Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (884)

Search Parameters:
Keywords = Fe-based catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3434 KB  
Article
Preparation, Characterization, and Catalytic Performance of Metal-Based Heterogeneous Catalysts for Glucose Oxidation to Gluconic Acid
by Stamatia A. Karakoulia, Asimina A. Marianou, Chrysoula M. Michailof and Angelos A. Lappas
Catalysts 2026, 16(2), 135; https://doi.org/10.3390/catal16020135 - 1 Feb 2026
Abstract
The development of non-noble metal catalysts provides a cost-effective and sustainable route for glucose oxidation to gluconic acid. In this study, a series of catalysts based on inexpensive transition metals (Cr, Cu, Ni, Fe) and/or Au were synthesized using siliceous supports (SiO2 [...] Read more.
The development of non-noble metal catalysts provides a cost-effective and sustainable route for glucose oxidation to gluconic acid. In this study, a series of catalysts based on inexpensive transition metals (Cr, Cu, Ni, Fe) and/or Au were synthesized using siliceous supports (SiO2 and MCM-41) and systematically evaluated. The aim was to partially or fully replace noble metals with lower-cost alternatives, while maintaining high catalytic performance. Comprehensive characterization—including ICP-AES for composition, N2 adsorption–desorption for porosity, XRD for structure, H2-TPR for reducibility, and NH3-TPD for acidity—was conducted to establish structure–property relationships. Among the tested catalysts, Ni- and Fe-based systems exhibited superior stability, with NiO/SiO2 achieving gluconic acid yields comparable to Au. The bimetallic Au–Ni/SiO2 catalyst displayed enhanced metal–support interactions and minimal leaching (<2%), while Au–Fe/SiO2 improved selectivity, yielding up to 23% gluconic acid, surpassing 5Fe/SiO2 (18%) and 0.3Au/SiO2 (15%), albeit with lower stability. These results highlight the potential of low-cost transition-metal and bimetallic catalysts as efficient and economically viable systems for selective glucose oxidation, providing insights for rational catalyst design in sustainable carbohydrate valorization. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

21 pages, 6575 KB  
Article
Silica-Driven Bandgap Engineering in Cobalt Ferrite Nanoparticles for Efficient Removal of Mercapto Contaminants Under Sunlight Irradiation
by Cristian Brayan Palacios-Cabrera, Alan Javier Santiago-Cuevas, Jayanthi Narayanan, José Guadalupe Hernández-Hernández, María del Carmen Durán-Domínguez-de-Bazúa, Jorge Alberto Granados-Olvera, Genaro Hernández-Cedillo and José Antonio Juanico-Loran
Processes 2026, 14(3), 483; https://doi.org/10.3390/pr14030483 - 30 Jan 2026
Viewed by 110
Abstract
The degradation of mercapto organic contaminants is highly important for safety and environmental protection since the specific chemical properties and the strong nature of S-containing bonds can make them less susceptible to traditional degradation mechanisms compared to other types of organic bonds. Thus, [...] Read more.
The degradation of mercapto organic contaminants is highly important for safety and environmental protection since the specific chemical properties and the strong nature of S-containing bonds can make them less susceptible to traditional degradation mechanisms compared to other types of organic bonds. Thus, degradation of mercapto organic contaminants often requires catalysts with specific bandgap properties to ensure efficient generation of reactive species and appropriate redox potential alignment. Hence, in this work, we prepared bandgap-engineered semiconductor photocatalysts based on nanoparticles of different silica-doped spinel cobalt ferrite [SiO2/CoFe2O4] (abbreviated as SiMCoF) [SiMCoF-1, SiMCoF-2, and SiMCoF-3] and characterized them by different analytical techniques. Since the dopant composition in a heterogeneous semiconductor material has important effects on its photocatalytic efficiency because adjusting the dopant profile can modulate impurity bands and enhance optical properties, which is crucial for the oxidative degradation of organic pollutants. Results from TEM, SEM, and their EDS analysis revealed that increased SiO2 content showed improved surface area in the matrix, facilitating the increased absorption of oxygen impurities. This is further observed by the higher Rmax values presented in AFM of SiMCoF-3 (139 nm) compared to SiMCoF-2 (116 nm) and SiMCoF-1 (8.78 nm), depicting its larger effective surface area (100 µm2), which in turn increases the active binding sites in the matrix. The Raman spectrum and XRD pattern of SiMCoF-3 showed various crystal planes with different atomic arrangements and a smaller crystallite size, leading to varying affinities for oxygen impurities. As a result, the optical bandgap decreased from 3.42 eV to 2.89 eV for SiMCoF-3, which is attributed to the quantum confinement effects caused by the smaller particle size and the dispersion of silica particles in the cobalt ferrite matrix. Thus, SiMCoF-3 showed elevated degradation performance without using any potential oxidants over the degradation of mercapto organic contaminants such as 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, and thiophenol under sunlight irradiation compared to other ferrites, and showed better results than Fenton’s reagent. Full article
Show Figures

