Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = FRP plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5702 KB  
Article
Flexural Behaviour of Corroded RC Beams Strengthened with CFRCM: Refined Modelling, Parametric Analysis, and Design Assessment
by Chaoqun Zeng, Jing-Pu Tang, Liangliang Wei, Miaochang Zhu, Ran Feng and Panpan Liu
Buildings 2026, 16(2), 377; https://doi.org/10.3390/buildings16020377 - 16 Jan 2026
Abstract
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams [...] Read more.
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams externally strengthened with CFRCM plates. Refined finite element models (FEMs) were developed by explicitly incorporating the steel–concrete bond-slip behaviour, the carbon fabric (CF) mesh–cementitious matrix (CM) interface, and the CFRCM–concrete substrate interaction and were validated against experimental results in terms of failure modes, load–deflection responses, and flexural capacities. A parametric study was then conducted to examine the effects of CFRCM layer number, steel corrosion level, and longitudinal reinforcement ratio. The results indicate that the baseline flexural capacity can be fully restored only when the corrosion level remains below approximately 15%; beyond this threshold, none of the CFRCM configurations achieved full recovery. The influence of the reinforcement ratio was found to depend on corrosion severity, while increasing CFRCM layers enhanced flexural performance but exhibited saturation effects for thicker configurations. In addition, corrosion level and CFRCM thickness jointly influenced the failure mode. Comparisons with design predictions show that bilinear CFRCM constitutive models are conservative, whereas existing FRP-based design codes provide closer agreement with numerical and experimental results. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 1506 KB  
Article
An Energetic Analysis of Apparent Hardening and Ductility in FRP Plate Debonding
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2026, 10(1), 7; https://doi.org/10.3390/jcs10010007 - 1 Jan 2026
Viewed by 149
Abstract
We investigate the progressive debonding of FRP reinforcements using an analytical framework based on fracture mechanics and a bilinear softening cohesive law. This study focuses on the energetic analysis of the “apparent hardening” phase observed in the force–slip (FΔ) [...] Read more.
We investigate the progressive debonding of FRP reinforcements using an analytical framework based on fracture mechanics and a bilinear softening cohesive law. This study focuses on the energetic analysis of the “apparent hardening” phase observed in the force–slip (FΔ) curve. It is shown that this non-linear response is a structural phenomenon caused by stress redistribution as the softening zone develops. Full analytical expressions for all energy components (stored and dissipated) are derived, and the energy balance is established. The analysis links the amount of elastic energy stored during the hardening phase to the definitions of toughness (area under the curve) and ductility (post-peak behavior), explaining the transition from ductile to brittle failure. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

18 pages, 3815 KB  
Article
Progressive Failure Analysis of Laminated Fiber-Reinforced Plastic Composite Plate Structure in the Post-Buckling Region
by Muhammad Ali Sadiq and György Kovács
Appl. Sci. 2025, 15(22), 12237; https://doi.org/10.3390/app152212237 - 18 Nov 2025
Viewed by 486
Abstract
Fiber-Reinforced Polymer (FRP)-laminated composite materials are increasingly recognized as a transformative solution for future structural applications, due to their exceptional properties, such as lightweight, superior fatigue life, corrosion resistance, and ease of manufacturing. These advantages make them highly suitable for innovative applications in [...] Read more.
Fiber-Reinforced Polymer (FRP)-laminated composite materials are increasingly recognized as a transformative solution for future structural applications, due to their exceptional properties, such as lightweight, superior fatigue life, corrosion resistance, and ease of manufacturing. These advantages make them highly suitable for innovative applications in various sectors, including aerospace, automotive, marine, energy and defense. As one of the load-carrying members, the composite laminated plate structures are widely used in aircraft structures, such as the fuselage, wing and tail. These thin-walled structures will buckle under compressive or shear loading, which is a major consideration in the structural design process. Due to their high specific strength, laminated FRP composite structures are gaining increasing attention and are widely used in advanced lightweight structures. However, to fully exploit the large post-buckling reserves of FRP structures, their damage behavior and failure modes must be well understood. In this study, a progressive failure analysis based on ANSYS finite element (FE) simulations has been carried out to predict the nonlinear response and failure characteristics of a laminated composite plate under compressive loading. The FE-based progressive failure analysis utilized shell elements based on the Classical Laminate Plate Theory (CLPT) to calculate the in-plane stresses. The failure model employed the 3D failure criterion LaRC04 for damage detection and the stiffness degradation model for damage propagation in an FRP-laminated composite plate structure. The analysis results are found in close agreement with the published simulation and experimental results. This study has proposed an efficient methodology to accurately predict the post-buckling response, i.e., failure modes and collapse loads of laminated FRP composite constructions under compressive loading. Full article
(This article belongs to the Special Issue Research on Polymer Composite Materials)
Show Figures

