The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Lymphocyte Isolation and CD19+ Cell Separation
2.3. Surface Staining and Flow Cytometry
2.4. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Complement Receptors Are Not Differentially Expressed on B Cells in IgG4-PB
3.3. Complement Receptor 2 Is Differentially Expressed on IgG1+ and IgG4+ B Cells in IgG4-PB
3.4. Fc Gamma Receptor 2b Expression Is Reduced on B Cells in IgG4-PB
3.5. Fc Receptors Are Differentially Expressed on IgG1+ and IgG4+ B Cells in IgG4-PB and PSC-hIgG4
3.6. CXCR4 Expression Is Increased on B Cells in IgG4-PB
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akkaya, M.; Kwak, K.; Pierce, S.K. B cell memory: Building two walls of protection against pathogens. Nat. Rev. Immunol. 2020, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Rispens, T.; Huijbers, M.G. The unique properties of IgG4 and its roles in health and disease. Nat. Rev. Immunol. 2023, 23, 763–778. [Google Scholar]
- Cyster, J.G.; Allen, C.D.C. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 2019, 177, 524–540. [Google Scholar] [PubMed]
- Lighaam, L.C.; Vermeulen, E.; Bleker Tamara den Meijlink, K.J.; Aalberse, R.C.; Barnes, E.; Culver, E.L.; van Ham, S.M.; Rispens, T. Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J. Allergy Clin. Immunol. 2014, 133, 260–270.e1–e6. [Google Scholar] [CrossRef]
- Perugino, C.A.; Stone, J.H. IgG4-related disease: An update on pathophysiology and implications for clinical care. Nat. Rev. Rheumatol. 2020, 16, 702–714. [Google Scholar] [PubMed]
- Löhr, J.M.; Vujasinovic, M.; Rosendahl, J.; Stone, J.H.; Beuers, U. IgG4-related diseases of the digestive tract. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 185–197. [Google Scholar] [PubMed]
- Deshpande, V.; Zen, Y.; Chan, J.K.; Yi, E.E.; Sato, Y.; Yoshino, T.; Klöppel, G.; Heathcote, J.G.; Khosroshahi, A.; A Ferry, J.; et al. Consensus statement on the pathology of IgG4-related disease. Mod. Pathol. 2012, 25, 1181–1192. [Google Scholar]
- Cargill, T.; Culver, E.L. The Role of B Cells and B Cell Therapies in Immune-Mediated Liver Diseases. Front. Immunol. 2021, 12, 661196. [Google Scholar]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on sclerosing cholangitis. J. Hepatol. 2022, 77, 761–806. [Google Scholar]
- Hov, J.R.; Karlsen, T.H. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 135–154. [Google Scholar]
- Manganis, C.D.; Chapman, R.W.; Culver, E.L. Review of primary sclerosing cholangitis with increased IgG4 levels. World J. Gastroenterol. 2020, 26, 3126–3144. [Google Scholar] [CrossRef]
- Khosroshahi, A.; Bloch, D.B.; Deshpande, V.; Stone, J.H. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis. Rheum. 2010, 62, 1755–1762. [Google Scholar] [CrossRef]
- Khosroshahi, A.; Carruthers, M.N.; Deshpande, V.; Unizony, S.; Bloch, D.B.; Stone, J.H. Rituximab for the treatment of IgG4-related disease: Lessons from 10 consecutive patients. Medicine 2012, 91, 57–66. [Google Scholar] [CrossRef]
- Hart, P.A.; Topazian, M.D.; Witzig, T.E.; Clain, J.E.; Gleeson, F.C.; Klebig, R.R.; Levy, M.J.; Pearson, R.K.; Petersen, B.T.; Smyrk, T.C.; et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: The Mayo Clinic experience. Gut 2013, 62, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, M.N.; Topazian, M.D.; Khosroshahi, A.; Witzig, T.E.; Wallace, Z.S.; Hart, P.A.; Deshpande, V.; Smyrk, T.C.; Chari, S.; Stone, J.H. Rituximab for IgG4-related disease: A prospective, open-label trial. Ann. Rheum. Dis. 2015, 74, 1171–1177. [Google Scholar] [CrossRef]
