Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = FRET efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2522 KiB  
Review
Recent Advances in Antibody Discovery Using Ultrahigh-Throughput Droplet Microfluidics: Challenges and Future Perspectives
by Dhiman Das, John Scott McGrath, John Hudson Moore, Jason Gardner and Daniël Blom
Biosensors 2025, 15(7), 409; https://doi.org/10.3390/bios15070409 - 25 Jun 2025
Viewed by 645
Abstract
Droplet microfluidics has emerged as a transformative technology that can substantially increase the throughput of antibody “hit” discovery. This review provides a comprehensive overview of the recent advances in this dynamic field, focusing primarily on the technological and methodological innovations that have enhanced [...] Read more.
Droplet microfluidics has emerged as a transformative technology that can substantially increase the throughput of antibody “hit” discovery. This review provides a comprehensive overview of the recent advances in this dynamic field, focusing primarily on the technological and methodological innovations that have enhanced the antibody discovery process. This investigation starts with the fundamental principles of droplet microfluidics, emphasizing its unique capabilities for precisely controlling and manipulating picoliter-volume droplets. This discussion extends to various assay types employed in droplet microfluidics, including binding assays, functional assays, Förster Resonance Energy Transfer (FRET) assays, internalization assays, and neutralization assays, each offering distinct advantages for antibody screening and characterization. A critical examination of methods to improve droplet encapsulation is presented, besides addressing challenges such as reducing the leakage of small molecules from droplets and explaining what a “hit” droplet looks like. Furthermore, we assess design considerations essential for implementing high-throughput fluorescence-activated droplet sorting (FADS) workstations and emphasize the need for automation. This review also delves into the evolving commercial landscape, identifying key market players and emerging industry trends. This review paper aims to catalyze further research and innovation, ultimately advancing the field towards more efficient and robust solutions for antibody identification and development. Full article
(This article belongs to the Special Issue The Emerging Techniques in Biosensors and Bioelectronics)
Show Figures

Figure 1

20 pages, 2815 KiB  
Article
Simulation and Optimization of the Antenna Designs for Glucose Biosensing FRET Mechanisms in Endoscopic Capsules
by Rajaa B. Naeem and Doğu Çağdaş Atilla
Micromachines 2025, 16(6), 641; https://doi.org/10.3390/mi16060641 - 28 May 2025
Viewed by 506
Abstract
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to [...] Read more.
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to conform to the spatial constraints of endoscopic capsules, such as mechanical bending features. The antenna is embedded in a multimode medium artificial tissue simulating a glucose environment with several layers, providing efficient coupling to the FRET emission signal for glucose sensing. Stable S11 parameters and a maximum gain of 9 dBi are realized by statelier mesh settings, bend adaptation, and cautious SAR constraint handlers. Results of the Specific Absorption Rate (SAR) confirm the limited energy absorption within permissible bounds, confirming its application for biomedical purposes. These results affirm the feasibility of non-invasive glucose measurement in interstitial fluid in this configuration that can be operable through an endoscope with improved sensitivity and functionality. Full article
(This article belongs to the Special Issue Advanced Photonic Biosensors: From Materials Research to Applications)
Show Figures

