Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Synthesis
2.2. Catalytic Activity: Degradation of 17α-Ethinylestradiol in a Fenton-like Process
2.3. Bioassays
2.3.1. Acute Toxicity Bioassay with Lactuca sativa
2.3.2. Acute Toxicity Bioassay with Selenastrum capricornutum
2.3.3. Acute Toxicity Bioassay with Daphnia magna
2.3.4. Calculation of LC/IC50
2.4. Mutagenicity Index (MI) Using the Ames Test
3. Results and Discussion
3.1. Catalytic Activity
3.1.1. Reaction Controls
3.1.2. Catalytic Activity—Effects of Operating Parameters
Hydrogen Peroxide Concentration—Delaminated Clay Impregnated with Fe or Cu
Initial Contaminant Concentration—Delaminated Clay Impregnated with Fe or Cu
Catalyst Amount—Delaminated Clay Impregnated with Fe or Cu
3.2. Catalytic Activity—Operational Parameters: Layered Double Hydroxides Impregnated with Fe or Cu
3.3. Degradation Byproducts
3.4. Catalyst Reusability
3.5. Acute Toxicity Bioassays
Test de Ames
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhyay, A.; Duttagupta, S.; Mukherjee, A. Emerging Organic Contaminants in Global Community Drinking Water Sources and Supply: A Review of Occurrence, Processes and Remediation. J. Environ. Chem. Eng. 2022, 10, 107560. [Google Scholar]
- Ng, B.; Quinete, N.; Maldonado, S.; Lugo, K.; Purrinos, J.; Briceño, H.; Gardinali, P. Understanding the Occurrence and Distribution of Emerging Pollutants and Endocrine Disruptors in Sensitive Coastal South Florida Ecosystems. Sci. Total Environ. 2021, 757, 143720. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.H.; Santos, G.d.O.S.; Romanholo Ferreira, L.F.; Américo-Pinheiro, J.H.P.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Environmental Aspects of Hormones Estriol, 17β-Estradiol and 17α-Ethinylestradiol: Electrochemical Processes as next-Generation Technologies for Their Removal in Water Matrices. Chemosphere 2021, 267, 128888. [Google Scholar] [PubMed]
- Akanyeti, İ.; Kraft, A.; Ferrari, M.C. Hybrid Polystyrene Nanoparticle-Ultrafiltration System for Hormone Removal from Water. J. Water Process Eng. 2017, 17, 102–109. [Google Scholar] [CrossRef]
- Koyuncu, I.; Arikan, O.A.; Wiesner, M.R.; Rice, C. Removal of Hormones and Antibiotics by Nanofiltration Membranes. J. Memb. Sci. 2008, 309, 94–101. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Fijalkowski, K. Emerging Contaminants in Sludge (Endocrine Disruptors, Pesticides, and Pharmaceutical Residues, Including Illicit Drugs/Controlled Substances, etc.). In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 455–473. ISBN 9780128159071. [Google Scholar]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Occurrence, Behavior and Risk Assessment of Estrogens in Surface Water and Sediments from Hanjiang River, Central China. Ecotoxicology 2019, 28, 143–153. [Google Scholar] [CrossRef]
- Liu, S.; Ying, G.G.; Zhao, J.L.; Chen, F.; Yang, B.; Zhou, L.J.; Lai, H.J. Trace Analysis of 28 Steroids in Surface Water, Wastewater and Sludge Samples by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 1367–1378. [Google Scholar] [CrossRef]
