Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = Fcγ receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6242 KiB  
Article
IgG:FcγRIIb Signaling on Mast Cells Blocks Allergic Airway Inflammation
by Cynthia Kanagaratham, Yasmeen S. El Ansari, Kameryn N. Furiness and Hans C. Oettgen
Int. J. Mol. Sci. 2025, 26(14), 6779; https://doi.org/10.3390/ijms26146779 - 15 Jul 2025
Viewed by 238
Abstract
IgG antibodies, signaling via the inhibitory receptor, FcγRIIb, are potent inhibitors of IgE-mediated mast cell activation. We have previously reported that in addition to blocking mast cell degranulation, inhibitory IgG signals shut down a proinflammatory transcriptional program in which mast cells produce cytokines [...] Read more.
IgG antibodies, signaling via the inhibitory receptor, FcγRIIb, are potent inhibitors of IgE-mediated mast cell activation. We have previously reported that in addition to blocking mast cell degranulation, inhibitory IgG signals shut down a proinflammatory transcriptional program in which mast cells produce cytokines and chemokines known to drive type 2 tissue inflammation. To determine whether such effects of allergen-specific IgG can modulate allergic inflammation in vivo, we examined the airways of mice sensitized to ovalbumin (OVA) by intraperitoneal injection and then challenged with intranasal OVA. Pretreatment with allergen-specific IgG significantly reduced the recruitment of inflammatory cells, including macrophages and eosinophils, into the lungs of OVA-sensitized mice. The bronchoalveolar lavage fluid of OVA-challenged mice contained elevated levels of chemokine ligands (CCL2 and CCL24) and interleukin-5, a response that was markedly blunted in animals receiving allergen-specific IgG. IgG-treated animals exhibited attenuated allergen-induced production of IgE, IL-4, and IL-13, along with impaired OVA-induced goblet cell hyperplasia and Muc5ac expression and suppressed airway hyperresponsiveness, consistent with a shift away from a Th2 response. Using mice with a lineage-specific deletion of FcγRIIb, we demonstrated that each of these protective effects of IgG was dependent upon the expression of this receptor on mast cells. Overall, our findings establish that allergen-specific IgG can reduce allergen-driven airway inflammation and airway hyperresponsiveness and point to a mechanistic basis for the therapeutic benefit of aeroallergen-specific IgG therapy. Full article
Show Figures