- Ebbo, M.; Grados, A.; Samson, M.; Groh, M.; Loundou, A.; Rigolet, A.; Terrier, B.; Guillaud, C.; Carra-Dallière, C.; Renou, F.; et al. Long-term efficacy and safety of rituximab in IgG4-related disease: Data from a French nationwide study of thirty-three patients. PLoS ONE 2017, 12, e0183844. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mohapatra, S.; Lennon, R.J.; Piovezani Ramos, G.; Postier, N.; Gleeson, F.C.; Levy, M.J.; Pearson, R.K.; Petersen, B.T.; Vege, S.S.; et al. Rituximab Maintenance Therapy Reduces Rate of Relapse of Pancreaticobiliary Immunoglobulin G4-related Disease. Clin. Gastroenterol. Hepatol. 2018, 16, 1947–1953. [Google Scholar] [CrossRef]
- Della-Torre, E.; Lanzillotta, M.; Campochiaro, C.; Di-Colo, G.; Mancuso, G.; Capurso, G.; Falconi, M.; Dagna, L. Efficacy and safety of rituximab biosimilar (CT-P10) in IgG4-related disease: An observational prospective open-label cohort study. Eur. J. Intern. Med. 2021, 84, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, C.; Della-Torre, E.; Lanzillotta, M.; Bozzolo, E.; Baldissera, E.; Milani, R.; Arcidiacono, P.G.; Crippa, S.; Falconi, M.; Dagna, L. Long-term efficacy of maintenance therapy with Rituximab for IgG4-related disease. Eur. J. Intern. Med. 2020, 74, 92–98. [Google Scholar] [CrossRef]
- Lanzillotta, M.; Della-Torre, E.; Wallace, Z.S.; Stone, J.H.; Karadag, O.; Fernández-Codina, A.; Arcidiacono, P.G.; Falconi, M.; Dagna, L.; Capurso, G. Efficacy and safety of rituximab for IgG4-related pancreato-biliary disease: A systematic review and meta-analysis. Pancreatology 2021, 21, 1395–1401. [Google Scholar] [CrossRef]
- Stone, J.H.; Khosroshahi, A.; Zhang, W.; Della Torre, E.; Okazaki, K.; Tanaka, Y.; Löhr, J.M.; Schleinitz, N.; Dong, L.; Umehara, H.; et al. Inebilizumab for Treatment of IgG4-Related Disease. N. Engl. J. Med. 2024, NEJMoa2409712. [Google Scholar] [CrossRef] [PubMed]
- Lanzillotta, M.; Stone, J.H.; Della-Torre, E. B-Cell depletion therapy in IgG4-related disease: State of the art and future perspectives. Mod. Rheumatol. 2023, 33, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Stone, J.H. Perspectives on current and emerging therapies for immunoglobulin G4-related disease. Mod. Rheumatol. 2023, 33, 229–236. [Google Scholar] [CrossRef]
- Merrill, J.T.; Guthridge, J.; Smith, M.; June, J.; Koumpouras, F.; Machua, W.; Askanase, A.; Khosroshahi, A.; Sheikh, S.Z.; Rathi, G.; et al. Obexelimab in Systemic Lupus Erythematosus With Exploration of Response Based on Gene Pathway Co-Expression Patterns: A Double-Blind, Randomized, Placebo-Controlled, Phase 2 Trial. Arthritis. Rheumatol. 2023, 75, 2185–2194. [Google Scholar] [CrossRef]
