Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (997)

Search Parameters:
Keywords = FESEM analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 82
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

25 pages, 15689 KiB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 (registering DOI) - 29 Jul 2025
Viewed by 225
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

16 pages, 9415 KiB  
Article
Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts
by Badriyah Alhalaili, Antony Joseph, Latifa Al-Hajji, Naser M. Ali, Sowmya Dean and Ahmad A. Al-Duweesh
Nanomaterials 2025, 15(15), 1169; https://doi.org/10.3390/nano15151169 - 29 Jul 2025
Viewed by 179
Abstract
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the [...] Read more.
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the growth mechanism of Ga2O3 was studied by different characterization techniques, including X-ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray analysis (EDX). The XRD results of the grown Ga2O3 on a sapphire substrate show three sharp diffraction peaks located at 19.31°, 38.70° and 59.38° corresponding to the 2¯01, 4¯02 and 6¯03 planes of β-Ga2O3. Field Emission Scanning Electron Microscope (FESEM) analysis showed the formation of longer and denser Ga2O3 nanowires at higher temperatures, especially in the presence of silver nanoparticles as catalysts. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Figure 1

13 pages, 4630 KiB  
Article
Electrospun Polymeric Composite Fibers Containing Te-Doped Bioactive Glass Powders
by Marta Miola, Elisa Piatti, Francesco Iorio, Aldo R. Boccaccini and Enrica Verné
Polymers 2025, 17(15), 2057; https://doi.org/10.3390/polym17152057 - 28 Jul 2025
Viewed by 192
Abstract
In this work, the electrospinning technique was used to prepare novel polymeric composite fibers containing Te-doped bioactive glass powders. Bioactive glass powders containing tellurium (STe5 glass) were chosen as fillers for the composites, owing to their bioactive, antibacterial, and antioxidant properties. The biopolymer [...] Read more.
In this work, the electrospinning technique was used to prepare novel polymeric composite fibers containing Te-doped bioactive glass powders. Bioactive glass powders containing tellurium (STe5 glass) were chosen as fillers for the composites, owing to their bioactive, antibacterial, and antioxidant properties. The biopolymer poly (ϵ-caprolactone) (PCL) and acetic acid (AA) were used as raw materials for the preparation of the polymeric matrix. FESEM analysis confirmed a good incorporation of the glass powders in the polymeric fibers, of up to 20% by weight. Wettability, mechanical, in vitro stability and preliminary antibacterial tests were also performed. The results showed that the treatment in AA did not affect the bioactivity of the glass powders, the presence of STe5 powders in PCL enhanced the wettability of the fibers, and mechanical properties improved by increasing the amount of STe5 powders, as well as the antibacterial effect. Therefore, the obtained materials appear promising for developing multifunctional composite materials for applications in tissue engineering. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 1425 KiB  
Article
Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare
by Daniela F. Maluf, Brenda A. Lopes, Mariana D. Miranda, Luana C. Teixeira, Ana P. Horacio, Amanda Jansen, Madeline S. Correa, Guilherme dos Anjos Camargo, Jessica Mendes Nadal, Jane Manfron, Patrícia M. Döll-Boscardin and Paulo Vitor Farago
Cosmetics 2025, 12(4), 159; https://doi.org/10.3390/cosmetics12040159 - 25 Jul 2025
Viewed by 310
Abstract
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was [...] Read more.
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was characterized by Ultra-High-Performance Liquid Chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and incorporated into PCL nanocapsules (NCBSO) using the preformed polymer deposition method. Physicochemical properties, stability (at 4 °C, room temperature, and 37 °C for 90 days), cytotoxicity, and collagen production were assessed in human fibroblasts. Additionally, a predictive in silico analysis using PASS Online, Molinspiration, and SEA platforms was performed to identify the bioactivities of major BSO compounds related to collagen synthesis, antioxidant potential, and anti-aging effects. Results: NCBSO showed a nanometric size of ~267 nm, low polydispersity (PDI < 0.2), negative zeta potential (−28 mV), and spherical morphology confirmed by FE-SEM. The dispersion remained stable across all tested temperatures, preserving pH and colloidal properties. In particular, BSO and NCBSO at 100 µg.mL−1 significantly enhanced in vitro collagen production by 170% and 200%, respectively, compared to untreated cells (p < 0.01). Superior bioactivity was observed for NCBSO. The in silico results support the role of key compounds in promoting collagen biosynthesis and protecting skin structure. No cytotoxic effects were achieved. Conclusions: The nanoencapsulation of BSO into PCL nanocapsules ensured formulation stability and potentiated collagen production. These findings support the potential of NCBSO as a promising candidate for future development as a collagen-boosting cosmeceutical. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Graphical abstract