- Liu, S.; Ying, G.G.; Zhang, R.Q.; Zhou, L.J.; Lai, H.J.; Chen, Z.F. Fate and Occurrence of Steroids in Swine and Dairy Cattle Farms with Different Farming Scales and Wastes Disposal Systems. Environ. Pollut. 2012, 170, 190–201. [Google Scholar] [CrossRef]
- Shen, X.; Chang, H.; Sun, Y.; Wan, Y. Determination and Occurrence of Natural and Synthetic Glucocorticoids in Surface Waters. Environ. Int. 2020, 134, 105278. [Google Scholar] [CrossRef]
- Ammann, A.A.; Macikova, P.; Groh, K.J.; Schirmer, K.; Suter, M.J.F. LC-MS/MS Determination of Potential Endocrine Disruptors of Cortico Signalling in Rivers and Wastewaters. Anal. Bioanal. Chem. 2014, 406, 7653–7665. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, Z.H.; Wang, H.; Dang, Z.; Liu, Y. A Review of 17α-Ethynylestradiol (EE2) in Surface Water across 32 Countries: Sources, Concentrations, and Potential Estrogenic Effects. J. Environ. Manag. 2021, 292, 112804. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, E.; Dryden, I.L.; Wattis, J.A.D.; Twycross, J.; Scrimshaw, M.D.; Gomes, R.L. Modelling Emerging Pollutants in Wastewater Treatment: A Case Study Using the Pharmaceutical 17A−ethinylestradiol. Comput. Chem. Eng. 2019, 128, 477–487. [Google Scholar] [CrossRef]
- Dong, X.; He, L.; Hu, H.; Liu, N.; Gao, S.; Piao, Y. Removal of 17 β -Estradiol by Using Highly Adsorptive Magnetic Biochar Nanoparticles from Aqueous Solution. Chem. Eng. J. 2018, 352, 371–379. [Google Scholar] [CrossRef]
- Frontistis, Z.; Brebou, C.; Venieri, D.; Mantzavinos, D.; Katsaounis, A. BDD Anodic Oxidation as Tertiary Wastewater Treatment for the Removal of Emerging Micro-Pollutants, Pathogens and Organic Matter. J. Chem. Technol. Biotechnol. 2011, 86, 1233–1236. [Google Scholar] [CrossRef]
- Oliveira, H.G.; Ferreira, L.H.; Bertazzoli, R.; Longo, C. Remediation of 17-α-Ethinylestradiol Aqueous Solution by Photocatalysis and Electrochemically-Assisted Photocatalysis Using TiO2 and TiO2/WO3 Electrodes Irradiated by a Solar Simulator. Water Res. 2015, 72, 305–314. [Google Scholar] [CrossRef]
- He, H.; Huang, B.; Fu, G.; Du, Y.; Xiong, D.; Lai, C.; Pan, X. Coupling Electrochemical and Biological Methods for 17A-Ethinylestradiol Removal from Water by Different Microorganisms. J. Hazard. Mater. 2017, 340, 120–129. [Google Scholar] [CrossRef]
- Seibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Baptista, A.T.; Inticher, J.J. Occurrence, Statutory Guideline Values and Removal of Contaminants of Emerging Concern by Electrochemical Advanced Oxidation Processes: A Review. Sci. Total Environ. 2020, 748, 141527. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Chaillot, D.; Bennici, S.; Brendlé, J. Layered Double Hydroxides and LDH-Derived Materials in Chosen Environmental Applications: A Review. Environ. Sci. Pollut. Res. 2021, 28, 24375–24405. [Google Scholar] [CrossRef]
- Occelli, M.L. Surface Properties and Cracking Activity of Delaminated Clay Catalysts. Catal. Today 1988, 2, 339–355. [Google Scholar] [CrossRef]
- Pérez, A.; Montes, M.; Molina, R.; Moreno, S. Modified Clays as Catalysts for the Catalytic Oxidation of Ethanol. Appl. Clay Sci. 2014, 95, 18–24. [Google Scholar] [CrossRef]
- Hincapié, G.; López, D.; Moreno, A. Infrared Analysis of Methanol Adsorption on Mixed Oxides Derived from Mg/Al Hydrotalcite Catalysts for Transesterification Reactions. Catal. Today 2018, 302, 277–285. [Google Scholar] [CrossRef]