Figure 1

16 pages, 1588 KiB  
Article
FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population
by Fatima Radouani, Christophe Deligny, Raymond Cesaire, Maryvonne Dueymes and Georges Dos Santos
Curr. Issues Mol. Biol. 2025, 47(7), 490; https://doi.org/10.3390/cimb47070490 - 26 Jun 2025
Viewed by 618
Abstract
Fc gamma receptors (FcγRs) control humoral and cellular immune responses and maintain the immune system balance. Functional polymorphisms of FcγRs, whose prevalence was dependent on ethnic origin, were found to be associated with systemic lupus erythematosus (SLE) or kidney injuries in several ethnic [...] Read more.
Fc gamma receptors (FcγRs) control humoral and cellular immune responses and maintain the immune system balance. Functional polymorphisms of FcγRs, whose prevalence was dependent on ethnic origin, were found to be associated with systemic lupus erythematosus (SLE) or kidney injuries in several ethnic groups. We aimed at investigating the association between the functional single-nucleotide polymorphisms (SNPs) of FcγRIIa-H131R (rs1801274), FcγRIIb-I232T (rs1050501), FcγRIIIa-V158F (rs396991) and FcγRIIIb variants (NA1 and NA2) and lupus erythematosus systemic in an indigenous African Caribbean population. We compared the frequencies of the functional SNPs of FCGR2A (FcγRIIa-H131R, rs1801274), FCGR2B (FcγRIIb-I232T, rs1050501), FCGR3A (FcγRIIIa-V158F, rs396991) and FCGR3B variants (FcγRIIIb NA1 and NA2) between lupus and healthy controls in an indigenous African Caribbean population. We highlighted an association between the FCGR3B-NA1/NA1 and FCGR3A-158F alleles and systemic lupus erythematosus, in addition to an association between FCGR2A-131R and lupus nephritis. Furthermore, an increase in the 131R-158V haplotype in lupus nephritis (30.4%) vs. lupus non-nephritis (15.8%) was noticed. Surprisingly, in spite of the high frequency of the FCGR2B-232T allele in our population, our study did not highlight any association of this allele either with SLE or lupus nephritis (a severe and frequent form of SLE). CD72-Hap1, which has been shown to confer resistance to SLE against T232 allele, was not enhanced in the control group. Our results emphasize an association between FCGR2A-131R and lupus nephritis with a distinctive FCGR polymorphism distribution in an indigenous African Caribbean population, confirming the important variation in the FCGR locus depending on ethnic origin. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 1047 KiB  
Brief Report
Light Chain Isotype and Antibody-Specificity Impact on Virus Neutralization
by Lin Sun, Roman Palt, Georg Schütz, Esther Föderl-Höbenreich, Laura Brod, Antonia Hermle, Anja Lux, Herta Steinkellner and Somanath Kallolimath
Antibodies 2025, 14(2), 50; https://doi.org/10.3390/antib14020050 - 17 Jun 2025
Viewed by 459
Abstract
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana [...] Read more.
Therapeutic antibodies with lambda light chains (λ-Abs) are underrepresented compared to kappa light chains (κ-Abs). Here, we evaluated two SARS-CoV-2-specific monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding as κ and λ variants. mAbs expressed in glycoengineered Nicotiana benthamiana did not show differences in expression levels, glycosylation, and antigen binding, while κ-Abs exhibited slightly increased thermodynamic stability over λ-Abs. SARS-CoV-2 neutralization and IgG-FcγR immune complex studies revealed increased activities of H4 IgG1κ compared to H4 IgG1λ, with no differences observed between P5C3 variants. Our results indicate that constant light chain variability and Ab specificity contribute to Ab features, a fact that should be considered in engineering therapeutics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

15 pages, 442 KiB  
Review
Relevance of Antibody-Dependent Enhancement in COVID-19
by Daniel Rodriguez-Pinto and María Sol Mendoza-Ruiz
Immuno 2025, 5(2), 20; https://doi.org/10.3390/immuno5020020 - 2 Jun 2025
Viewed by 676
Abstract
Antibody-dependent enhancement (ADE) is a well-established mechanism of pathology in several viral diseases, but its relevance in COVID-19 is not yet recognized. Although several studies in humans have shown an association between antibody responses and disease severity, long term studies addressing the presence [...] Read more.
Antibody-dependent enhancement (ADE) is a well-established mechanism of pathology in several viral diseases, but its relevance in COVID-19 is not yet recognized. Although several studies in humans have shown an association between antibody responses and disease severity, long term studies addressing the presence of antibodies before infection and their neutralization capacity are needed to establish ADE. Mechanistic studies have determined that the entry of SARS-CoV-2 into host cells can be mediated by immune complexes through Fcγ receptors or by favoring ACE2 conformation. However, the impact on viral replication is not clear. There is evidence for enhancing effects of immune complexes on Fcγ receptor-mediated effector mechanisms and cytokine secretion after modulation of cell signaling in immune cells, specially by antibodies with altered glycosylation, which points to ADE that can contribute to COVID-19 pathology. However, more studies are needed to determine the impact of antibodies both in naturally infected and vaccinated subjects, which can lead to their use as a prognostic marker and increase vaccine safety. Full article
(This article belongs to the Section Infectious Immunology and Vaccines)
Show Figures