Graphical abstract

35 pages, 2952 KB  
Review
Thermo-Catalytic Carbon Dioxide Hydrogenation to Ethanol
by Xianyu Meng, Ying Wang, Jie Li, Hongxing Wang, Chenglong Yu, Jia Guo, Zhuo Zhang, Qingli Qian and Buxing Han
Chemistry 2026, 8(2), 14; https://doi.org/10.3390/chemistry8020014 - 28 Jan 2026
Viewed by 144
Abstract
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO [...] Read more.
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO2 to C1 products (e.g., methane, methanol), selective synthesis of C2+ compounds like ethanol remains challenging because of competing reaction pathways and byproduct formation. Recent advances in thermo-catalytic CO2 hydrogenation have explored diverse catalyst systems including noble metals (Rh, Pd, Au, Ir, Pt) and non-noble metals (Co, Cu, Fe), supported on zeolites, metal oxides, perovskites, silica, metal–organic frameworks, and carbon-based materials. These studies reveal that catalytic performance hinges on the synergistic effects of multimetallic sites, tailored support properties and controlled reaction micro-environments to optimize CO2 activation, controlled hydrogenation and C−C coupling. Mechanistic insights highlight the critical balance between CO2 reduction steps and selective C−C bond formation, supported by thermodynamic analysis, advanced characterization techniques and theoretical calculations. However, challenges persist, such as low ethanol yields and undesired byproducts, necessitating innovative catalyst designs and optimized reactor configurations. Future efforts must integrate computational modeling, in situ/operando studies, and renewable hydrogen sources to advance scalable and economically viable processes. This review consolidates key findings, proposes potential reaction mechanisms, and outlines strategies for designing high-efficiency catalysts, ultimately providing reference for industrial application of CO2-to-ethanol technologies. Full article
Show Figures

Figure 1

20 pages, 3087 KB  
Article
Catalytic Combustion Characteristics for Removal of High-Concentration Volatile Organic Compounds (VOCs)
by Tae-Jin Kang, Hyun-Ji Kim, Jieun Lee, Jin-Hee Lee, Hyo-Sik Kim, Jin-Ho Kim, No-Kuk Park, Soo Chool Lee and Suk-Hwan Kang
Atmosphere 2026, 17(2), 137; https://doi.org/10.3390/atmos17020137 - 27 Jan 2026
Viewed by 131
Abstract
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts [...] Read more.
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts promoted with La and Ce. Catalysts (0.05–0.5 wt% Pt) were synthesized via impregnation and characterized using FE-SEM, BET, and XRD. Catalytic combustion experiments at VOC concentrations up to 13,000 ppm showed combustion initiation below 200 °C, achieving 83–99% conversions at 300 °C with complete oxidation to CO2. Although 5 vol.% moisture significantly inhibited low-temperature activity through competitive adsorption, La and Ce promoters (10 wt%) effectively overcame this limitation by increasing surface area (up to 194.93 m2/g) and oxygen mobility. The Ce-promoted catalyst demonstrated superior water tolerance, achieving complete conversion at 200–210 °C due to its high Oxygen Storage Capacity (OSC). Bench-scale validation using a 1 Nm3/h system confirmed industrial feasibility. Operating at 220 °C with 13,000 ppm toluene for 100 h, the catalyst maintained >99.98% conversion with negligible deactivation and THC emissions below 2 ppm. The double-jacket heat exchanger effectively managed reaction heat (limiting temperature rise to ~20 °C) and recovered it as steam. Compared to Regenerative Thermal Oxidation, this Regenerative Catalytic Oxidation approach reduced emissions and energy consumption. This work demonstrates a robust “combustion-with-recovery” strategy for high-concentration VOC treatment, offering a sustainable alternative with high efficiency, stability, and safe energy-integrated operation. Full article
Show Figures