- Rahayu, I.; Darmawan, W.; Nawawi, D.S.; Prihatini, E.; Ismail, R.; Laksono, G.D. Physical Properties of Fast-Growing Wood-Polymer Nano Composite Synthesized through TiO2 Nanoparticle Impregnation. Polymers 2022, 14, 4463. [Google Scholar] [CrossRef] [PubMed]
- Weldeslase, M.G.; Benti, N.E.; Desta, M.A.; Mekonnen, Y.S. Maximizing Biodiesel Production from Waste Cooking Oil with Lime-Based Zinc-Doped CaO Using Response Surface Methodology. Sci. Rep. 2023, 13, 4430. [Google Scholar] [CrossRef]
- Dutka, B.J. Short-Term Root Elongation Toxicity Bioassay. In Methods for Toxicological Analysis of Waters, Wastewaters and Sediments; National Water Research Institute (NWRI), Environment Canada: Burlington, ON, Canada, 1989; pp. 127–140. [Google Scholar]
- Cifuentes, A.; Silva, J.; Bay-Schmith, E.; Larrain, A. Selección de Cepas de Microalgas Para Ser Utilizadas En Bioensayos de Toxicidad. Gayana Ocean. 1998, 61, 1–9. [Google Scholar]
- Bohórquez-Echeverry, P.; Duarte-Castañeda, M.; León-López, N.; Caicedo-Carrascal, F.; Vásquez-Vásquez, M.; Campos-Pinilla, C. Selection of a Bioassay Battery to Assess Toxicity in the Affluents and Effluents of Three Water-Treatment Plants. Univ. Sci. 2012, 17, 152–166. [Google Scholar]
- Williams, L.; Preston, J. Interim Procedures for Conducting the ’Salmonella’/Microsomal Mutagenicity Assay (Ames Test); U.S. Environmental Protection Agency: Washington, DC, USA, 1983; EPA/600/4-82/068 (NTIS PB88205380). Available online: https://archive.epa.gov/region1/info/testmethods/web/pdf/ames-test.pdf (accessed on 18 August 2024).
- Ames, B.N.; Kammen, H.O.; Yamasaki, E. Hair Dyes Are Mutagenic: Identification of a Variety of Mutagenic Ingredients. Proc. Natl. Acad. Sci. USA 1975, 72, 2423–2427. [Google Scholar]
- Feng, X.; Long, R.; Wang, L.; Liu, C.; Bai, Z.; Liu, X. A Review on Heavy Metal Ions Adsorption from Water by Layered Double Hydroxide and Its Composites. Sep. Purif. Technol. 2022, 284, 120099. [Google Scholar]
- Zhao, T.; Xu, S.; Hao, F. Differential Adsorption of Clay Minerals: Implications for Organic Matter Enrichment. Earth Sci. Rev. 2023, 246, 104598. [Google Scholar]
- Feng, Y.; Zhang, Z.; Gao, P.; Su, H.; Yu, Y.; Ren, N. Adsorption Behavior of EE2 (17α-Ethinylestradiol) onto the Inactivated Sewage Sludge: Kinetics, Thermodynamics and Influence Factors. J. Hazard. Mater. 2010, 175, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, Y.; Wang, C.; Guo, R.; You, J.; Zhang, H. Optimizing the Performance of Fe-Based Metal-Organic Frameworks in Photo-Fenton Processes: Mechanisms, Strategies and Prospects. Chemosphere 2023, 339, 139673. [Google Scholar]
- Zhao, Z. Hydroxyl Radical Generations Form the Physiologically Relevant Fenton-like Reactions. Free Radic. Biol. Med. 2023, 208, 510–515. [Google Scholar] [PubMed]