Figure 1

22 pages, 5623 KiB  
Article
Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT
by Batoul Dhaini, Joël Daouk, Hervé Schohn, Philippe Arnoux, Valérie Jouan-Hureaux, Albert Moussaron, Agnès Hagege, Mathilde Achard, Samir Acherar, Tayssir Hamieh and Céline Frochot
Pharmaceuticals 2025, 18(5), 672; https://doi.org/10.3390/ph18050672 - 1 May 2025
Viewed by 665
Abstract
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of [...] Read more.
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of the poor penetration of visible light into tissues, which limits the efficacy of PDT in the treatment of deep-seated tumors. It is essential to optimize FRET efficiency by maximizing the overlap integral between donor emission and acceptor absorption and lengthening the duration of the donor emission. In this study, we optimized energy transfer between a scintillator (Sc) as a donor and a PS as an acceptor. Terbium (Tb) and Gadolinium (Gd) as Scs and Rose RB as a PS were chosen. The study of energy transfer between Tb, Gd and RB in solution and chelated on AGuIX NPs proved to be FRET-like. RB was conjugated directly onto AGuIX NPs (i.e., AGuIX Ln@RB), and the use of a spacer arm (i.e., AGuIX Ln@spacer arm-RB) increased FRET efficiency. Singlet oxygen production by these NPs was observed under UV–visible illumination and X-ray irradiation. The in vitro bioassay demonstrated 52% cell death of U-251MG derived from human malignant glioblastoma multiforme at a concentration of 1 μM RB after illumination and irradiation (2 Gy, 320 kV, 10 mA, 3 Gy/min at 47 cm). In addition, the RB-coupled NRP-1-targeting peptide (i.e., K(RB)DKPPR) was conjugated onto AGuIX NPs by a thiol-maleimide click chemistry reaction, and an affinity in the nM range was observed. Full article
(This article belongs to the Special Issue Photodynamic Therapy: 3rd Edition)
Show Figures

Graphical abstract

18 pages, 4761 KiB  
Article
Fluorescence Resonance Energy Transfer for Drug Loading Assessment in Reconstituted High-Density Lipoprotein Nanoparticles
by R. Max Petty, Luca Ceresa, Emma Alexander, Danh Pham, Nirupama Sabnis, Rafal Fudala, Andras G. Lacko, Raghu R. Krishnamoorthy, Zygmunt Gryczynski and Ignacy Gryczynski
Int. J. Mol. Sci. 2025, 26(7), 3276; https://doi.org/10.3390/ijms26073276 - 1 Apr 2025
Viewed by 675
Abstract
Reconstituted high-density lipoprotein nanoparticles (NPs), which mimic the structure and function of endogenous human plasma HDL, hold promise as a robust drug delivery system. These nanoparticles, when loaded with appropriate agents, serve as powerful tools for targeted drug delivery. The fundamental challenge lies [...] Read more.
Reconstituted high-density lipoprotein nanoparticles (NPs), which mimic the structure and function of endogenous human plasma HDL, hold promise as a robust drug delivery system. These nanoparticles, when loaded with appropriate agents, serve as powerful tools for targeted drug delivery. The fundamental challenge lies in controlling and estimating the actual drug load and the efficiency of drug release at the target. In this report, we present a novel approach based on enhanced Förster Resonance Energy Transfer (FRET) to assess particle load and monitor payload release. The NPs are labeled with donor molecules embedded in the lipid phase, while the spherical core volume is filled with acceptor molecules. Highly enhanced FRET efficiency to multiple acceptors in the NP core has been observed at distances significantly larger than the characteristic Förster distance (R0). To confirm that the observed changes in donor and acceptor emissions are a result of FRET, we developed a theoretical model for nonradiative energy transfer from a single donor to multiple acceptors enclosed in a spherical core volume. The load-dependent shortening of the fluorescence lifetime of the donor correlated with the presence of a negative component in the intensity decay of the acceptor clearly demonstrates that FRET can occur at a large distance comparable to the nanoparticle size (over 100 Å). Comparison of theoretical simulations with the measured intensity decays of the donor and acceptor fluorophores constitute a new method for evaluating particle load. The observed FRET efficiency depends on the number of acceptors in the core, providing a simple way to estimate the nanoparticle load efficiency. Particle disintegration and load release result in a distinct change in donor and acceptor emissions. This approach constitutes a novel strategy for assessing NP core load, monitoring NP integrity, and evaluating payload release efficiency to target cells. Significants: In the last decade, nanoparticles have emerged as a promising strategy for targeted drug delivery, with applications ranging from cancer therapy to ocular neurodegenerative disease treatments. Despite their potential, a significant issue has been the real-time monitoring of these drug delivery vehicles within biological systems. Effective strategies for monitoring NP payload loading, NP integrity, and payload release are needed to assess the quality of new drug delivery systems. In our study, we have found that FRET-enabled NPs function as an improved method for monitoring these aspects currently missing from current drug delivery efforts. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