Graphical abstract

21 pages, 1661 KB  
Article
Impact of Selected Metal Oxides on the Thermodynamics of Solid Rocket Propellant Combustion
by Kinga Janowska, Sylwia Waśkiewicz, Paweł Skóra, Lukasz Hawelek, Piotr Prasuła, Tomasz Jarosz and Agnieszka Stolarczyk
Molecules 2026, 31(3), 436; https://doi.org/10.3390/molecules31030436 - 27 Jan 2026
Viewed by 116
Abstract
A series of catalytic oxides (Fe2O3, CuO, ZnO, and Cu2O) were investigated as prospective additives shaping the thermal features of a model solid rocket propellant (SRP) formulation utilising ammonium nitrate as the oxidising agent. An extensive investigation [...] Read more.
A series of catalytic oxides (Fe2O3, CuO, ZnO, and Cu2O) were investigated as prospective additives shaping the thermal features of a model solid rocket propellant (SRP) formulation utilising ammonium nitrate as the oxidising agent. An extensive investigation of the thermal behaviour (DSC and ignition/explosion temperature studies) of the model and catalyst-bearing SRP formulations was conducted, providing insights into both the thermodynamics and mechanism of combustion of these systems. XRD analysis of post-combustion residues was used to validate the mechanistic claims, as well as to provide information about the behaviour of copper oxides in the SRP system. In addition, the linear combustion velocity was experimentally determined, and the power output was estimated from density, linear combustion velocity and DSC data, in order to assess the potential motor performance of the tested formulations. The obtained results show that the utilisation of metal oxides significantly improves the combustion performance of ammonium nitrate-based SRP formulations relative to the unmodified ammonium nitrate-based propellants. Full article
(This article belongs to the Special Issue Advances in Energetic Materials and Associated Detection Methods)
Show Figures

Graphical abstract

14 pages, 5865 KB  
Article
Microwave Synthesis of Transition Metal (Fe, Co, Ni)-Supported Catalysts for CO2 Hydrogenation
by Anna A. Strekalova, Anastasiya A. Shesterkina, Kirill A. Beresnev, Petr V. Pribytkov, Gennadiy I. Kapustin, Igor V. Mishin, Leonid M. Kustov and Alexander L. Kustov
Catalysts 2026, 16(1), 111; https://doi.org/10.3390/catal16010111 - 22 Jan 2026
Viewed by 299
Abstract
To improve the efficiency of CO2 hydrogenation, it is essential to develop new catalysts as well as new methods of producing them. In our work, we propose a new Fe-, Co-, Cu-containing catalyst preparation technique based on depositing the active component through [...] Read more.
To improve the efficiency of CO2 hydrogenation, it is essential to develop new catalysts as well as new methods of producing them. In our work, we propose a new Fe-, Co-, Cu-containing catalyst preparation technique based on depositing the active component through urea hydrolysis using microwave heating. We also compare catalysts produced with microwave synthesis to samples obtained through traditional synthesis methods, including impregnation and thermal deposition. The obtained catalysts were characterized by XRD, low-temperature N2 adsorption, SEM., and UV-VIS methods. The catalytic properties of the catalysts depend not only on the nature of the active component, but also on the preparation method. The best results for CO2 hydrogenation were achieved with Ni-containing catalysts produced by the impregnation method and microwave synthesis. Full article
Show Figures