Figure 1

19 pages, 4577 KB  
Article
Performance of HSC Continuous Deep Beams with Asymmetric Circular Openings: Hybrid FRP Versus Steel Plate Strengthening
by Mohammed Al-Mahbashi, Hussein Elsanadedy, Aref Abadel, Husain Abbas, Tarek Almusallam and Yousef Al-Salloum
Polymers 2025, 17(22), 3049; https://doi.org/10.3390/polym17223049 - 18 Nov 2025
Cited by 1 | Viewed by 593
Abstract
In recent years, the demand for high-strength concrete (HSC) for buildings has been steadily increasing. Continuous HSC deep beams are frequently employed in various structural applications, including high-rise buildings, bridges, and parking garages, due to their superior load capacity. Some cases require the [...] Read more.
In recent years, the demand for high-strength concrete (HSC) for buildings has been steadily increasing. Continuous HSC deep beams are frequently employed in various structural applications, including high-rise buildings, bridges, and parking garages, due to their superior load capacity. Some cases require the addition of openings after the construction for passing utilities such as drainage and electricity. This study experimentally examines four two-span HSC deep beams: one control solid beam, one beam with circular openings, and two beams that utilized different strengthening schemes. The openings were asymmetrical circular openings, with one positioned in each span. This study sought to regain the full capacity of beams with openings by employing two types of strengthening schemes. The first one used bolted steel plates, while the second was a hybrid scheme that combined bolted steel plates with externally bonded fiber-reinforced polymer (FRP) sheets. Test findings demonstrated that both methods effectively restored the load capacity of the strengthened beams. The strengthened beam with steel plates achieved a load capacity of 125% compared to the solid beam. Likewise, the beam retrofitted with hybrid steel/FRP composites reached 117%. Additionally, the energy dissipation and ductility index of the strengthened beam with steel plates were 32% and 77%, respectively, compared to the strengthened beam with hybrid steel/FRP composites. The findings emphasize the effectiveness of the applied retrofitting techniques in restoring the lost capacity due to the cutting of post-construction openings in deep beams. Full article
Show Figures

Figure 1

13 pages, 1556 KB  
Article
Prediction of Plate End Debonding of FRP-Strengthened RC Beams Based on Explainable Machine Learning
by Sheng Zheng and Woubishet Zewdu Taffese
Buildings 2025, 15(19), 3576; https://doi.org/10.3390/buildings15193576 - 4 Oct 2025
Viewed by 700
Abstract
This research explores the phenomenon of plate-end (PE) debonding in reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) composites. This type of failure represents a key mechanism that undermines the structural performance and efficiency of FRP reinforcement systems. Despite the widespread use [...] Read more.
This research explores the phenomenon of plate-end (PE) debonding in reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) composites. This type of failure represents a key mechanism that undermines the structural performance and efficiency of FRP reinforcement systems. Despite the widespread use of FRP in structural repair due to its high strength and corrosion resistance, PE debonding—often triggered by shear or inclined cracks—remains a major challenge. Traditional computational models for predicting PE debonding suffer from low accuracy due to the nonlinear relationship between influencing parameters. To address this, the research employs machine learning techniques and SHapley Additive exPlanations (SHAP), to develop more accurate and explainable predictive models. A comprehensive database is constructed using key parameters affecting PE debonding. Machine learning algorithms are trained and evaluated, and their performance is compared with existing normative models. The study also includes parameter importance and sensitivity analyses to enhance model interpretability and guide future design practices in FRP-based structural reinforcement. Full article
(This article belongs to the Special Issue AI-Powered Structural Health Monitoring: Innovations and Applications)
Show Figures