Figure 1

19 pages, 1240 KiB  
Review
Formation of Membrane Domains via Actin Waves: A Fundamental Principle in the Generation of Dynamic Structures in Phagocytes
by Jiro Takito and Naoko Nonaka
Int. J. Mol. Sci. 2025, 26(10), 4759; https://doi.org/10.3390/ijms26104759 - 16 May 2025
Viewed by 977
Abstract
Phagocytes carry out their functions by organizing new subcellular structures. During phagocytosis, macrophages internalize and degrade pathogens and apoptotic cells by forming the phagocytic cup and phagosome. Osteoclasts resorb bone by forming the sealing zone and ruffled border at the ventral membrane. This [...] Read more.
Phagocytes carry out their functions by organizing new subcellular structures. During phagocytosis, macrophages internalize and degrade pathogens and apoptotic cells by forming the phagocytic cup and phagosome. Osteoclasts resorb bone by forming the sealing zone and ruffled border at the ventral membrane. This review explores the organizational principles of these dynamic structures. In in vitro frustrated phagocytosis, specifically 2D phagocytosis by macrophages, the activation of the Fcγ receptor generates multiple self-organized waves containing F-actin, Arp2/3, and phosphoinositides. The propagation of these circular actin waves segregates the inside from the outside, leading to the compartmentalization of the ventral membrane. As the actin wave passes, cortical actin is disrupted, and membrane remodeling occurs within the wave, creating a new membrane domain with high exocytic activity. These processes mirror the formation of the constriction zone in the phagocytic cup and phagosome during 3D phagocytosis. A similar mechanism may also contribute to the formation of the sealing zone and ruffled border in osteoclasts. Based on these observations, we propose that dynamic structures formed from actin waves are organized through the fractal integration of self-organized, oscillatory substructures, with F-actin treadmilling fueling their formation and maintenance. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

26 pages, 10104 KiB  
Article
Identification of Differentially Expressed Genes in Spinal Cord Injury
by Andrew Chang, Shevanka Dias Abeyagunawardene, Xiaohang Zheng, Haiming Jin, Qingqing Wang and Jiake Xu
Genes 2025, 16(5), 514; https://doi.org/10.3390/genes16050514 - 28 Apr 2025
Viewed by 1238
Abstract
Background: Spinal cord injury (SCI) remains a profound medical challenge, with limited therapeutic options available. Studies focusing on individual molecular markers have limitations in addressing the complex disease process. Methods: This study utilizes RNA-sequencing (RNA-seq) to investigate the differentially expressed genes (DEGs) in [...] Read more.
Background: Spinal cord injury (SCI) remains a profound medical challenge, with limited therapeutic options available. Studies focusing on individual molecular markers have limitations in addressing the complex disease process. Methods: This study utilizes RNA-sequencing (RNA-seq) to investigate the differentially expressed genes (DEGs) in spinal cord tissue from a rat SCI model at 1 and 21 days post-injury (dpi). After data processing and analysis, a series of biological pathway enrichment analyses were performed using online tools DAVID and GSEA. Interactions among the enriched genes were studied using Cytoscape software to visualize protein–protein interaction networks. Results: Our analysis identified 595 DEGs, with 399 genes significantly upregulated and 196 significantly downregulated at both time points. CD68 was the most upregulated gene at 21 dpi, with a significant fold change at 1 dpi. Conversely, MPZ was the most downregulated gene. Key immune response processes, including tumor necrosis factor (TNF) production, phagocytosis, and complement cascades, as well as systemic lupus erythematosus (SLE)-associated pathways, were enriched in the upregulated group. The enriched pathways in the downregulated group were related to the myelin sheath and neuronal synapse. Genes of interest from the most significantly downregulated DEGs were SCD, DHCR24, PRX, HHIP, and ZDHHC22. Upregulation of Fc-γ receptor genes, including FCGR2B and FCGR2A, points to potential autoimmune mechanisms. Conclusions: Our findings highlight complex immune and autoimmune responses that contribute to ongoing inflammation and tissue damage post-SCI, underscoring new avenues for therapeutic interventions targeting these molecular processes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