- Pan, Z.; Stemmler, E.A.; Cho, H.J.; Fan, W.; LeBlanc, L.A.; Patterson, H.H.; Amirbahman, A. Photocatalytic Degradation of 17α-Ethinylestradiol (EE2) in the Presence of TiO2-Doped Zeolite. J. Hazard. Mater. 2014, 279, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Xiunan, C.; Ling, T.; Meifei, C.; Yijun, L.; Wei, W.; Junhao, L.; Yanjuan, Z.; Gan, T.; Huayu, H.; Zuqiang, H. Construction of a C-Decorated and Cu-Doped (Fe,Cu)S/CuFe2O4 Solid Solution for Photo-Fenton Degradation of Hydrophobic Organic Contaminant: Enhanced Electron Transfer and Adsorption Capacity. Chemosphere 2022, 296, 134005. [Google Scholar] [CrossRef]
- Ghosh, S.; Pourebrahimi, S.; Malloum, A.; Ajala, O.J.; AlKafaas, S.S.; Onyeaka, H.; Nnaji, N.D.; Oroke, A.; Bornman, C.; Christian, O.; et al. A Review on Ciprofloxacin Removal from Wastewater as a Pharmaceutical Contaminant: Covering Adsorption to Advanced Oxidation Processes to Computational Studies. Mater. Today Commun. 2023, 37, 107500. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F.J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019, 290, 111177. [Google Scholar]
- Zhuravlev, L.T. The Surface Chemistry of Amorphous Silica. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar]
- Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J.C. Effect of Solution PH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules 2017, 22, 1032. [Google Scholar] [CrossRef]
- Shanmugavel, S.P.; Kumar, G. Recent Progress in Mineralization of Emerging Contaminants by Advanced Oxidation Process: A Review. Environ. Pollut. 2024, 341, 122842. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L. Kinetic Study of Hydroxyl Radical Formation in a Continuous Hydroxyl Generation System. RSC Adv. 2018, 8, 40632–40638. [Google Scholar] [CrossRef]
- Yang, C.; Xu, G.; Liu, Q. Adsorption and Heterogenous Fenton-like Reactivity of NH2-MIL-88B towards Toxic Dyes Removal. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132405. [Google Scholar] [CrossRef]
- Li, Z.; Liu, R.; Gao, W.; Zhang, W.; Li, C.; Liu, X.; Wang, N. CuFe2O4/Penicillin Residue Biochar Heterogeneous Fenton-like Catalyst Used in the Treatment of Antibiotic Wastewater: Synthesis, Performance and Working Mechanism. J. Water Process Eng. 2023, 55, 104124. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Zhang, Y.; Xu, X.; Liu, Y.; Zhang, Y.; He, Z.; Wang, J.; Liang, Y. Effect of Interaction between Dissolved Organic Matter and Iron/Manganese (Hydrogen) Oxides on the Degradation of Organic Pollutants by in-Situ Advanced Oxidation Techniques. Sci. Total Environ. 2024, 918, 170351. [Google Scholar] [CrossRef] [PubMed]
- Amedlous, A.; Amadine, O.; Essamlali, Y.; Maati, H.; Semlal, N.; Zahouily, M. Copper Loaded Hydroxyapatite Nanoparticles as Eco-Friendly Fenton-like Catalyst to Effectively Remove Organic Dyes. J. Environ. Chem. Eng. 2021, 9, 105501. [Google Scholar] [CrossRef]
- Silva, M.; Baltrus, J.P.; Williams, C.; Knopf, A.; Zhang, L.; Baltrusaitis, J. Heterogeneous Photo-Fenton-like Degradation of Emerging Pharmaceutical Contaminants in Wastewater Using Cu-Doped MgO Nanoparticles. Appl. Catal. A Gen. 2022, 630, 118468. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Sun, Q.; Yuan, M.; Sun, Z.; Chen, L.; Zhang, Y.; Xia, S.; Zhao, J. Enhanced Activation of Peroxymonosulfate by a Floating FeMo3Ox/C3N4 Photocatalyst under Visible-Light Assistance for Oxytetracycline Degradation: Performance, Mechanisms and Comparison with H2O2 Activation. Environ. Pollut. 2023, 316, 120668. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemannt, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Park, C.M.; Shim, J.J. Ultrasound-Assisted Heterogeneous Fenton-like Process for Efficient Degradation of Tetracycline over SmFeO3/Ti3C2Tx Catalyst. J. Water Process Eng. 2022, 50, 103235. [Google Scholar] [CrossRef]