31 pages, 19413 KiB  
Article
Targeted Delivery Inside the Cells Directly Visualized with Förster Resonance Energy Transfer (FRET)
by Igor D. Zlotnikov, Natalya G. Belogurova and Elena V. Kudryashova
Polymers 2025, 17(6), 790; https://doi.org/10.3390/polym17060790 - 16 Mar 2025
Viewed by 723
Abstract
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones [...] Read more.
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones (MUmb and AMC) encapsulated in the polymeric micellar formulations. The efficiency of the drug delivery was quantified using the FRET efficiency, measured as the degree of energy transfer from the drug to the RFP. FRET efficiency directly provides the determination of the delivery efficacy, offering a versatile platform adaptable to various drugs and cell types. We used polymer micelles as a carrier for targeted delivery of fluorescent drugs to bacterial cells expressing RFP. The physicochemical characterization of the interaction between the drugs and the micelles including spectral properties, and the solubility and binding constants, were determined. We revealed a stronger affinity of MUmb for heparin-based micelles (Kd~10−5 M) compared to chitosan-based micelles (Kd~10−4 M), underscoring the influence of polymer composition on drug loading efficiency. For micelles containing MUmb, a FRET efficiency significantly exceeds (by three times) the efficiency for non-micellar MUmb, which have minimal penetration into bacterial cells. The most noticeable effect was observed with the use of the micellar curcumin providing pronounced activation of the RPF fluorescence signal, due to the interaction with curcumins (fluorophore-donor). Curcumin delivery using Chit5-OA micelle resulted in a 115% increase in RFP fluorescence intensity, and Hep-LA showed a significant seven-fold increase. These results highlight the significant effect of micellar composition on the effectiveness of drug delivery. In addition, we have developed a visual platform designed to evaluate the effectiveness of a pharmaceutical product through the visualization of the fluorescence of a bacterial culture on a Petri dish. This method allows us to quickly and accurately assess the penetration of a drug into bacteria, or those located inside other cells, such as macrophages, where the intercellular latent forms of the infection are located. Micellar formulations show enhanced antibacterial activity compared to free drugs, and formulations with Hep-OA micelles demonstrate the most significant reduction in E. coli viability. Synergistic effects were observed when combining curcumin and MUmb with moxifloxacin, resulting in a remarkable 40–50% increase in efficacy. The presented approach, based on the FRET test system with RFP expressed in the bacterial cells, establishes a powerful platform for development and optimizing targeted drug delivery systems. Full article
(This article belongs to the Special Issue Polymer Innovations in Biomedicine)
Show Figures

Graphical abstract

14 pages, 4941 KiB  
Article
The Construction of Carbazole-Based Metal–Organic Frameworks as Fluorescent Probes for Picric Acid Detection
by Yichang Jia, Xin Wang, Hechuan Li and Cheng He
Chemosensors 2025, 13(3), 105; https://doi.org/10.3390/chemosensors13030105 - 13 Mar 2025
Viewed by 983
Abstract
Nitroaromatic-explosives (NEs) not only threaten global security but are also recognized as a highly toxic pollutant. Metal–organic framework Zn-Ms (Zn-M1, Zn-M2) were synthesized in this study via the coordination-driven self-assembly of Zn ions and a carbazole-based ligand [...] Read more.
Nitroaromatic-explosives (NEs) not only threaten global security but are also recognized as a highly toxic pollutant. Metal–organic framework Zn-Ms (Zn-M1, Zn-M2) were synthesized in this study via the coordination-driven self-assembly of Zn ions and a carbazole-based ligand L containing an aldehyde group. They inherited the excellent fluorescence performance of ligand L and could work as a fluorescent sensor for detecting picric acid (PA) at low concentrations. Zn-Ms showed an emission at 450 nm and exhibited a higher fluorescence quenching efficiency toward PA than other related NEs. The results suggest that the fluorescent response might be attributed to the inner filter effect (IFE); Förster resonance energy transfer (FRET); and possibly, photo-induced electron transfer (PET). In addition, the critical role of the aldehyde group as a recognition site was corroborated using a post-modification strategy. Full article
Show Figures