18 pages, 746 KiB  
Review
Animal Models in Rheumatoid Arthritis: Is There a Correlation Between Autoantibodies in Human Pathology and Animal Models?
by Miguel Marco-Bonilla, Maria Fresnadillo, Macarena de la Riva-Bueno, Gabriel Herrero-Beaumont, Raquel Largo and Aránzazu Mediero
Biology 2025, 14(5), 460; https://doi.org/10.3390/biology14050460 - 24 Apr 2025
Viewed by 1004
Abstract
RA is a chronic autoimmune disease characterized by synovial inflammation and joint damage, driven by autoantibodies such as ACPA, anti-CarP and RF. These autoantibodies, influenced by genetic and environmental factors, play a crucial role in RA pathogenesis through post-translational modifications like citrullination, carbamylation, [...] Read more.
RA is a chronic autoimmune disease characterized by synovial inflammation and joint damage, driven by autoantibodies such as ACPA, anti-CarP and RF. These autoantibodies, influenced by genetic and environmental factors, play a crucial role in RA pathogenesis through post-translational modifications like citrullination, carbamylation, and acetylation. The early detection of ACPA provides a potential window for intervention, while anti-CarP antibodies correlate with severe disease progression and RF aids in diagnosis. Translating these findings from human pathology to animal models presents significant challenges. Although the presence of adaptative immune cells (T cells) is well defined in animal models of RA, studies yield inconsistent results regarding autoantibody production and implication in the disease onset and progression, with varying detectability of ACPA, anti-CarP antibodies, and RF across different species and models. The collagen-induced arthritis (CIA) model shows PAD4 expression and citrullinated protein presence but inconsistent ACPA detection, while the K/BxN model elucidates the pathogenicity of anti-GPI autoantibodies and implicates Fcγ receptors in disease processes. Therefore, further research is needed to bridge the gap between animal models and human RA pathology. Future studies should focus on developing more representative animal models, exploring pharmacological targets and pathways that involve the interplay between anti-inflammatory and autoimmune responses, and investigating the complex interplay between genetic predisposition, environmental triggers, and autoimmune mechanisms. This approach may lead to improved early diagnostic tools, targeted therapies, and potentially preventive strategies for RA, ultimately enhancing patient outcomes and quality of life. Full article
(This article belongs to the Special Issue Animal Models of Arthritis)
Show Figures

Graphical abstract

22 pages, 4237 KiB  
Article
Impact of Monoclonal Antibody Aggregates on Effector Function Characterization
by Wendy J. Walton, Shousong Jason Zhang, Joseph J. Wilson, Briana N. Harvey, Matthew Clemens and Yingmei Gu
Antibodies 2025, 14(2), 31; https://doi.org/10.3390/antib14020031 - 2 Apr 2025
Viewed by 1791
Abstract
Background/Objectives: Monoclonal antibodies have successfully been used for a variety of indications. Many therapeutic antibodies are IgG1 and elicit effector functions as part of their mechanism of action. It is well known that aggregate levels should be controlled for therapeutic antibodies. Although there [...] Read more.
Background/Objectives: Monoclonal antibodies have successfully been used for a variety of indications. Many therapeutic antibodies are IgG1 and elicit effector functions as part of their mechanism of action. It is well known that aggregate levels should be controlled for therapeutic antibodies. Although there are several reports describing the impact of antibody aggregates on FcγR binding, most of these have been performed with surface plasmon resonance in an avidity-based format. What is less well known is which Fcγ receptor is most impacted by antibody aggregation and how antibody aggregates impact binding to Fcγ receptors in solution-based formats and in cell-based assays. Methods: An effector-competent IgG1 (mAb1) was forcibly degraded and fractionated by size exclusion chromatography to enrich for aggregates. The fractions were examined for FcγR binding by SPR with different formats and in solution. The fractions were also analyzed with cell-based FcγR reporter assays. Results: All Fcγ receptors displayed increased binding to enriched mAb1 aggregates in the avidity-based SPR methods and in solution, with FcγRIIa impacted the most. When examined with an antibody-down SPR format that is not usually susceptible to avidity, FcγRIIa did not show increased binding with mAb1 aggregation. Although activity for mAb1 aggregates increased slightly in an FcγRIIa cell-based reporter assay, it decreased in the FcγRIIIa reporter assay (most likely due to differences in fucosylation from the reference standard). Conclusions: Monoclonal antibody aggregation can impact FcγR binding for avidity-based binding formats. Even at low levels of antibody aggregation, FcγRII binding increases substantially. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