- Qiao, X.; Xu, Y.; Liu, X.; Chen, S.; Zhong, Z.; Li, Y.; Lü, J. Nitrogen–Doped Titanium Dioxide/Schwertmannite Nanocomposites as Heterogeneous Photo–Fenton Catalysts with Enhanced Efficiency for the Degradation of Bisphenol A. J. Environ. Sci. 2023, 143, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, F.; Wu, J.; Huang, Z.; Song, L.; Yuan, S. Full Utilization of Cu Single Atoms on Carbon Nitride Nanofibers for Enhanced Fenton-like Degradation of Methylene Blue. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132708. [Google Scholar] [CrossRef]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343–1368. [Google Scholar]
- de Melo Costa-Serge, N.; Gonçalves, R.G.L.; Rojas-Mantilla, H.D.; Santilli, C.V.; Hammer, P.; Nogueira, R.F.P. Fenton-like Degradation of Sulfathiazole Using Copper-Modified MgFe-CO3 Layered Double Hydroxide. J. Hazard. Mater. 2021, 413, 125388. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, L.; Ye, J.; Li, N.; Yan, B.; Chen, G. Influence and Mechanism of Water Matrices on H2O2-Based Fenton-like Oxidation Processes: A Review. Sci. Total Environ. 2023, 888, 164086. [Google Scholar]
- Ali, J.; Li, D.; Shahzad, A.; Wajid Ullah, M.; Ifthikar, J.; Asif, M.; Yanan, C.; Lei, X.; Chen, Z.; Wang, S. MoS4-LDH: A Dual Centre Fe-Based Layered Double Hydroxide Catalyst for Efficient Atrazine Removal and Peroxymonsulfate Activation. Chem. Eng. J. 2023, 456, 141161. [Google Scholar] [CrossRef]
- Gonçalves, R.G.L.; Mendes, H.M.; Bastos, S.L.; D’Agostino, L.C.; Tronto, J.; Pulcinelli, S.H.; Santilli, C.V.; Neto, J.L. Fenton-like Degradation of Methylene Blue Using Mg/Fe and MnMg/Fe Layered Double Hydroxides as Reusable Catalysts. Appl. Clay Sci. 2020, 187, 105477. [Google Scholar] [CrossRef]
- Kaur, J.; Pal, B.; Singh, S.; Kaur, H. Fabrication of Highly Efficient Au and Layered Double Hydroxide Modified G-C3N4 Ternary Composites for Degradation of Pharmaceutical Drug: Pathways and Mechanism. Surf. Interfaces 2023, 36, 102583. [Google Scholar] [CrossRef]
- Liu, M.; Lin, M.; Owens, G.; Chen, Z. Fenton-like Oxidation Mechanism for Simultaneous Removal of Estriol and Ethinyl Estradiol by Green Synthesized Mn3O4 NPs. Sep. Purif. Technol. 2022, 301, 121978. [Google Scholar] [CrossRef]
- He, H.; Sun, S.; Gao, J.; Huang, B.; Zhao, T.; Deng, H.; Wang, X.; Pan, X. Photoelectrocatalytic Simultaneous Removal of 17α-Ethinylestradiol and E. Coli Using the Anode of Ag and SnO2-Sb 3D-Loaded TiO2 Nanotube Arrays. J. Hazard. Mater. 2020, 398, 122805. [Google Scholar] [CrossRef]
- Du, X.; Liu, L.; Dong, Z.; Cui, Z.; Sun, X.; Wu, D.; Ma, Z.; Fang, Z.; Liu, Y.; An, Y. Accelerated Redox Cycles of Fe(III)/Fe(II) and Cu(III)/Cu(II) by Photo-Induced Electron from n-Cqds for Enhanced Photo-Fenton Capability of CuFe-LDH. Catalysts 2020, 10, 960. [Google Scholar] [CrossRef]