- Yamada, Y.; Hoshino, K.; Fuchimoto, Y.; Matsubara, K.; Hibi, T.; Yagi, H.; Abe, Y.; Shinoda, M.; Kitago, M.; Obara, H.; et al. Rituximab Induction to Prevent the Recurrence of PSC After Liver Transplantation-The Lessons Learned From ABO-Incompatible Living Donor Liver Transplantation. Transplant. Direct. 2018, 4, e342. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Okazaki, K.; Masaki, Y.; Kawano, M.; Yamamoto, M.; Saeki, T.; Matsui, S.; Yoshino, T.; Nakamura, S.; Kawa, S.; et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod. Rheumatol. 2012, 22, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Okazaki, K.; Kawa, S.; Takahashi, H.; Goto, H.; Matsui, S.; Ishizaka, N.; Akamizu, T.; Sato, Y.; Kawano, M.; et al. The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD. Mod. Rheumatol. 2021, 31, 529–533. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Naden, R.P.; Chari, S.; Choi, H.K.; Della-Torre, E.; Dicaire, J.F.; Hart, P.A.; Inoue, D.; Kawano, M.; Khosroshahi, A.; et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Ann. Rheum. Dis. 2020, 79, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.H.; Thorburn, D.; Hirschfield, G.M.; Webster, G.G.J.; Rushbrook, S.M.; Alexander, G.; Collier, J.; Dyson, J.K.; Jones, D.E.; Patanwala, I.; et al. British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis. Gut 2019, 68, 1356–1378. [Google Scholar] [CrossRef]
- Erdei, A.; Sándor, N.; Mácsik-Valent, B.; Lukácsi, S.; Kremlitzka, M.; Bajtay, Z. The versatile functions of complement C3-derived ligands. Immunol. Rev. 2016, 274, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.P.; Mansour, M.; Rowe, T.; Wymann, S. The Molecular Mechanisms of Complement Receptor 1-It Is Complicated. Biomolecules 2023, 13, 1522. [Google Scholar] [CrossRef] [PubMed]
- Erdei, A.; Kovács, K.G.; Nagy-Baló, Z.; Lukácsi, S.; Mácsik-Valent, B.; Kurucz, I.; Bajtay, Z. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol. Lett. 2021, 237, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.C.; Isenman, D.E. Regulation of humoral immunity by complement. Immunity 2012, 37, 199–207. [Google Scholar] [CrossRef]
- Kovács, K.G.; Mácsik-Valent, B.; Matkó, J.; Bajtay, Z.; Erdei, A. Revisiting the Coreceptor Function of Complement Receptor Type 2 (CR2, CD21); Coengagement With the B-Cell Receptor Inhibits the Activation, Proliferation, and Antibody Production of Human B Cells. Front. Immunol. 2021, 12, 620427. [Google Scholar] [CrossRef]
- Villiers, M.B.; Villiers, C.L.; Jacquier-Sarlin, M.R.; Gabert, F.M.; Journet, A.M.; Colomb, M.G. Covalent binding of C3b to tetanus toxin: Influence on uptake/internalization of antigen by antigen-specific and non-specific B cells. Immunology 1996, 89, 348–355. [Google Scholar] [CrossRef]
- Zeng, Q.; Gao, J.; Zhang, X.; Liu, A.; Wang, Z.; Wang, Z.; Chi, X.; Shi, Q.; Wang, Y.; Yang, F.; et al. Disparities between IgG4-related kidney disease and extrarenal IgG4-related disease in a case-control study based on 450 patients. Sci. Rep. 2021, 11, 10397. [Google Scholar] [CrossRef]
- Fujita, Y.; Fukui, S.; Umeda, M.; Tsuji, S.; Iwamoto, N.; Nakashima, Y.; Horai, Y.; Suzuki, T.; Okada, A.; Aramaki, T.; et al. Clinical Characteristics of Patients With IgG4-Related Disease Complicated by Hypocomplementemia. Front. Immunol. 2022, 13, 828122. [Google Scholar] [CrossRef] [PubMed]