Graphical abstract

16 pages, 2445 KiB  
Review
Aggregation-Caused Quenching Dyes as Potent Tools to Track the Integrity of Antitumor Nanocarriers: A Mini-Review
by Xiye Wang, Jiayue Huang, Mengqin Guo, Yiling Zhong and Zhengwei Huang
Pharmaceuticals 2025, 18(2), 176; https://doi.org/10.3390/ph18020176 - 27 Jan 2025
Cited by 2 | Viewed by 1050
Abstract
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after [...] Read more.
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after administration are not well understood, which may significantly impact their tumor-targeting abilities. In this paper, we propose the use of environmentally responsive fluorescent probes to track the integrity of antitumor nanocarriers. We compare three main types of dyes: fluorescence resonance energy transfer (FRET) dyes, aggregation-induced emission (AIE) dyes, and aggregation-caused quenching (ACQ) dyes. Among them, ACQ dyes, possessing sensitive water-quenching properties and easily detected “on–off” switching behavior, are regarded as the most promising choice. We believe that ACQ dyes are suitable for investigating the in vivo fate of antitumor nanocarriers and can aid in designing improved nanoformulations for chemotherapy agents. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

17 pages, 6065 KiB  
Article
AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media
by Qinglong Zhang, Jiangchao Xu, Qiang Xu and Chun Liu
Chemosensors 2025, 13(1), 10; https://doi.org/10.3390/chemosensors13010010 - 8 Jan 2025
Viewed by 951
Abstract
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent [...] Read more.
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent sensors for the detection of picric acid (PA) and Fe3+ in aqueous media. Ir1Ir3 possesses high efficiency and high selectivity for detecting PA and Fe3+, with the lowest limit of detection at 59 nM for PA and 390 nM for Fe3+. Additionally, the complexes can achieve naked-eye detection of Fe3+ in aqueous media. Ir1Ir3 exhibit excellent potential for practical applications in complicated environments. The detection mechanism for PA is attributed to photo-induced electron transfer (PET) and Förster resonance energy transfer (FRET), and the detection mechanism for Fe3+ may be explained by PET and the strong interactions between Fe3+ and the complexes. Full article
Show Figures

Graphical abstract

20 pages, 7845 KiB  
Article
Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion
by Rafael C. Castro, Ricardo N. M. J. Páscoa, M. Lúcia M. F. S. Saraiva, João L. M. Santos and David S. M. Ribeiro
Biosensors 2024, 14(12), 604; https://doi.org/10.3390/bios14120604 - 10 Dec 2024
Viewed by 991
Abstract
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy [...] Read more.
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment. Using a central composite orthogonal design (CCOD), the optimal conditions were identified as a 12.5 min microwave reaction time, a Ag molar ratio of 0.72, and a pH of 8.28. The FRET sensing scheme was applied for thiamine determination, where the vitamin’s presence impaired the FRET process, restoring CDs’ photoluminescence (PL) emission in a concentration-dependent manner. To mitigate interference from other vitamins, PL kinetic data and excitation–emission matrix (EEM) data were analyzed using unfolded partial least-squares (U-PLS) with the subsequent application of the residual bilinearization technique (RBL), achieving high sensitivity and specificity for thiamine detection. This method demonstrated its accuracy and robustness by attaining a determination coefficient (R2) of 0.952 and a relative error of prediction (REP%) of 11%. This novel method offers highly sensitive and interference-free thiamine detection, with significant potential for a wide range of analytical applications. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors for Detection)
Show Figures