23 pages, 2898 KiB  
Review
A Comprehensive Review of Fc Gamma Receptors and Their Role in Systemic Lupus Erythematosus
by Jesús Sepúlveda-Delgado, Luis Llorente and Susana Hernández-Doño
Int. J. Mol. Sci. 2025, 26(5), 1851; https://doi.org/10.3390/ijms26051851 - 21 Feb 2025
Cited by 1 | Viewed by 2656
Abstract
Receptors for the immunoglobulin G constant fraction (FcγRs) are widely expressed in cells of the immune system. Complement-independent phagocytosis prompted FcγR research to show that the engagement of IgG immune complexes with FcγRs triggers a variety of cell host immune responses, such as [...] Read more.
Receptors for the immunoglobulin G constant fraction (FcγRs) are widely expressed in cells of the immune system. Complement-independent phagocytosis prompted FcγR research to show that the engagement of IgG immune complexes with FcγRs triggers a variety of cell host immune responses, such as phagocytosis, antibody-dependent cell cytotoxicity, and NETosis, among others. However, variants of these receptors have been implicated in the development of and susceptibility to autoimmune diseases such as systemic lupus erythematosus. Currently, the knowledge of FcγR variants is a required field of antibody therapeutics, which includes the engineering of recombinant soluble human Fc gamma receptors, enhancing the inhibitory and blocking the activating FcγRs function, vaccines, and organ transplantation. Importantly, recent interest in FcγRs is the antibody-dependent enhancement (ADE), a mechanism by which the pathogenesis of certain viral infections is enhanced. ADEs may be responsible for the severity of the SARS-CoV-2 infection. Therefore, FcγRs have become a current research topic. Therefore, this review briefly describes some of the historical knowledge about the FcγR type I family in humans, including the structure, affinity, and mechanism of ligand binding, FcγRs in diseases such as systemic lupus erythematosus (SLE), and the potential therapeutic approaches related to these receptors in SLE. Full article
Show Figures