- Chaba, A.; Devresse, A.; Audard, V.; Boffa, J.J.; Karras, A.; Cartery, C.; Deltombe, C.; Chemouny, J.; Contamin, C.; Courivaud, C.; et al. Clinical and Prognostic Factors in Patients with IgG4-Related Kidney Disease. Clin. J. Am. Soc. Nephrol. CJASN 2023, 18, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.D.R.; Cargill, T.; Goodchild, G.; Oliveira, B.; Rodriguez-Justo, M.; Pepper, R.; Connolly, J.; Salama, A.; Webster, G.; Barnes, E.; et al. Clinical Manifestations and Long-term Outcomes of IgG4-Related Kidney and Retroperitoneal Involvement in a United Kingdom IgG4-Related Disease Cohort. Kidney Int. Rep. 2019, 4, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Szer, J.; Weitz, I.; Röth, A.; Höchsmann, B.; Panse, J.; Usuki, K.; Griffin, M.; Kiladjian, J.-J.; de Castro, C.; et al. Pegcetacoplan versus Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2021, 384, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Holers, V.M. Complement therapeutics are coming of age in rheumatology. Nat. Rev. Rheumatol. 2023, 19, 470–485. [Google Scholar] [CrossRef]
- Chalayer, E.; Gramont, B.; Zekre, F.; Goguyer-Deschaumes, R.; Waeckel, L.; Grange, L.; Paul, S.; Chung, A.W.; Killian, M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun. Rev. 2022, 21, 103016. [Google Scholar] [CrossRef] [PubMed]
- Engeroff, P.; Caviezel, F.; Mueller, D.; Thoms, F.; Bachmann, M.F.; Vogel, M. CD23 provides a noninflammatory pathway for IgE-allergen complexes. J. Allergy Clin. Immunol. 2020, 145, 301–311.e4. [Google Scholar] [CrossRef] [PubMed]
- Sherr, E.; Macy, E.; Kimata, H.; Gilly, M.; Saxon, A. Binding the low affinity Fc epsilon R on B cells suppresses ongoing human IgE synthesis. J. Immunol. 1989, 142, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.Y.; Hofstetter, H.; Banchereau, J.; Delespesse, G. Cross-linking of CD23 antigen by its natural ligand (IgE) or by anti-CD23 antibody prevents B lymphocyte proliferation and differentiation. J. Immunol. 1991, 146, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Fellmann, M.; Buschor, P.; Röthlisberger, S.; Zellweger, F.; Vogel, M. High affinity targeting of CD23 inhibits IgE synthesis in human B cells. Immun. Inflamm. Dis. 2015, 3, 339–349. [Google Scholar] [CrossRef]
- Punnonen, J.; Aversa, G.; Cocks, B.G.; McKenzie, A.N.; Menon, S.; Zurawski, G.; Malefyt, R.d.W.; E de Vries, J. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc. Natl. Acad. Sci. USA 1993, 90, 3730–3734. [Google Scholar] [CrossRef] [PubMed]
- Jeannin, P.; Lecoanet, S.; Delneste, Y.; Gauchat, J.F.; Bonnefoy, J.Y. IgE versus IgG4 production can be differentially regulated by IL-10. J. Immunol. 1998, 160, 3555–3561. [Google Scholar] [CrossRef]
- Culver, E.L.; Sadler, R.; Bateman, A.C.; Makuch, M.; Cargill, T.; Ferry, B.; Aalberse, R.; Barnes, E.; Rispens, T. Increases in IgE, Eosinophils, and Mast Cells Can be Used in Diagnosis and to Predict Relapse of IgG4-Related Disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 1444–1452.e6. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Bai, M.; Zeng, Q.; Wang, Z.; Chen, D.; Su, Y.; Li, Z. Clinical profiles differ in IgG4-related disease with and without allergy: A large case-control study in China. Clin. Exp. Rheumatol. 2023, 41, 1808–1814. [Google Scholar] [CrossRef]
- Verbeek, J.S.; Hirose, S.; Nishimura, H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front. Immunol. 2019, 10, 2061. [Google Scholar] [CrossRef]