Figure 1

13 pages, 3828 KB  
Article
Arc Jet Testing and Modeling Study for Ablation of SiFRP Composites in Shear Environment
by Meicong Wang, Jixiang Shan, Xin Yang, Qianghong Chen, Yonggang Lu and Yupeng Hu
Materials 2025, 18(17), 4142; https://doi.org/10.3390/ma18174142 - 4 Sep 2025
Viewed by 936
Abstract
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from [...] Read more.
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from 107 W/cm2 at 2.3 kPa to 1100 W/cm2 at 84 kPa. The heating surface experiences shear as high as 1900 Pa. The in-depth thermal response and ablating surface temperature of the specimens are measured during ablation. According to the ablation experimental results, a multi-layer ablation model was established that accounts for the effects of carbon deposition, investigating the thermophysical properties of the ablation deposition layer. The accuracy of the proposed ablation model was evaluated by comparing the calculated and experimental surface ablation recession and internal temperature of a silica–phenolic composite under steady-state ablation. Carbon–silica reaction heat is the important endothermic mechanism for silica-reinforced composites. The research provides valuable reference for understanding the ablative thermal protection mechanism of silicon–phenolic composites in a high shear environment. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 3165 KB  
Article
Prediction of FRP–Concrete Bond Strength Using a Genetic Neural Network Algorithm
by Yi Yang, Tan-Tan Zhu, Wu-Er Ha, Xin Zhao, Hong Qiu, Xiao-Lei Liu, Rui-Gang Ma, Jun-Nian Li, Jun Tao and Fei Zhang
Buildings 2025, 15(16), 2939; https://doi.org/10.3390/buildings15162939 - 19 Aug 2025
Viewed by 978
Abstract
The bond strength at the interface between fiber-reinforced polymer (FRP) composites and concrete is a critical factor affecting the mechanical performance of strengthened structures. To investigate this behavior, a comprehensive database of 1032 single-shear test results was compiled. A genetic algorithm-optimized backpropagation (GA-BP) [...] Read more.
The bond strength at the interface between fiber-reinforced polymer (FRP) composites and concrete is a critical factor affecting the mechanical performance of strengthened structures. To investigate this behavior, a comprehensive database of 1032 single-shear test results was compiled. A genetic algorithm-optimized backpropagation (GA-BP) neural network was developed using six input parameters: concrete width and compressive strength, and the FRP plate’s width, elastic modulus, thickness, and effective bond length. The optimized network, with a 6-13-1 architecture, achieved the highest prediction accuracy, with R2 = 0.93 and MAPE as low as 15.96%, outperforming all benchmark models. Eight existing bond strength prediction models were evaluated against the experimental data, revealing that models incorporating effective bond length achieved up to 35% lower prediction error than those that did not. A univariate sensitivity analysis showed that concrete compressive strength was the most influential parameter, with a normalized sensitivity coefficient of 0.325. The final trained weights and biases can be directly applied to similar prediction tasks without retraining. These results demonstrate the proposed model’s high accuracy, generalizability, and interpretability, offering a practical and efficient tool for evaluating FRP–concrete bond performance and supporting the design and rehabilitation of strengthened structures. Full article
Show Figures