Figure 1

16 pages, 774 KiB  
Review
Impact of Thrombopoietin Receptor Agonists on Pathophysiology of Pediatric Immune Thrombocytopenia
by Paschalis Evangelidis, Konstantinos Tragiannidis, Eleni Gavriilaki and Athanasios Tragiannidis
Curr. Issues Mol. Biol. 2025, 47(1), 65; https://doi.org/10.3390/cimb47010065 - 18 Jan 2025
Viewed by 2295
Abstract
Immune thrombocytopenia (ITP) in pediatric patients is a common cause of isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in ITP pathogenesis, including the production of autoantibodies against components of platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by macrophages mediated [...] Read more.
Immune thrombocytopenia (ITP) in pediatric patients is a common cause of isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in ITP pathogenesis, including the production of autoantibodies against components of platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by macrophages mediated by Fcγ receptors, the dysregulation of T cells, and reduced bone marrow megakaryopoiesis. ITP is commonly manifested with skin and mucosal bleeding, and it is a diagnosis of exclusion. In some ITP cases, the disease is self-limiting, and treatment is not required, but chronic-persistent disease can also be developed. In these cases, anti-CD20 monoclonal antibodies, such as rituximab and thrombopoietin (TPO) receptor agonists, can be used. TPO agonists have become standard of care today. It has been reported in the published literature that the efficacy of TPO-RAs can be up to 80% in the achievement of several end goals, such as PLT counts. In the current literature review, the data regarding the impact of TPO agonists in the pathogenesis of ITP and treatment outcomes of the patients are examined. In the era of precision medicine, targeted and individualized therapies are crucial to achieving better outcomes for pediatric patients with ITP, especially when chronic refractory disease is developed. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 2911 KiB  
Article
Flow Cytometric Assessment of FcγRIIIa-V158F Polymorphisms and NK Cell Mediated ADCC Revealed Reduced NK Cell Functionality in Colorectal Cancer Patients
by Phillip Schiele, Stefan Kolling, Stanislav Rosnev, Charlotte Junkuhn, Anna Luzie Walter, Jobst Christian von Einem, Sebastian Stintzing, Wenzel Schöning, Igor Maximilian Sauer, Dominik Paul Modest, Kathrin Heinrich, Lena Weiss, Volker Heinemann, Lars Bullinger, Marco Frentsch and Il-Kang Na
Cells 2025, 14(1), 32; https://doi.org/10.3390/cells14010032 - 31 Dec 2024
Viewed by 1909
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed [...] Read more.
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions. Samples were collected from healthy donors and metastatic colorectal cancer (mCRC) patients from the FIRE-6-Avelumab phase II study. The machine learning model accurately predicted the FcγRIIIa-V158F polymorphism in 94% of samples. FF homozygous patients showed diminished cetuximab-mediated ADCC compared to VF or VV carriers. In mCRC patients, NK cell dysfunctions were evident as impaired ADCC, decreased CD16 downregulation, and reduced CD137/CD107a induction. Elevated PD1+ NK cell levels, reduced lysis of PDL1-expressing CRC cells and improved NK cell activation in combination with the PDL1-targeting avelumab indicate that the PD1-PDL1 axis contributes to impaired cetuximab-induced NK cell function. Together, these optimized assays effectively identify NK cell dysfunctions in mCRC patients and offer potential for broader application in evaluating NK cell functionality across cancers and therapeutic settings. Full article
(This article belongs to the Special Issue Advances in the Study of Natural Killer (NK) Cells)
Show Figures

Figure 1

23 pages, 29492 KiB  
Article
Suppression of Pathological Allergen-Specific B Cells by Protein-Engineered Molecules in a Mouse Model of Chronic House Dust Mite Allergy
by Nikola Ralchev, Silviya Bradyanova, Nikola Kerekov, Andrey Tchorbanov and Nikolina Mihaylova
Int. J. Mol. Sci. 2024, 25(24), 13661; https://doi.org/10.3390/ijms252413661 - 20 Dec 2024
Viewed by 1325
Abstract
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity [...] Read more.
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity suppressive signal in B cells. Selective elimination of allergen-specific cells could potentially be achieved by administering chimeric molecules that combine, through protein engineering, the FcγRIIb-targeting monoclonal 2.4G2 antibody with the epitope-carrying Dp52–71 peptides from Der p1. We tested this hypothesis, in a chronic mouse model of HDM allergy induced in BalB/c mice, using FACS and ELISA assays, along with histopathological and correlational analyses. Dp52–71chimera treatment of HDM-challenged mice led to a decrease in serum anti-HDM IgG1 antibodies, a reduction in BALF β-hexosaminidase levels, a lowered number of SiglecFhigh CD11clow eosinophils, and an improved lung PAS score. Furthermore, we observed overexpression of FcγRIIb on the surface of CD19 cells in the lungs of HDM-challenged animals, which negatively correlated with the levels of lung alveolar macrophages, neutrophils, and BALF IL-13. Taken together, these results suggest that the use of FcγRIIb overexpression, combined with the expansion of chimeric protein technology to include more epitopes, could improve the outcome of inflammation. Full article
Show Figures