- Roghanian, A.; Stopforth, R.J.; Dahal, L.N.; Cragg, M.S. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J. Leukoc. Biol. 2018, 103, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.H.; Wallace, Z.S.; Perugino, C.A.; Fernandes, A.; Patel, P.; Foster, P. Final results of an open label phase 2 study of a reversible B cell inhibitor, XmAb5871, in IgG4-related disease [abstract]. Arthritis. Rheumatol. 2017, 69 (Suppl. 10), 1136. [Google Scholar]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Allen, C.D.C.; Ansel, K.M.; Low, C.; Lesley, R.; Tamamura, H.; Fujii, N.; Cyster, J.G. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 2004, 5, 943–952. [Google Scholar] [CrossRef]
- Hargreaves, D.C.; Hyman, P.L.; Lu, T.T.; Ngo, V.N.; Bidgol, A.; Suzuki, G.; Zou, Y.-R.; Littman, D.R.; Cyster, J.G. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 2001, 194, 45–56. [Google Scholar] [CrossRef] [PubMed]
Antibody | Fluorochrome | Supplier | Clone | Cat No. |
---|---|---|---|---|
CR1/CD35 | PE | BD Biosciences, Franklin Lakes, NJ, USA | E11 | 559872 |
CR2/CD21 | APC | BD Biosciences, Franklin Lakes, NJ, USA | B-ly4 | 599867 |
FcεRII/CD23 | PE | BD Biosciences, Franklin Lakes, NJ, USA | M-L233 | 555711 |
FcγRIIb/CD32 | APC | BD Biosciences, Franklin Lakes, NJ, USA | FLI8.26 | 559769 |
CXCR3/CD183 | PerCPCy5.5 | BD Biosciences, Franklin Lakes, NJ, USA | IC6/CXCR3 | 560832 |
CXCR4/CD184 | PE | BD Biosciences, Franklin Lakes, NJ, USA | 12G5 | 561733 |
CXCR5/CD185 | PECy7 | eBioscience, San Diego, CA, USA | MU5UBEE | 25-9185 |
CCR5 | BV605 | BD Biosciences, Franklin Lakes, NJ, USA | 2D7/CCR5 | 563379 |
CCR6 | PECy7 | BD Biosciences, Franklin Lakes, NJ, USA | 11A9 | 560620 |
CCR7 | PE | R&D Systems, Minneapolis, MN, USA | 150503 | FAB197P-025 |
CD20 | VB | Miltenyi Biotech, Bergisch Gladback, Germany | LT20 | 130-094-167 |
IgG4 | APC | Sanquin Reagents, Amstedam, Netherlands | MH164.1 | - |
IgG1 | FITC | Sanquin Reagents, Amstedam, Netherlands | MH161-1 | - |
DAPI | - | BioLedgend, San Diego, CA, USA | - | 422801 |
IgG4-PB | PSC-hIgG4 | |
---|---|---|
Demographics | ||
Gender male (n, %) | 8 (57) | 5 (63) |
Age (median, range) | 67 (39–82) | 56 (36–76) |
Serum immunoglobulins | ||
IgG (g/L, median, range) | 16.4 (8.2- 23.7) | 16.3 (12.1–35.8) |
IgG4 (g/L, median, range) | 5.9 (0.4–19.6) | 2.0 (1.5–8.0) |
IgE (kUL, median, range) | 269 (11.4–1711) | 138 (11.3–4452) |
Clinical status | ||
Initial presentation | 9 (64) | - |
Relapse | 5 (36) | |
Immunosuppression | ||
No therapy (n, %) | 13 (93) | - |
Low-dose steroids (n, %) | 1 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cargill, T.; Barnes, E.; Rispens, T.; Culver, E.L. The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease. Biomedicines 2024, 12, 2839. https://doi.org/10.3390/biomedicines12122839
Cargill T, Barnes E, Rispens T, Culver EL. The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease. Biomedicines. 2024; 12(12):2839. https://doi.org/10.3390/biomedicines12122839
Chicago/Turabian StyleCargill, Tamsin, Eleanor Barnes, Theo Rispens, and Emma L. Culver. 2024. "The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease" Biomedicines 12, no. 12: 2839. https://doi.org/10.3390/biomedicines12122839
APA StyleCargill, T., Barnes, E., Rispens, T., & Culver, E. L. (2024). The Differential Complement, Fc and Chemokine Receptor Expression of B Cells in IgG4-Related Pancreatobiliary Disease and Primary Sclerosing Cholangitis and Its Relevance for Targeting B Cell Pathways in Disease. Biomedicines, 12(12), 2839. https://doi.org/10.3390/biomedicines12122839