Figure 1

11 pages, 1617 KB  
Article
Mechanics of Interfacial Debonding in FRP Strengthening Systems: Energy Limits and Characteristic Bond Lengths
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2025, 9(8), 412; https://doi.org/10.3390/jcs9080412 - 4 Aug 2025
Viewed by 1183
Abstract
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending [...] Read more.
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending branch. The investigation focuses on the interaction between the elastic energy stored in the FRP and the adhesive interface, as well as the characteristic lengths that control the debonding process. Analytical expressions for the strain energy stored in both the FRP plate and the adhesive interface are derived, enabling the identification and evaluation of two critical characteristic lengths as the bond stress at the loaded end approaches its maximum value lc, at which the elastic energies of the FRP and the adhesive interface converge, signaling energy saturation; and lmax, where the adhesive interface attains its peak energy absorption. Upon reaching the energy saturation state, the system undergoes failure through the sudden and complete debonding of the FRP from the substrate. The onset of unstable debonding is rigorously analyzed in terms of the first and second derivatives of the total potential energy with respect to the bond length. It is further demonstrated that abrupt debonding may also occur in cases where the length exceeds lc when the bond stress reaches its maximum, and the bond–slip law is characterized by a vertical branch. The findings provide significant insights into the energy balance and stability criteria governing the debonding failure mode in FRP-strengthened structures, highlighting the pivotal role of characteristic lengths in predicting both structural performance and failure mechanisms. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

18 pages, 3197 KB  
Article
The Progressive Damage Modeling of Composite–Steel Lapped Joints
by Alaa El-Sisi, Ahmed Elbelbisi, Ahmed Elkilani and Hani Salim
J. Compos. Sci. 2025, 9(7), 350; https://doi.org/10.3390/jcs9070350 - 7 Jul 2025
Cited by 1 | Viewed by 1464
Abstract
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; [...] Read more.
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; however, accurately predicting their failure behavior remains a major challenge due to the anisotropic and heterogeneous nature of composite materials. This paper presents a progressive damage modeling approach to investigate the failure modes and joint strength of mechanically fastened carbon fiber-laminated (CFRP) composite joints. A 3D constitutive model based on continuum damage mechanics was developed and implemented within a three-dimensional finite element framework. The joint model comprises a composite plate, a steel plate, a steel washer, and steel bolts, capturing realistic assembly behavior. Both single- and double-lap joint configurations, featuring single and double bolts, were analyzed under tensile loading. The influence of clamping force on joint strength was also investigated. Model predictions were validated against existing experimental results, showing a good correlation. It was observed that double-lap joints exhibit nearly twice the strength of single-lap joints and can retain up to 85% of the strength of a plate with a hole. Furthermore, double-lap configurations support higher clamping forces, enhancing frictional resistance at the interface and load transfer efficiency. However, the clamping force must be optimized, as excessive values can induce premature damage in the composite before external loading. The stiffness of double-bolt double-lap (3DD) joints was found to be approximately three times that of single-bolt single-lap (3DS) joints, primarily due to reduced rotational flexibility. These findings provide useful insights into the design and optimization of composite bolted joints under tensile loading. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

22 pages, 16001 KB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Cited by 1 | Viewed by 779
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

16 pages, 5084 KB  
Article
Novel Ductile Moment-Resisting Frame Compound of Steel Gusset Plate for Beam-to-Column Connections and I-Shaped FRP Profile Sections
by Ali Ghamari, Chanachai Thongchom, Adamantis G. Zapris and Violetta K. Kytinou
J. Compos. Sci. 2025, 9(6), 280; https://doi.org/10.3390/jcs9060280 - 30 May 2025
Cited by 1 | Viewed by 1078
Abstract
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP [...] Read more.
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP profiles have emerged as a novel and valuable material with significant advancement in structural engineering. In this paper, an MRF system composed of novel gusset plate steel connections (to provide ductility) and FRP profile sections for beams and columns is proposed and investigated numerically and parametrically. The results indicate that up to a rotation of 0.04 rad, the proposed gusset plate dissipates energy, whereas the beam and columns remain essentially elastic. Accordingly, with an increase in the ratio of vertical length to thickness of the gusset plate, energy dissipation is reduced. Through an increase in the ratio of horizontal length to thickness of the gusset plate from 63.5 to 127 and 254, the ultimate strength of the connection is reduced by 4% to 10% and 3% to 7%, respectively. It is suggested that gusset plate thickness be selected in such a way that its slenderness is not less than 47. Subsequently, the required equation is proposed to achieve the optimum performance of the system. Full article
Show Figures