Figure 1

13 pages, 2748 KiB  
Article
The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease
by Tamsin Cargill, Eleanor Barnes, Theo Rispens and Emma L. Culver
Biomedicines 2024, 12(12), 2839; https://doi.org/10.3390/biomedicines12122839 - 13 Dec 2024
Viewed by 1081
Abstract
Background: Immune-mediated liver and biliary conditions, such as IgG4-related pancreatobiliary disease (IgG4-PB) and a subset of primary sclerosing cholangitis (PSC- high(h)IgG4), exhibit increased IgG4 levels in the blood. The relative expression of IgG4+ and IgG1+ B cells in the blood and the expression [...] Read more.
Background: Immune-mediated liver and biliary conditions, such as IgG4-related pancreatobiliary disease (IgG4-PB) and a subset of primary sclerosing cholangitis (PSC- high(h)IgG4), exhibit increased IgG4 levels in the blood. The relative expression of IgG4+ and IgG1+ B cells in the blood and the expression of complement and Fc receptors on these IgG1+ and IgG4+ B cells in IgG4-PB and PSC have not been previously described. We hypothesised that the patterns of expression of these cells and their receptors would differ, are relevant to disease pathogenesis and may represent therapeutic targets. Methods: CD19+ B cells were sorted from blood collected from patients with IgG4-PB, PSC-high(h)IgG4 and healthy volunteers. Cells were stained with fluorescent labelled antibodies specific to IgG1, IgG4, complement receptors (CR1 and CR2), Fc receptors (FcεRII and FcγRIIb) and chemokine receptors (CXCR3, CXCR4, CXCR5) and were analysed by flow cytometry. Findings: IgG4-PB, compared to healthy volunteers, showed decreased CR2 expression on IgG1+ B cells (MFI 416 (275–552) vs. 865 (515–3631), p = 0.04) and IgG4+ B cells (MFI 337 (231–353) vs. 571 (398–2521), p = 0.03). IgG4-PB, compared to healthy volunteers, showed increased FcεRII expression on IgG4+ B cells (MFI 296 (225–617) vs. 100 (92–138), p = 0.0145) and decreased FcγRIIb expression on IgG1+ B cells (134 (72–161) vs. 234 (175–291), p = 0.0262). FcγRIIb expression was also decreased in IgG1+ B cells in patients with PSC-hIgG4 compared to healthy volunteers. Conclusions: This exploratory study indicates that in IgG4-PB, B cells have decreased CR2 and FcγRIIb expression and increased FcεRII expression, suggesting altered sensitivity to complement, IgG-mediated inhibition and sensitisation by IgE, which may promote the relative expansion of IgG4+ B cells in this disease. Full article
(This article belongs to the Special Issue Cholestatic Liver Diseases: From the Bench to Bedside)
Show Figures