Graphical abstract

20 pages, 8238 KB  
Article
Manganese–Iron-Supported Biomass-Derived Carbon Catalyst for Efficient Hydrazine Oxidation
by Karina Vjūnova, Huma Amber, Dijana Šimkūnaitė, Zenius Mockus, Aleksandrs Volperts, Ance Plavniece, Galina Dobele, Aivars Zhurinsh, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Molecules 2026, 31(2), 354; https://doi.org/10.3390/molecules31020354 - 19 Jan 2026
Viewed by 186
Abstract
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread [...] Read more.
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread adoption of green, energy-saving hydrazine-based technologies in energy applications. Highly efficient and cost-effective iron (Fe) and manganese–iron (MnFe)-supported nitrogen-doped carbon (N–C) materials were developed using hydrothermal synthesis. Meanwhile, the N–C material was obtained from biomass—birch-wood chips—using hydrothermal carbonisation (HTC), followed by activation and nitrogen doping of the resulting hydrochar. The morphology, structure, and composition of the MnFe, MnFe/N–C, and Fe/N–C catalysts were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS). The activity of the catalysts for HzOR in an alkaline medium was evaluated using cyclic voltammetry (CV). Depositing MnFe particles onto N–C was shown to significantly enhance electrocatalytic activity for HzOR compared to the Fe/N–C catalyst and especially to the MnFe particles catalyst in terms of highly developed porous structure, which offers the largest surface area, lowest onset potential, and highest current density response, resulting in the strongest catalytic activity. These results suggest that the MnFe/N–C catalyst could be a highly promising anode material for HzOR in direct hydrazine fuel cells (DHFCs). Full article
Show Figures

Figure 1

22 pages, 7799 KB  
Article
The Influence of Mechanochemical Activation on the Properties of a Double Complex Salt [Co(NH3)6][Fe(CN)6] and Its Thermolysis Products
by Alevtina Gosteva, Alexander M. Kalinkin, Vladimir Vinogradov, Diana Manukovskaya, Viktor Nikolaev, Vasilii Semushin and Maria Teplonogova
Thermo 2026, 6(1), 7; https://doi.org/10.3390/thermo6010007 - 19 Jan 2026
Viewed by 120
Abstract
Double complex salts (DCSs) of the composition [Co(NH3)6][Fe(CN)6] are a promising precursor for the preparation of catalysts for the hydrogenation of carbon oxides (CO and CO2) by Fischer–Tropsch synthesis. The specific surface area is an [...] Read more.
Double complex salts (DCSs) of the composition [Co(NH3)6][Fe(CN)6] are a promising precursor for the preparation of catalysts for the hydrogenation of carbon oxides (CO and CO2) by Fischer–Tropsch synthesis. The specific surface area is an important parameter for catalysts. Our article investigates the influence of mechanochemical activation (MCA) on this DCS in order to determine the conditions for obtaining the largest specific surface area of the intermetallic compound, a product of the DCS thermolysis. In this work, the effect of MCA on the physicochemical properties of the DCS [Co(NH3)6][Fe(CN)6] and the products of its thermal decomposition in an argon atmosphere were investigated. It was shown that MCA leads to partial reduction of Fe+3 to Fe+2, changes in the coordination of ammonia, amorphization of the structure and a decrease in the thermal stability of DCS. Thermolysis at 650 °C of samples subjected to MCA for 10 min results in the formation of nanocrystalline intermetallic compound Co0.5Fe0.5. The results demonstrate the potential of using MCA to control the properties of functional materials based on DCS. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