Graphical abstract

8 pages, 448 KiB  
Article
Quantitative Analysis of the Effect of Fluorescent Labels on DNA Strand Displacement Reaction
by Masato Toyonari, Kaori Aso and Takashi Nakakuki
Micromachines 2024, 15(12), 1466; https://doi.org/10.3390/mi15121466 - 30 Nov 2024
Viewed by 1105
Abstract
DNA chemical reaction networks can perform complex information processing through careful design of reaction kinetics, which involves the reaction network structure, rate constants, and initial concentrations. The toehold-mediated strand displacement reaction (TMSDR) is a key mechanism in creating DNA circuits, offering a rational [...] Read more.
DNA chemical reaction networks can perform complex information processing through careful design of reaction kinetics, which involves the reaction network structure, rate constants, and initial concentrations. The toehold-mediated strand displacement reaction (TMSDR) is a key mechanism in creating DNA circuits, offering a rational design approach by integrating individually designed TMSDRs. Tools such as VisualDSD and NUPACK facilitate the efficient design of these systems by allowing precise tuning of reaction parameters. However, discrepancies between simulated and experimental results can occur, often due to the modification of reporter molecules. Recently, fluorophore dyes and quenchers were found to significantly impact the dynamics of irreversible TMSDRs, altering them by nearly two orders of magnitude. The impact on reaction dynamics varies with the modification site of these reporters. This study examines the mechanisms of reporter modifications affecting reversible TMSDRs, influencing transient and steady-state characteristics. This is crucial for DNA circuit design, which integrates reversible and irreversible TMSDRs. Our findings indicate that modifying fluorescent dye and quencher an appropriate distance apart (e.g., toehold length) can minimize adverse effects on the DNA reaction dynamics while ensuring effective FRET, therefore improving the accuracy of experimental verification for DNA reaction systems. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

8 pages, 3746 KiB  
Article
Fabrication and Characterization of Co-Sensitized Dye Solar Cells Using Energy Transfer from Spiropyran Derivatives to SQ2 Dye
by Michihiro Hara and Ryuhei Ejima
Molecules 2024, 29(20), 4896; https://doi.org/10.3390/molecules29204896 - 16 Oct 2024
Cited by 1 | Viewed by 1183
Abstract
We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6′-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO2 using both UV and visible light and observed the color changes in these photoelectrodes. Following [...] Read more.
We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6′-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO2 using both UV and visible light and observed the color changes in these photoelectrodes. Following UV irradiation, the transmittance at 540 nm decreased by 20%, while it increased by 15% after visible light irradiation. This indicates that SPNO2 on the DSSCs is photoisomerized from the spiropyran form (SP) to the photomerocyanine (PMC) form under UV light. The photoelectric conversion efficiency (η) of the DSSCs increased by 0.15% following 5 min of UV irradiation and decreased by 0.07% after 5 min of visible light irradiation. However, direct electron injection from PMC seems challenging, suggesting that the mechanism for improved photoelectric conversion in these DSSCs is likely due to Förster resonance energy transfer (FRET) from PMC to the SQ2 dye. The findings suggest that the co-sensitization of DSSCs by PMC-SQ2 and SQ2 alone, facilitated by their respective photoabsorption, results in externally responsive and co-sensitized solar cells. This study provides valuable insights into the development of advanced DSSCs with externally controllable photoelectric conversion properties via the strategic use of photochromic molecules and energy transfer mechanisms, advancing future solar energy applications. Full article
(This article belongs to the Special Issue Recent Advances in Dye-Sensitized and Perovskite Solar Cells)
Show Figures