Figure 1

12 pages, 5334 KB  
Article
Experimental Study on Damage Monitoring of FRP Plate Using FBG Sensors
by Zhe Zhang, Tongchun Qin, Yuping Bao, Ronggui Liu and Jianping He
Micromachines 2025, 16(6), 649; https://doi.org/10.3390/mi16060649 - 29 May 2025
Cited by 2 | Viewed by 880
Abstract
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to [...] Read more.
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to monitor damage of the FRP materials. An FRP plate embedded with six FBGs was fabricated, and different degrees of damage were induced in the FRP plate. The six FBGs measured the damage information of the FRP plate under impulse and continuous sinusoidal vibration loads. The results demonstrate that both the strain information and the frequency shift information measured by the FBG sensors can effectively and sensitively identify damage in the FRP plate. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

20 pages, 8397 KB  
Article
Low-Velocity Impact-Load-Carrying Behavior of Reinforced Concrete Beams Strengthened in Flexure by Bonding a Carbon Fiber-Reinforced Polymer Sheet to the Tension-Side Surface
by Tomoki Kawarai, Masato Komuro and Norimitsu Kishi
Buildings 2025, 15(10), 1713; https://doi.org/10.3390/buildings15101713 - 18 May 2025
Cited by 2 | Viewed by 778
Abstract
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced [...] Read more.
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced polymer (FRP) composite materials have properties that are better than those of steel and concrete materials, i.e., being light weight, with anticorrosive material, a high ratio of strength to weight, and better workability, FRP sheet bonding methods for RC members have been developed, and practical applications have been gradually increased worldwide, statically. The methods may also have some potential to strengthen the members under impact and blast loading. In this paper, to rationally improve the impact resistance of RC beams under flexure, beams were strengthened by bonding an FRP sheet to the bottom tension side. Then, low-velocity impact loading tests (hereafter referred to as impact loading tests) using a 300 kg steel weight were carried out on the beams strengthened with carbon FRP (CFRP) sheets of different areal masses to investigate the failure mode at the ultimate state of the beams, in which the areal mass is physically similar to the amount of the sheet reinforcing RC beams and hereafter referred to as the sheet volume. Two sheet volumes (one is an areal mass of 300 g/m2 having a 0.17 mm thickness and the other is of 600 g/m2 having a 0.33 mm thickness) were compared, and two static failure modes, concrete crushing-intermediate crack (IC) debonding and premature IC debonding, were observed. The following results were obtained from this study: taking a static calculated moment ratio My/Mu of the rebar yield-moment My to the ultimate moment Mu for each beam, in the case of the beams having an My/Mu (=0.67) larger than 0.65 that went through static failure in the concrete crushing-IC debonding mode, the beams failed in sheet rupturing mode subjected to an impact load. When the sheet volume was comparatively large and a static calculated moment ratio My/Mu (=0.6) was less than 0.65, the beams collapsed in the premature IC debonding mode under not only static but also impact loading, and the impact resistance of the beams was enhanced with an increasing sheet volume; this increase was greater in the impact loading case than in the static loading case. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 6376 KB  
Article
The Behavior of Reinforced Concrete Slabs Strengthened by Different Patterns and Percentages of Carbon Fiber-Reinforced Polymer (CFRP) Plate
by Ayad Al-Yousuf, Yaman Sami Shareef Al-Kamaki, Hanadi Abdulridha Lateef, Yasar Ameer Ali, Lateef N. Assi, Rahman S. Kareem and Hadeel Challoob Dekhn
Constr. Mater. 2025, 5(2), 24; https://doi.org/10.3390/constrmater5020024 - 16 Apr 2025
Cited by 7 | Viewed by 2670
Abstract
The use of fiber-reinforced polymer (FRP) composites in retrofitting and strengthening reinforced concrete (RC) slabs has gained substantial attention due to their durability, high strength-to-weight ratio, and ease of application. The objective of this study was to theoretically investigate the flexural behavior of [...] Read more.
The use of fiber-reinforced polymer (FRP) composites in retrofitting and strengthening reinforced concrete (RC) slabs has gained substantial attention due to their durability, high strength-to-weight ratio, and ease of application. The objective of this study was to theoretically investigate the flexural behavior of RC slabs strengthened with carbon fiber-reinforced polymer (CFRP) plates applied in different percentages and patterns using finite element methods (FEMs) in comparison with the experiment outcomes available in the literature using the ABAQUS software (version 2020). This study focused on understanding the influence of the CFRP configuration on the structural behavior, including the load-carrying capacity, flexural performance, crack patterns, and failure modes, under static loading on seventeen RC slabs of 1800 × 1800 mm and 150 mm thickness. A comprehensive program was adopted, where RC slabs were strengthened using CFRP plates with different coverage percentages (0.044, 0.088, 0.133, 0.178, and 0.223) and arrangements (unidirectional, cross-hatched, and grid patterns) to evaluate the slabs’ performance under realistic service conditions. After comparison, the results validate that the percentage and pattern of CFRP plates influence the performance of RC slabs. Higher CFRP plate percentages yielded greater strength enhancement, while optimized patterns guaranteed a uniform stress distribution and delayed crack initiation. This study hypothesizes that the flexural strength, stiffness, and failure behavior of RC slabs are significantly affected by the percentage and arrangement of CFRP strengthening, with certain configurations providing superior structural performance. The use of CFRP cross-hatched plates improved the load–deflection behavior, increasing the ultimate loads by 35% (452 kN) while reducing ultimate deflection, with the cross-hatched CFRP specimen showing the highest deflection among all the CFRP specimens. This study provides engineers and practitioners with valuable information on choosing appropriate strengthening plans for RC slabs using CFRP plates, leading to more cost-effective and ecologically friendly structural rehabilitation methods. Full article
Show Figures