11 pages, 6478 KiB  
Article
Observation of Blue Particles Formed by Photosensitizing Reaction on Paper Fibres of Cyanotypes
by Sawako Sentoku, Mari Kurashina and Keiko Kida
Photochem 2025, 5(3), 18; https://doi.org/10.3390/photochem5030018 - 23 Jul 2025
Viewed by 176
Abstract
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically [...] Read more.
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically with the application of water. The manner in which Prussian blue is fixed onto the paper substrate is important for determining the treatment method. This study is the first step toward clarifying this mechanism. The presence of Prussian blue in cyanotypes was first confirmed using X-ray diffraction analysis (XRD). Then, the location of Prussian blue in the fibre was confirmed using optical microscopy and micro-Raman spectroscopy analysis, by observing the blue colour and by detecting its cyanide bond. With field-emission scanning electron microscopy (FE-SEM), particles approximately 20–100 nm in size were observed on the surface of cyanotype paper fibres, and particles approximately 20–50 nm in size were observed from the cross-section of the paper fibres. The location where the particles were observed agreed with the location where the blue colour was observed and cyanide bond was detected. The fact that the sensitiser solution soaked into the paper fibres and formed Prussian blue within the paper fibres when exposed to light is thought to be important for the blue fixation of cyanotypes. Full article
Show Figures

Figure 1

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 239
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

15 pages, 1966 KiB  
Article
Lithium Adsorption Using Graphene Oxide: Modeling, Regeneration, and Mechanistic Insights
by Abdulrahman Abu-Nada, Ahmed Abdala, Gordon McKay and Shifa Zuhara
Materials 2025, 18(14), 3211; https://doi.org/10.3390/ma18143211 - 8 Jul 2025
Viewed by 292
Abstract
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional [...] Read more.
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional groups (C–O–C, C=O), which act as active adsorption sites. BET analysis revealed a surface area of 232 m2/g and a pore volume of 0.4 cm3/g, indicating its high porosity. Lithium adsorption was tested using synthetic Li-doped solutions under controlled conditions. Kinetics and equilibrium studies demonstrated that the process followed the pseudo-second-order model and the Redlich–Peterson isotherm, achieving an optimum lithium adsorption capacity of 179 mg/g. The adsorption efficiency was influenced by factors such as pH and salinity. Regeneration experiments showed that HNO3 was the most effective desorbing agent, enabling GO to be reused multiple times with a moderate loss of adsorption capacity. These findings highlight GO’s exceptional efficiency in lithium removal and its suitability for wastewater treatment applications. Its recyclability and reusability further support a circular economy, making GO a highly promising material for sustainable lithium recovery and broader environmental remediation efforts. Full article
(This article belongs to the Special Issue Development and Application of Novel Membranes (2nd Edition))
Show Figures