Graphical abstract

15 pages, 3580 KiB  
Article
NIR-Sensitive Squaraine Dye—Peptide Conjugate for Trypsin Fluorogenic Detection
by Priyanka Balyan, Shekhar Gupta, Sai Kiran Mavileti, Shyam S. Pandey and Tamaki Kato
Biosensors 2024, 14(10), 458; https://doi.org/10.3390/bios14100458 - 25 Sep 2024
Cited by 3 | Viewed by 1595
Abstract
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing [...] Read more.
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye–peptide conjugate (SQ-3 PC) for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes SQ-1, SQ-2, and SQ-3 along with a dye–peptide conjugate SQ-3-PC as a trypsin-specific probe followed by their photophysical characterizations. The absorption spectral investigation conducted on both the dye alone and its corresponding dye–peptide conjugates in water, utilizing SQ-3 and SQ-3 PC respectively, reveals enhanced dye aggregation and pronounced fluorescence quenching compared to observations in DMSO solution. The absorption spectral investigation conducted on dye only and corresponding dye–peptide conjugates in water utilizing SQ-3 and SQ-3 PC, respectively, reveals not only the enhanced dye aggregation but also pronounced fluorescence quenching compared to that observed in the DMSO solution. The trypsin-specific probe SQ-3 PC demonstrated a fluorescence quenching efficiency of 61.8% in water attributed to the combined effect of aggregation-induced quenching (AIQ) and fluorescence resonance energy transfer (FRET). FRET was found to be dominant over AIQ. The trypsin-mediated hydrolysis of SQ-3 PC led to a rapid and efficient recovery of quenched fluorescence (5-fold increase in 30 min). Concentration-dependent changes in the fluorescence at the emission maximum of the dyes reveal that SQ-3 PC works as a trypsin enzyme-specific fluorescence biosensor with linearity up to 30 nM along with the limit of detection and limit of quantification of 1.07 nM and 3.25 nM, respectively. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology)
Show Figures

Figure 1

7 pages, 704 KiB  
Brief Report
Dual-Emission Fluorescence Resonance Energy Transfer (FRET) PCR Discriminates Salmonella Pullorum and Gallinarum
by Jiansen Gong, Nneka Vivian Iduu, Di Zhang, Kelly Chenoweth, Lanjing Wei, Yi Yang, Xinhong Dou and Chengming Wang
Microorganisms 2024, 12(9), 1815; https://doi.org/10.3390/microorganisms12091815 - 2 Sep 2024
Viewed by 1180
Abstract
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods [...] Read more.
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods for S. Pullorum and S. Gallinarum are based on distinct clinical manifestations and biochemical traits, given their indistinguishable nature via serological assays alone. Molecular differentiation methods such as allele-specific PCR and dual PCR combined with gel electrophoresis or enzyme digestion have also been used to discriminate S. Pullorum and S. Gallinarum, but the detection efficiency is not high. This investigation introduces a Fluorescence Resonance Energy Transfer (FRET) PCR assay targeting the pegB gene, exclusively found in specific Salmonella serovars such as S. Pullorum and S. Gallinarum, and exhibiting conserved single-nucleotide polymorphisms across these two biovars. High-resolution melting curve analysis demonstrates distinct dissolution profiles, facilitating the precise discrimination of S. Pullorum and S. Gallinarum. This FRET-PCR assay exhibits a detection limit of 10 copies per reaction and has been rigorously validated utilizing 17 reference strains and 39 clinical isolates. The innovation presented herein provides a valuable tool for the rapid differentiation of S. Pullorum and S. Gallinarum, thereby enhancing diagnostic efficiency and molecular surveillance of poultry Salmonella. The developed pegB-targeting FRET-PCR assay presents a promising alternative to current cumbersome and time-consuming diagnostic modalities, offering significant potential for expedited identification and control of Salmonella in poultry and mitigating economic losses associated with Salmonella contamination in poultry production. Full article
(This article belongs to the Special Issue Detection and Identification of Pathogenic Bacteria and Viruses)
Show Figures