Figure 1

19 pages, 2875 KiB  
Article
Beyond Recycling Antibodies: Crovalimab’s Molecular Design Enables Four-Weekly Subcutaneous Injections for PNH Treatment
by Zenjiro Sampei, Kenta Haraya, Siok Wan Gan, Masaru Muraoka, Akira Hayasaka, Taku Fukuzawa, Meiri Shida-Kawazoe, Yoshinori Tsuboi, Akihiko Gotoh, Naoshi Obara and Yasutaka Ueda
Int. J. Mol. Sci. 2024, 25(21), 11679; https://doi.org/10.3390/ijms252111679 - 30 Oct 2024
Cited by 1 | Viewed by 3839
Abstract
The advent of recycling antibodies, leveraging pH-dependent antigen binding and optimized FcRn interaction, has advanced the field of antibody therapies, enabling extended durability and reduced dosages. Eculizumab (Soliris®) demonstrated the efficacy of C5 inhibitors for paroxysmal nocturnal hemoglobinuria (PNH), while its [...] Read more.
The advent of recycling antibodies, leveraging pH-dependent antigen binding and optimized FcRn interaction, has advanced the field of antibody therapies, enabling extended durability and reduced dosages. Eculizumab (Soliris®) demonstrated the efficacy of C5 inhibitors for paroxysmal nocturnal hemoglobinuria (PNH), while its derivative, ravulizumab (Ultomiris®), recognized as a recycling antibody, extended the dosing intervals. However, limitations including intravenous administration and inefficacy in patients with the R885H single-nucleotide polymorphism (SNP) in C5 could necessitate alternative solutions. Crovalimab (PiaSky®), a next-generation recycling antibody, overcomes these challenges with innovative charge engineering, achieving the enhanced cellular uptake of C5–crovalimab complexes and targeting a unique C5 epitope, allowing for efficacy regardless of the R885H SNP. This study highlights crovalimab’s distinctive molecular features, showing its eliminated binding to Fcγ receptors and C1q, alongside its optimized antigen binding characteristics. The impact of charge engineering was reconfirmed in mice, demonstrating faster C5 clearance than recycling antibodies. Notably, in the maintenance dosing regimen, crovalimab neutralizes approximately seven C5 molecules per antibody on average. Furthermore, its design also reduces the viscosity to facilitate high-concentration formulations suitable for subcutaneous delivery. Consequently, crovalimab offers a four-weekly subcutaneous injection regimen for PNH, marking a substantial improvement in treatment convenience and potentially transforming patients’ quality of life. Full article
Show Figures

Figure 1

16 pages, 5192 KiB  
Article
The Immunosuppressive Receptor CD32b Regulation of Macrophage Polarization and Its Implications in Tumor Progression
by Hong-Jing Chuang, Ying-Yin Chen, Yi-Da Chung, Evelyn Huang, Cadence Yoshang Huang, Jrhau Lung, Chung-Yu Chen and Hui-Fen Liao
Int. J. Mol. Sci. 2024, 25(17), 9737; https://doi.org/10.3390/ijms25179737 - 9 Sep 2024
Cited by 4 | Viewed by 2127
Abstract
Macrophages, pivotal components of the immune system, orchestrate host defense mechanisms in humans and mammals. Their polarization into classically activated macrophages (CAMs or M1) and alternatively activated macrophages (AAMs or M2) dictates distinct functional roles in immunity and tissue homeostasis. While the negative [...] Read more.
Macrophages, pivotal components of the immune system, orchestrate host defense mechanisms in humans and mammals. Their polarization into classically activated macrophages (CAMs or M1) and alternatively activated macrophages (AAMs or M2) dictates distinct functional roles in immunity and tissue homeostasis. While the negative regulatory role of CD32b within the FC gamma receptor (FCγR) family is recognized across various immune cell types, its influence on macrophage polarization remains elusive. This study aimed to elucidate the regulatory role of CD32b in macrophage polarization and discern the differential expression markers between the M1 and M2 phenotypes following CD32b siRNA transfection. The results revealed a decrease in the CD32b levels in lipopolysaccharide (LPS)-treated M1 and an increase in interleukin-4 (IL-4)-treated M2 macrophages, as observed in macrophage Raw264.7 cells. Furthermore, CD32b siRNA transfection significantly downregulated the M2 markers (IL-10, VEGF, Arg-1, and STAT6), while upregulating the M1 markers (IL-6, NF-κB, NOS2, and STAT1) in the Raw264.7 cells. Similar findings were recapitulated in macrophage-rich adherent cells isolated from mouse spleens. Additionally, the cytopathological analysis of pleural effusions and ascitic fluids from patients with cancer revealed a positive correlation between advanced tumor stages, metastasis, and elevated CD32b levels. In conclusion, this study highlights the regulatory influence of CD32b in suppressing M1 expression and promoting M2 polarization. Moreover, heightened M2 activation and CD32b levels appear to correlate with tumor progression. A targeted CD32b blockade may serve as a novel therapeutic strategy to inhibit M2 macrophage polarization and is promising for anti-tumor intervention. Full article
Show Figures

Figure 1

Back to TopTop