18 pages, 999 KB  
Article
Direct Liquid Phase Hydroxylation of Benzene to Phenol over Iron-Containing Mordenite Catalysts: Combined DLS–EPR Study and Thermodynamic–Stability Analysis
by E. H. Ismailov, L. Kh. Qasimova, S. N. Osmanova, A. I. Rustamova, L. V. Huseynova, S. A. Mammadkhanova and Sh. F. Tagiyeva
Catalysts 2026, 16(1), 89; https://doi.org/10.3390/catal16010089 - 13 Jan 2026
Viewed by 430
Abstract
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen [...] Read more.
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen peroxide solution. The study utilizes a combination of catalytic activity measurements, dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) spectra. The system is initially shown to exhibit high phenol selectivity; however, over time, DLS measurements indicate aggregation of the catalyst particles with an increase in the average particle diameter from 1.8 to 2.6 μm and the formation of byproducts–dihydroxybenzenes. Iron is present predominantly as magnetite nanoparticles (Fe3O4) ~10 nm in diameter, stabilized on the outer surface of mordenite, with minor leaching (<10%) due to the formation of iron ion complexes with ascorbic acid as a result of the latter’s interaction with magnetite particles. Using a thermodynamic approach based on the Ulich formalism (first and second approximations), it is shown that the reaction of benzene hydroxylation H2O2 in the liquid phase is thermodynamically quite favorable (ΔG° = −(289–292) kJ·mol−1 in the range of 293–343 K, K = 1044–1052). It is shown that ascorbic acid acts as a redox mediator (reducing Fe3+ to Fe2+) and a regulator of the catalytic medium activity. The stability of the catalytic system is examined in terms of the Lyapunov criterion: it is shown that the total Gibbs free energy (including the surface contribution) can be considered as a Lyapunov functional describing the evolution of the system toward a steady state. Ultrasonic (US) treatment of the catalytic system is shown to redisperse aggregated particles and restore its activity. It is established that the catalytic activity is due to nanosized Fe3O4 particles, which react with H2O2 to form hydroxyl radicals responsible for the selective hydroxylation of benzene to phenol. Full article
Show Figures

Graphical abstract

24 pages, 2470 KB  
Review
Metal–Support Interactions in Single-Atom Catalysts for Electrochemical CO2 Reduction
by Alexandra Mansilla-Roux, Mayra Anabel Lara-Angulo and Juan Carlos Serrano-Ruiz
Nanomaterials 2026, 16(2), 103; https://doi.org/10.3390/nano16020103 - 13 Jan 2026
Viewed by 388
Abstract
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition [...] Read more.
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition with the hydrogen evolution reaction (HER). Single-atom catalysts (SACs) have emerged as powerful materials to address these challenges because they combine maximal metal utilization with well-defined coordination environments whose electronic structure can be precisely tuned through metal–support interactions. This minireview summarizes current understanding of how structural, electronic, and chemical features of SAC supports (e.g., porosity, heteroatom doping, vacancies, and surface functionalization) govern the adsorption and conversion of key CO2RR intermediates and thus control product distributions from CO to CH4, CH3OH and C2+ species. Particular emphasis is placed on selectivity descriptors (e.g., coordination number, d-band position, binding energies of *COOH and *OCHO) and on rational design strategies that exploit curvature, microenvironment engineering, and electronic metal–support interactions to direct the reaction along desired pathways. Representative SAC systems based primarily on N-doped carbons, complemented by selected examples on oxides and MXenes are discussed in terms of Faradaic efficiency (FE), current density and operational stability under practically relevant conditions. Finally, the review highlights remaining bottlenecks and outlines future directions, including operando spectroscopy and data-driven analysis of dynamic single-site ensembles, machine-learning-assisted DFT screening, scalable mechanochemical synthesis, and integration of SACs into industrially viable electrolyzers for carbon-neutral chemical production. Full article
Show Figures

Figure 1

23 pages, 7007 KB  
Review
Fe-Based Catalysts in MgH2 Hydrogen Storage: Mechanistic Insights, Stability Challenges, and a Roadmap for Scalable Design
by Quanhui Hou, Qianyang Wang, Xue Du, Zhihao Xu, Xiao Xu, Yunxuan Zhou and Zhao Ding
Coatings 2026, 16(1), 92; https://doi.org/10.3390/coatings16010092 - 11 Jan 2026
Cited by 1 | Viewed by 230
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts [...] Read more.
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts have emerged as attractive candidates due to their abundance, compositional tunability, and effective promotion of hydrogen sorption reactions in MgH2 systems. This review critically summarizes recent progress in Fe-based catalysts for MgH2 hydrogen storage, encompassing elemental Fe, iron oxides, Fe-based alloys, and advanced composite catalysts with nanostructured and multicomponent architectures. Mechanistic insights into catalytic enhancement are discussed, with particular emphasis on interfacial electron transfer, catalytic phase evolution, hydrogen diffusion pathways, and synergistic effects between Fe-containing species and MgH2, supported by experimental and theoretical studies. In addition to catalytic activity, key stability challenges—including catalyst agglomeration, phase segregation, interfacial degradation, and performance decay during cycling—are analyzed in relation to structural evolution and kinetic–thermodynamic trade-offs. Finally, a roadmap for the scalable design of Fe-based catalysts is proposed, highlighting rational catalyst selection, interface engineering, and compatibility with large-scale synthesis. This review aims to bridge fundamental mechanisms with practical design considerations for developing durable and high-performance MgH2-based hydrogen storage materials. Full article
(This article belongs to the Special Issue The Research of Change: Catalysts for a Sustainable Future)
Show Figures