- Dong, X.; Yu, S.; Yang, W.; Cheng, L.; Tang, Y.; Chen, D. Homogeneous Oxidation of EE2 by Ozone: Influencing Factors, Degradation Pathway, and Toxicity Assessment. J. Environ. Chem. Eng. 2024, 12, 112360. [Google Scholar] [CrossRef]
- Amiri, S.; Anbia, M. Insights into the Effect of Parameters and Pathway of Visible-Light Photodegradation of Glyphosate and Diazinon by C-TiO2/Clinoptilolite Nanocomposite. J. Photochem. Photobiol. A Chem. 2024, 446, 115146. [Google Scholar] [CrossRef]
- Barzoki, H.R.; Dargahi, A.; Shabanloo, A.; Ansari, A.; Bairami, S. Electrochemical Advanced Oxidation of 2,4-D Herbicide and Real Pesticide Wastewater with an Integrated Anodic Oxidation/Heterogeneous Electro-Fenton Process. J. Water Process Eng. 2023, 56, 104429. [Google Scholar] [CrossRef]
- Silva, M.; Baltrusaitis, J. Destruction of Emerging Organophosphate Contaminants in Wastewater Using the Heterogeneous Iron-Based Photo-Fenton-like Process. J. Hazard. Mater. Lett. 2021, 2, 100012. [Google Scholar]
- Rivas Ibáñez, G.; Bittner, M.; Toušová, Z.; Campos-Mañas, M.C.; Agüera, A.; Casas López, J.L.; Sánchez Pérez, J.A.; Hilscherová, K. Does Micropollutant Removal by Solar Photo-Fenton Reduce Ecotoxicity in Municipal Wastewater? A Comprehensive Study at Pilot Scale Open Reactors. J. Chem. Technol. Biotechnol. 2017, 92, 2114–2122. [Google Scholar] [CrossRef]
- Cédat, B.; de Brauer, C.; Métivier, H.; Dumont, N.; Tutundjan, R. Are UV Photolysis and UV/H2O2 Process Efficient to Treat Estrogens in Waters? Chemical and Biological Assessment at Pilot Scale. Water Res. 2016, 100, 357–366. [Google Scholar] [CrossRef]
- Velegraki, T.; Balayiannis, G.; Diamadopoulos, E.; Katsaounis, A.; Mantzavinos, D. Electrochemical Oxidation of Benzoic Acid in Water over Boron-Doped Diamond Electrodes: Statistical Analysis of Key Operating Parameters, Kinetic Modeling, Reaction by-Products and Ecotoxicity. Chem. Eng. J. 2010, 160, 538–548. [Google Scholar] [CrossRef]
- Morais, R.L.; Santiago, M.F.; Zang, J.W.; Fonseca-Zang, W.A.; Schimidt, F. Removal of Synthetic Sex Hormones by Hydrothermal Carbonization. Acad. Bras. Cienc. 2018, 90, 1327–1336. [Google Scholar] [CrossRef]
- Lugo, L.; Venegas, C.; Guarin Trujillo, E.; Diaz Granados-Ramírez, M.A.; Martin, A.; Vesga, F.J.; Pérez-Flórez, A.; Celis, C. Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. Int. J. Environ. Res. Public. Health 2023, 20, 7172. [Google Scholar] [CrossRef]
- He, Y.; Patterson-Fortin, L.; Boutros, J.; Smith, R.; Goss, G.G. Removal of Biological Effects of Organic Pollutants in Municipal Wastewater by a Novel Advanced Oxidation System. J. Environ. Manag. 2021, 280, 111855. [Google Scholar] [CrossRef]
Treatment | Group | Active Phase | Contaminant | pH | Contaminant Concentration (ppm) | Hydrogen Peroxide Concentration (M) | Catalyst Amount (g) |
---|---|---|---|---|---|---|---|
1 | 1 | Fe | EE2 | 3 | 5 | 0.05 | 0.12 |
2 | 7 | 5 | 0.05 | 0.12 | |||
3 | 11 | 5 | 0.05 | 0.12 | |||
4 | Cu | EE2 | 3 | 5 | 0.05 | 0.12 | |
5 | 7 | 5 | 0.05 | 0.12 | |||
6 | 11 | 5 | 0.05 | 0.12 | |||
7 | 2 | Fe | EE2 | 3 | 5 | 0.1 | 0.12 |
8 | 7 | 5 | 0.1 | 0.12 | |||
9 | 11 | 5 | 0.1 | 0.12 | |||