Figure 1

4 pages, 1247 KiB  
Brief Report
Optimal Probe Design for Fluorescence Resonance Energy Transfer–PCR: Simultaneous Detection and Differentiation of Similar Targets
by Ke Huang, Jingxin Lin, Chengming Wang, Chunhua Yang and Yi Yang
Spectrosc. J. 2024, 2(3), 154-157; https://doi.org/10.3390/spectroscj2030010 - 13 Aug 2024
Viewed by 1132
Abstract
Fluorescence resonance energy transfer (FRET)-PCR is widely recognized for its high sensitivity and specificity in pathogen detection. However, there are some gaps in probe design when it is applied for simultaneous detection and differentiation of similar targets. This study aims to investigate the [...] Read more.
Fluorescence resonance energy transfer (FRET)-PCR is widely recognized for its high sensitivity and specificity in pathogen detection. However, there are some gaps in probe design when it is applied for simultaneous detection and differentiation of similar targets. This study aims to investigate the effects of the numbers and position of nucleotide mismatches (NM) in probe on PCR efficiency and melting temperature (Tm). The results indicated that NM at the center reduces amplification efficiency and Tm more significantly than NM at the 5′-terminal or 3′-terminal of the probe. Full article
Show Figures

Figure 1

22 pages, 6010 KiB  
Article
pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in “Smart” Polymeric Micelles for Selective Imaging of Cancer Cells
by Igor D. Zlotnikov, Alexander A. Ezhov and Elena V. Kudryashova
Pharmaceutics 2024, 16(8), 1007; https://doi.org/10.3390/pharmaceutics16081007 - 30 Jul 2024
Cited by 1 | Viewed by 1593
Abstract
Cancer cells are known to create an acidic microenvironment (the Warburg effect). At the same time, fluorescent dyes can be sensitive to pH, showing a sharp increase or decrease in fluorescence depending on pH. However, modern applications, such as confocal laser scanning microscopy [...] Read more.
Cancer cells are known to create an acidic microenvironment (the Warburg effect). At the same time, fluorescent dyes can be sensitive to pH, showing a sharp increase or decrease in fluorescence depending on pH. However, modern applications, such as confocal laser scanning microscopy (CLSM), set additional requirements for such fluorescent markers to be of practical use, namely, high quantum yield, low bleaching, minimal quenching in the cell environment, and minimal overlap with auto-fluorophores. R6G could be the perfect match for these requirements, but its fluorescence is not pH-dependent. We have attempted to develop an R6G conjugate with its FRET or PeT pair that would grant it pH sensitivity in the desired range (5.5–7.5) and enable the selective targeting of tumor cells, thus improving CLSM imaging. Covalent conjugation of R6G with NBD using a spermidine (spd) linker produced a pH-sensitive FRET effect but within the pH range of 7.0–9.0. Shifting this effect to the target pH range of 5.5–7.5 appeared possible by incorporating the R6G-spd-NBD conjugate within a “smart” polymeric micelle based on chitosan grafted with lipoic acid. In our previous studies, one could conclude that the polycationic properties of chitosan could make this pH shift possible. As a result, the micellar form of the NBD-spd-R6G fluorophore demonstrates a sharp ignition of fluorescence by 40%per1 pH unit in the pH range from 7.5 to 5. Additionally, “smart” polymeric micelles based on chitosan allow the label to selectively target tumor cells. Due to the pH sensitivity of the fluorophore NBD-spd-R6G and the selective targeting of cancer cells, the efficient visualization of A875 and K562 cells was achieved. CLSM imaging showed that the dye actively penetrates cancer cells (A875 and K562), while minimal accumulation and low fluorophore emission are observed in normal cells (HEK293T). It is noteworthy that by using “smart” polymeric micelles based on polyelectrolytes of different charges and structures, we create the possibility of regulating the pH dependence of the fluorescence in the desired interval, which means that these “smart” polymeric micelles can be applied to the visualization of a variety of cell types, organelles, and other structures. Full article
(This article belongs to the Special Issue Polymeric Micelles for Drug Delivery and Cancer Therapy)
Show Figures

Figure 1

Back to TopTop