Figure 1

18 pages, 20703 KB  
Article
Performance Evaluation of Reinforced Concrete Beams with Corroded Rebar Strengthened by Carbon Fiber-Reinforced Polymer
by Sangwoo Kim, Wonchang Choi and Jinsup Kim
Polymers 2025, 17(8), 1021; https://doi.org/10.3390/polym17081021 - 10 Apr 2025
Cited by 5 | Viewed by 1716
Abstract
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, [...] Read more.
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, structures constructed with RC face challenges such as reduced live load capacity, concrete deterioration, and the corrosion of reinforcement bars over time. To address this, ongoing research is exploring maintenance and retrofitting techniques using high-strength, lightweight fiber-reinforced polymer (FRP) composite materials such as carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP). In this study, the flexural performance of corroded RC beams was enhanced through retrofitting with CFRP plates and sheets. The corroded RC beams were fabricated using an applied-current method with a 5% NaCl solution to induce a 10% target corrosion level under controlled laboratory conditions. Flexural tests were conducted to evaluate the structural performance, failure modes, load–displacement relationships, and energy dissipation capacities. The results showed that CFRP reinforcement mitigates the adverse effects of corrosion-induced reduction in rebar cross-sectional areas, leading to increased stiffness and improved load-carrying capacity. In particular, CFRP reinforcement increased the yield load by up to 36.5% and the peak load by up to 90% in corroded specimens. The accumulated energy dissipation capacity also increased by 92%. These enhancements are attributed to the effective load-sharing behavior between the corroded rebar and the CFRP reinforcement. Full article
Show Figures

Figure 1

Back to TopTop