] [CrossRef]
- Senesi, N. Molecular and Quantitative Aspects of the Chemistry of Fulvic Acid and Its Interactions with Metal Ions and Organic Chemicals. Part II. The Fluorescence Spectroscopy Approach. Anal. Chim. Acta 1990, 232, 77–106. [Google Scholar] [CrossRef]
- Chen, J.; Gu, B.; LeBoeuf, E.J.; Pan, H.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.R.F.; Pinto, M.F.; Derossi, I.N.; Esteves, W.T.; Santos, M.D.R.; Matos, M.A.C.; Lowinsohn, D.; Matos, R.C. Chemical characteristics of rainwater at a southeastern site of Brazil. Atmos. Pollut. Res. 2014, 5, 253–261. [Google Scholar] [CrossRef]
- Kieber, R.J.; Whitehead, R.F.; Reid, S.N.; Willey, J.D.; Seaton, P.J. Chromophoric Dissolved Organic Matter (CDOM) in Rainwater, Southeastern North Carolina, USA. J. Atmos. Chem. 2006, 54, 21–41. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Santos, B.H.E.; Duarte, A.C. Seasonal and Air Mass Trajectory Effects on Dissolved Organic Matter of Bulk Deposition at a Coastal Town in South-Western Europe. Environ. Sci. Pollut. Res. 2013, 20, 227–237. [Google Scholar] [CrossRef]
- Downes, A.; Blunt, T.P. The Effect of Sunlight upon Hydrogen Peroxide. Nature 1879, 20, 521. [Google Scholar] [CrossRef]
- Lee, C.; Yoon, J. Temperature Dependence of Hydroxyl Radical Formation in the hν/Fe3⁺/H2O2 and Fe3⁺/H2O2 Systems. Chemosphere 2004, 56, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Walling, C.; Weil, T. The Ferric Ion Catalysed Decomposition of Hydrogen Peroxide in Perchloric Acid Solution. Int. J. Chem. Kinet. 1974, 6, 507–516. [Google Scholar] [CrossRef]
- Hardwick, T.J. The Rate Constant of the Reaction Between Ferrous Ions and Hydrogen Peroxide in Acid Solution. Can. J. Chem. 1957, 35, 428–436. [Google Scholar] [CrossRef]
- Milburn, R.M.; Vosburgh, W.C. A Spectrophotometric Study of the Hydrolysis of Iron(III) Ion. II. Polynuclear Species. J. Am. Chem. Soc. 1955, 77, 1352–1355. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.S.M.; Ferreira, M.P.S.; Duarte, A.C. Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes. Water 2025, 17, 1618. https://doi.org/10.3390/w17111618
Santos PSM, Ferreira MPS, Duarte AC. Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes. Water. 2025; 17(11):1618. https://doi.org/10.3390/w17111618
Chicago/Turabian StyleSantos, Patrícia S. M., Mónica P. S. Ferreira, and Armando C. Duarte. 2025. "Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes" Water 17, no. 11: 1618. https://doi.org/10.3390/w17111618
APA StyleSantos, P. S. M., Ferreira, M. P. S., & Duarte, A. C. (2025). Comparison of the Oxidation of 3,5-Dihydroxybenzoic Acid in Rainwater by UV/Fenton-like and UV/H2O2 Processes. Water, 17(11), 1618. https://doi.org/10.3390/w17111618