Figure 1

17 pages, 3258 KB  
Article
Sustainable Carbon–Carbon Composites from Biomass-Derived Pitch: Optimizing Structural, Electrical, and Mechanical Properties via Catalyst Engineering
by Zeban Shah, Muhammad Nisar, Inam Ullah, Muhammad Yaseen, Abiodun Oluwatosin Adeoye, Shaowei Zhang, Sayyar Ali Shah and Habib Ullah
Catalysts 2026, 16(1), 74; https://doi.org/10.3390/catal16010074 - 8 Jan 2026
Cited by 1 | Viewed by 765
Abstract
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used [...] Read more.
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used as a binder for carbon–carbon composites. The properties of BDP/graphite and CTP/graphite composites, including bending strength, electrical conductivity, hardness, density, porosity, mass loss, and shrinkage, were compared. Furthermore, the influence of catalysts (NiSO4, K2SO4, CuSO4, FeSO4, and KOH) on composite performance was systematically investigated. Results show that catalyst selection significantly enhances structural, electrical, and mechanical properties, demonstrating the potential of combining eco-friendly materials with strategic catalyst engineering to develop high-performance, sustainable composites. Full article
Show Figures

Graphical abstract

14 pages, 3186 KB  
Article
Synergistic Induction by Deep Eutectic Solvent and Carbon Dots for Rapid Construction of FeOOH Electrocatalysts Toward Efficient Oxygen Evolution Reaction
by Weijuan Xu, Hui Wang, Xuan Han, Shuzheng Qu, Yue Yan, Bingxian Zhu, Haipeng Zhang and Qingshan Zhao
Catalysts 2026, 16(1), 73; https://doi.org/10.3390/catal16010073 - 8 Jan 2026
Viewed by 401
Abstract
The development of efficient and stable oxygen evolution reaction (OER) electrocatalysts based on non-precious metals is pivotal for advancing sustainable energy conversion technologies. We present a facile and green strategy for synthesizing a high-performance HO-CDs-FeOOH/NF(D) composite catalyst by leveraging a synergistic system of [...] Read more.
The development of efficient and stable oxygen evolution reaction (OER) electrocatalysts based on non-precious metals is pivotal for advancing sustainable energy conversion technologies. We present a facile and green strategy for synthesizing a high-performance HO-CDs-FeOOH/NF(D) composite catalyst by leveraging a synergistic system of FeCl3/urea deep eutectic solvent (DES) and hydroxyl-functionalized carbon dots (HO-CDs). This system orchestrates the rapid, in situ growth of FeOOH on nickel foam (NF) via simple immersion, wherein the DES acts as both an etchant and an iron source, while the HO-CDs induce a morphological transformation from sheet-like to granular stacking, thereby constructing highly active interfaces and increasing the density of accessible catalytic sites. The optimized catalyst exhibits exceptional OER performance, requiring an overpotential of only 251 mV to achieve 50 mA cm−2, with a Tafel slope of 55.4 mV dec−1. Moreover, it demonstrates outstanding stability, maintaining 98% of its initial current density after 24 h of continuous operation and showing negligible performance decay after 3000 cycles. This work presents a straightforward approach for designing high-performance Fe-based electrocatalysts through carbon dot-mediated morphology control via a facile DES-based impregnation strategy. Full article
Show Figures