10 | Cu | EE2 | 3 | 5 | 0.1 | 0.12 | |
11 | 7 | 5 | 0.1 | 0.12 | |||
12 | 11 | 5 | 0.1 | 0.12 | |||
13 | 3 | Fe | EE2 | 3 | 5 | 0.2 | 0.12 |
14 | 7 | 5 | 0.2 | 0.12 | |||
15 | 11 | 5 | 0.2 | 0.12 | |||
16 | Cu | EE2 | 3 | 5 | 0.2 | 0.12 | |
17 | 7 | 5 | 0.2 | 0.12 | |||
18 | 11 | 5 | 0.2 | 0.12 | |||
19 | 4 | Fe | EE2 | 3 | 5 | 0.1 | 0.06 |
20 | 7 | 5 | 0.1 | 0.06 | |||
21 | 11 | 5 | 0.1 | 0.06 | |||
22 | Cu | EE2 | 3 | 5 | 0.1 | 0.06 | |
23 | 7 | 5 | 0.1 | 0.06 | |||
24 | 11 | 5 | 0.1 | 0.06 | |||
25 | 5 | Fe | EE2 | 3 | 5 | 0.1 | 0.24 |
26 | 7 | 5 | 0.1 | 0.24 | |||
27 | 11 | 5 | 0.1 | 0.24 | |||
28 | Cu | EE2 | 3 | 5 | 0.1 | 0.24 | |
29 | 7 | 5 | 0.1 | 0.24 | |||
30 | 11 | 5 | 0.1 | 0.24 | |||
31 | 6 | Fe | EE2 | 3 | 1 | 0.1 | 0.12 |
32 | 7 | 1 | 0.1 | 0.12 | |||
33 | 11 | 1 | 0.1 | 0.12 | |||
34 | Cu | EE2 | 3 | 1 | 0.1 | 0.12 | |
35 | 7 | 1 | 0.1 | 0.12 | |||
36 | 11 | 1 | 0.1 | 0.12 | |||
37 | 7 | Fe | EE2 | 3 | 10 | 0.1 | 0.12 |
38 | 7 | 10 | 0.1 | 0.12 | |||
39 | 11 | 10 | 0.1 | 0.12 | |||
40 | Cu | EE2 | 3 | 10 | 0.1 | 0.12 | |
41 | 7 | 10 | 0.1 | 0.12 | |||
42 | 11 | 10 | 0.1 | 0.12 |
Group | Active Phase | Contaminant | Contaminant Concentration (ppm) | Hydrogen Peroxide Concentration (M) | Catalyst Amount (g) |
---|---|---|---|---|---|
1 | Fe | EE2 | 5 | 0.05 | 0.12 |
2 | 5 | 0.1 | 0.12 | ||
3 | 5 | 0.2 | 0.12 | ||
1 | Cu | EE2 | 5 | 0.05 | 0.12 |
2 | 5 | 0.1 | 0.12 | ||
3 | 5 | 0.2 | 0.12 | ||
4 | Fe | EE2 | 5 | 0.1 | 0.06 |
5 | 5 | 0.1 | 0.24 | ||
4 | Cu | EE2 | 5 | 0.1 | 0.06 |
5 | 5 | 0.1 | 0.24 | ||
6 | Fe | EE2 | 1 | 0.1 | 0.12 |
7 | 10 | 0.1 | 0.12 | ||
6 | Cu | EE2 | 1 | 0.1 | 0.12 |
7 | 10 | 0.1 | 0.12 |
Catalyst | pH | Contaminant Concentration (ppm) | Hydrogen Peroxide Concentration (M) | Catalyst Amount (g) | % Removal |
---|---|---|---|---|---|
DC-Fe | 3 | 5 | 0.1 | 0.12 | 55% |
DC-Cu | 7 | 10 | 0.2 | 0.24 | 47% |
LDH-Fe | 10 | 10 | 0.2 | 0.24 | 40% |
LDH-Cu | 10 | 5 | 0.1 | 0.12 | 33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo, L.; Venegas, C.; Díaz, J.; Díaz-Gallo, S.A.; Barriga, A.; Vesga, F.-J.; Moreno, S.; Celis-Zambrano, C.; Pérez-Flórez, A. Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity. Water 2025, 17, 1043. https://doi.org/10.3390/w17071043
Lugo L, Venegas C, Díaz J, Díaz-Gallo SA, Barriga A, Vesga F-J, Moreno S, Celis-Zambrano C, Pérez-Flórez A. Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity. Water. 2025; 17(7):1043. https://doi.org/10.3390/w17071043
Chicago/Turabian StyleLugo, Lorena, Camilo Venegas, John Díaz, Sergio Alberto Díaz-Gallo, Alejandra Barriga, Fidson-Juarismy Vesga, Sonia Moreno, Crispín Celis-Zambrano, and Alejandro Pérez-Flórez. 2025. "Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity" Water 17, no. 7: 1043. https://doi.org/10.3390/w17071043
APA StyleLugo, L., Venegas, C., Díaz, J., Díaz-Gallo, S. A., Barriga, A., Vesga, F.-J., Moreno, S., Celis-Zambrano, C., & Pérez-Flórez, A. (2025). Evaluation of Layered Structures Impregnated with Fe or Cu as Catalysts in a Fenton-like Process for the Removal of 17α-Ethinylestradiol in Aqueous Solution: Operational Parameters and Ecotoxicity. Water, 17(7), 1043. https://doi.org/10.3390/w17071043