Graphical abstract

11 pages, 2217 KiB  
Article
One-Pot Improvement of Stretchable PEDOT/PSS Alginate Conductivity for Soft Sensing Biomedical Processes
by Somayeh Zanganeh, Alberto Ranier Escobar, Hung Cao and Peter Tseng
Processes 2025, 13(7), 2173; https://doi.org/10.3390/pr13072173 - 8 Jul 2025
Viewed by 356
Abstract
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically [...] Read more.
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically conductive hydrogel composites with high conductivity, low Young’s modulus, and remarkable stretchability. By incorporating conductive particles into hydrogels, such as poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT/PSS) researchers have enhanced their conductivity. This study presents a one-pot synthesis method for creating electrically conductive hydrogel composites by combining PEDOT/PSS with alginate. The hydrogel reveals changes in chemical composition upon treatment with dimethyl sulfoxide (DMSO). Additionally, surface morphology analysis via Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) demonstrate the impact of DMSO treatment on PEDOT/PSS/alginate films. Furthermore, electrical conductivity measurements highlighted the effectiveness of the conductive hydrogels in Electromyography (EMG) and human motion detection. This study offers insights into the fabrication and characterization of stretchable, conductive hydrogels, advancing their potential for various soft sensing biomedical applications. The optimized PDOT/PSS/alginate composite under dry condition shows a conductivity of 0.098 S/cm and can be stretched without significant loss in conductivity or mechanical stability. This one-pot method provides a simple and effective way to improve the properties of conductive hydrogel-based sensors. Full article
Show Figures

Figure 1

22 pages, 2464 KiB  
Article
Development and Characterization of LL37 Antimicrobial-Peptide-Loaded Chitosan Nanoparticles: An Antimicrobial Sustained Release System
by Fazilet Canatan Ergün, Meltem Demirel Kars and Gökhan Kars
Polymers 2025, 17(13), 1884; https://doi.org/10.3390/polym17131884 - 7 Jul 2025
Viewed by 506
Abstract
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded [...] Read more.
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded CSNPs, designed to enhance antibacterial efficacy while maintaining biocompatibility. This study pioneers a systematic loading optimization approach by evaluating the encapsulation efficiency (%EE) of antimicrobial peptide LL37 across multiple concentrations (7.5, 15, and 30 µg/mL), thereby identifying the formulation that maximizes peptide incorporation while preserving controlled release characteristics. The multi-concentration analysis establishes a new methodological benchmark for peptide delivery system development. To achieve this, CSNPs were optimized for size and stability by adjusting parameters such as the chitosan concentration, pH, and stabilizer. LL37, a potent antimicrobial peptide, was successfully encapsulated into CSNPs at concentrations of 7.5, 15, and 30 µg/mL, yielding formulations with favorable physicochemical properties. Dynamic light scattering (DLS) and Zeta sizer analyses revealed that blank CSNPs exhibited an average particle size of 180.40 ± 2.16 nm, a zeta potential (ZP) of +40.57 ± 1.82 mV, and a polydispersity index (PDI) of 0.289. In contrast, 15-LL37-CSNPs demonstrated an increased size of 210.9 ± 2.59 nm with an enhanced zeta potential of +51.21 ± 0.93 mV, indicating an improved stability and interaction potential. Field emission scanning electron microscopy (FE-SEM) analyses exhibited the round shaped morphology of nanoparticles. The release profile of LL37 exhibited a concentration-dependent rate and showed the best fit with the first-order kinetic model. Cytocompatibility assessments using the XTT assay confirmed that both blank and LL37-loaded CSNPs did not exhibit cytotoxicity on keratinocyte cells across a range of concentrations (150 µg/mL to 0.29 µg/mL). Notably, LL37-loaded CSNPs demonstrated significant antibacterial activity against E. coli and S. aureus, with the 15-LL37-CSNP formulation exhibiting superior efficacy. Overall, these findings highlight the potential of LL37-CSNPs as a versatile antibacterial delivery system with applications in drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Graphical abstract