Figure 1

21 pages, 3331 KB  
Article
The Preparation of ZnFe2O4 from Coal Gangue for Use as a Photocatalytic Reagent in the Purification of Dye Wastewater via the PMS Reaction
by Mingxian Zhang, Jinsong Du, Xuemei Zheng and Aiyuan Ma
Materials 2026, 19(1), 169; https://doi.org/10.3390/ma19010169 - 2 Jan 2026
Viewed by 432
Abstract
The widespread application of Rhodamine B (RhB) poses a serious threat to the aquatic environment. ZnFe2O4, as a catalyst material, can effectively activate persulfate (PMS) and respond to visible light, thus effectively degrading RhB with the joint assistance of [...] Read more.
The widespread application of Rhodamine B (RhB) poses a serious threat to the aquatic environment. ZnFe2O4, as a catalyst material, can effectively activate persulfate (PMS) and respond to visible light, thus effectively degrading RhB with the joint assistance of sunlight and PMS. This study recovered Fe2O3 from high-iron coal gangue through an activating–acid leaching–extracting–back-extracting process and synthesized ZnFe2O4 catalysts (CG-ZFO) using coal gangue back-extraction liquid as the Fe source by a hydrothermal method and cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The characterization results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) showed that the CG-ZFO has a pure crystal phase, and the addition of CTAB can effectively improve the photoelectric performance of the catalyst. The synthesized CG-ZFO can produce a significant synergistic effect with simulated sunlight (SS) and PMS, and the constructed SS/CG-ZFO/PMS system had a good degradation effect on RhB. Based on the conclusions of free radical-quenching experiments, electron paramagnetic resonance (EPR) spectroscopy, and X-ray photoelectron spectroscopy (XPS), the main active species in the SS/CG-ZFO/PMS system was identified as 1O2, and the degradation mechanism of RhB was elucidated. CG-ZFO prepared from coal gangue holds promising potential for application in the remediation of organic dye wastewater, and this study also provides a new approach for the resource regeneration of high-iron coal gangue. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photocatalytic Application)
Show Figures

Figure 1

17 pages, 3239 KB  
Article
Magnetic Polyoxometalate@Biochar Catalysts for Selective Acetalization of Glycerol into Fuel Additive
by Óscar Pellaumail, Luís Dias, Catarina N. Dias, Sofia M. Bruno, Nuno J. O. Silva, Behrouz Gholamahmadi, Salete S. Balula and Fátima Mirante
Catalysts 2026, 16(1), 52; https://doi.org/10.3390/catal16010052 - 2 Jan 2026
Viewed by 591
Abstract
The development of sustainable catalysts from renewable resources is a key challenge for reducing the cost of industrial catalytic processes and waste valorization. In this work, low-cost heterogeneous active catalysts were prepared based on pyrolyzed forest residues, forming valuable porous support materials (Biochar) [...] Read more.
The development of sustainable catalysts from renewable resources is a key challenge for reducing the cost of industrial catalytic processes and waste valorization. In this work, low-cost heterogeneous active catalysts were prepared based on pyrolyzed forest residues, forming valuable porous support materials (Biochar) able to efficiently accommodate the highly active heteropolyacid HPW12. Further, magnetic functionality was incorporated in the novel catalytic materials by the impregnation of NiFe2O4. The resulting magnetic composites were characterized by FTIR-ATR, SEM-EDS, ICP-OES, BET, XRD, potentiometric titration and magnetometry. The novel HPW12@NiFe2O4@Biochar composites were able to valorize the glycerol to produce the fuel additive solketal with high conversion and high selectivity after only 3 h of reaction via acetalization reaction with acetone. The biochar catalytic composite prepared from cork presented higher pore size than the same prepared from forest biomass. This property was crucial to achieve the best conversion (89%) and the highest solketal selectivity (96%). Additionally, reusability capacity was verified, supporting the potential of the cork-pyrolyzed-based composites as potential low-cost catalytic material to produce fuel additives, such as solketal, under sustainable conditions. This may contribute one step further toward a future with greener energy, increasing the viability of biodiesel industry waste. Full article
(This article belongs to the Special Issue Catalysis: The Key to Valorizing Crude Glycerol)
Show Figures

Graphical abstract

Back to TopTop