12 pages, 3142 KiB  
Article
The Influence of Drying Time, Application Mode, and Agitation on the Dentin Bond Strength of a Novel Mesoporous Bioactive Glass-Containing Universal Dentin Adhesive
by Jiyoung Kwon, Jungwon Kim, Dongseok Choi and Duck-Su Kim
J. Funct. Biomater. 2025, 16(7), 247; https://doi.org/10.3390/jfb16070247 - 5 Jul 2025
Viewed by 533
Abstract
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 [...] Read more.
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 s dry), application mode (total-etch or self-etch), and agitation (with or without). The μTBS test and failure mode analysis were performed for each experimental group (n = 20), and an adhesive interface was observed using field-emission scanning electron microscopy. The μTBS of all experimental groups was analyzed using a three-way ANOVA and Tukey’s honestly significant difference (HSD) post hoc test (α = 0.05). The total-etch mode yielded higher μTBS than the self-etch mode in the blot-dry and 10 s dry groups (p < 0.05). Agitation also significantly increased the μTBS in the blot-dry and 10 s dry groups for both application modes (p < 0.05). However, application mode and agitation had no effect on the μTBS in the 20 s dry group (p > 0.05). FE-SEM revealed longer and more uniform resin tags after agitation in the blot-dry and 10 s dry groups for both application modes. In conclusion, total-etch mode and agitation effectively increased the bond strength of mesoporous bioactive glass-containing universal adhesives. Full article
(This article belongs to the Special Issue Recent Advancements in Dental Restorative Materials)
Show Figures

Figure 1

29 pages, 9532 KiB  
Article
Heterogeneity of the Triassic Lacustrine Yanchang Shale in the Ordos Basin, China, and Its Implications for Hydrocarbon Primary Migration
by Yuhong Lei, Likuan Zhang, Xiangzeng Wang, Naigui Liu, Ming Cheng, Zhenjia Cai and Jintao Yin
Appl. Sci. 2025, 15(13), 7392; https://doi.org/10.3390/app15137392 - 1 Jul 2025
Viewed by 235
Abstract
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, [...] Read more.
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, geochemistry, and pore systems of organic-rich mudstones and organic-lean sand-silt intervals in core samples from the Yanchang shale in the Ordos Basin, China, we conducted thin-section observation, X-ray diffraction, Rock-Eval pyrolysis, field emission scanning electron microscopy (FE-SEM), and porosity analysis. Sand-silt intervals are heterogeneously developed within the Yanchang shale. The petrology, mineral composition, geochemistry, type, and content of solid organic matter as well as the pore type, pore size, and porosity of these intervals differ significantly from those of mudstones. Compared with mudstones, sand-silt intervals typically have coarser detrital grain sizes, higher contents of quartz, feldspar, and migrated solid bitumen (MSB), larger pore sizes, higher porosity, and higher oil saturation index (OSI). In contrast, they have lower contents of clay minerals, total organic carbon (TOC), free liquid hydrocarbons (S1), and total residual hydrocarbons (S2). The sand-silt intervals in the Yanchang shale serve as both pathways for hydrocarbon primary migration and “micro reservoirs” for hydrocarbon storage. The interconnected inorganic and organic pore systems, organic matter networks, fractures, and sand-silt intervals form the hydrocarbons’ primary migration pathways within the Yanchang shale. A model for the primary migration of hydrocarbons within the Yanchang shale is proposed. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 2896 KiB  
Article
Annealing-Driven Modifications in ZnO Nanorod Thin Films and Their Impact on NO2 Sensing Performance
by Sandip M. Nikam, Tanaji S. Patil, Nilam A. Nimbalkar, Raviraj S. Kamble, Vandana R. Patil, Uttam E. Mote, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Ravindra D. Mane
Micromachines 2025, 16(7), 778; https://doi.org/10.3390/mi16070778 - 30 Jun 2025
Viewed by 311
Abstract
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at [...] Read more.
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at 300, 400, and 500 °C. Diffraction analysis confirmed that both non-annealed and annealed ZnO nanorods crystallize in a hexagonal wurtzite structure. However, increasing the annealing temperature shifts the growth orientation from the c-axis (002) toward the (100) and (101) directions. Microscopy images (FE-SEM) revealed a reduction in nanorod diameter as the annealing temperature increases. Optical characterization using UV–visible and photoluminescence spectroscopy indicated shifts in the band gap energy and emission properties. Contact angle measurements demonstrated the hydrophobic nature of the films. Gas sensing tests at 200 °C revealed that the ZnO thin film annealed at 400 °C achieved the highest NO2 response of 5.88%. The study highlights the critical role of annealing in modifying the crystallinity, growth orientation, and defect states of ZnO thin films, ultimately enhancing their NO2 detection capability. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for High-Performance Gas Sensors)
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 398
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 353
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop