Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Euro 7 regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 273
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

19 pages, 9232 KiB  
Article
Peculiarities of Assessing Body Strength When Converting a Bus from Diesel to Electric Traction Following the UNECE R100 Regulation
by Kostyantyn Holenko, Oleksandr Dykha, Eugeniusz Koda, Ivan Kernytskyy, Orest Horbay, Yuriy Royko, Ruslan Humeniuk, Yaroslav Sholudko, Vasyl Rys, Serhii Berezovetskyi, Tomasz Wierzbicki and Anna Markiewicz
Appl. Sci. 2025, 15(14), 8115; https://doi.org/10.3390/app15148115 - 21 Jul 2025
Viewed by 229
Abstract
The problem of the conversion of diesel buses to electric ones in connection with the inevitable introduction of the EURO 7 emission standards entails an automatic requirement to follow several additional United Nations Economic Commission for Europe rules, like R100 regulations. They regulate [...] Read more.
The problem of the conversion of diesel buses to electric ones in connection with the inevitable introduction of the EURO 7 emission standards entails an automatic requirement to follow several additional United Nations Economic Commission for Europe rules, like R100 regulations. They regulate the preservation of battery units at longitudinal 12 g and transverse 10 g accelerations without penetrating into the elements of the bus body. Three models (12 modes in total) of battery units with frames made of S235 steel were analysed. The maximum stress value varies between 364.89 MPa and 439.08 MPa in 10 g and 12 g modes, respectively, which is beyond the tensile strength (360 MPa) and provokes plastic deformations. The max deformations were recorded in the models with the highest average stress: 63.04 mm in the 12 g mode with an average stress of 83.18 MPa. The minimum deformations of 6.95 and 7.95 mm were found in the 10 g modes (left and right acceleration direction, respectively), which meet the manufacturer’s requirements (45–50 mm maximum). The study’s primary contribution lies in developing a practical method for assessing battery unit integrity and structural behaviour during the conversion of diesel buses to electric propulsion, fully compliant with R100 regulations. By combining transient structural simulation, mathematical centre modelling of acceleration propagation, and centre of gravity prediction, the proposed approach enables engineers to evaluate electric conversions’ safety and certification feasibility without modifying the existing bus body. Full article
Show Figures

Figure 1

23 pages, 1554 KiB  
Article
Identification of the Parameters of the Szpica–Warakomski Method’s Rectilinear Trend Complementary to the Gaussian Characteristic Area Method in the Functional Evaluation of Gas Injectors
by Dariusz Szpica, Jacek Hunicz, Andrzej Borawski, Grzegorz Mieczkowski, Paweł Woś and Bragadeshwaran Ashok
Sensors 2025, 25(13), 4020; https://doi.org/10.3390/s25134020 - 27 Jun 2025
Viewed by 287
Abstract
The Fit for 55 and Euro 7 regulations significantly reduce CO2 emissions from combustion sources. This will be reflected in the regulations governing the approval of in-service vehicles, including those using alternative fuels. The present study focused on the rapid diagnostics of [...] Read more.
The Fit for 55 and Euro 7 regulations significantly reduce CO2 emissions from combustion sources. This will be reflected in the regulations governing the approval of in-service vehicles, including those using alternative fuels. The present study focused on the rapid diagnostics of the technical condition of gas injectors. The test method was a modification of the Gaussian characteristic fields method using the Szpica–Warakomski rectilinear trend. The flow tests resulted in average volumetric intensities of 111 NL/min and 124 NL/min, depending on the operating conditions. The opening and closing times were in the range of (1.3…3.5) ms. The directional parameter of the rectilinear trend, which is important from the point of view of the analyses, was 0.97 for brand new (BN) injectors and 1.00 for in-service (IO) injectors. The intersection parameters were 0.64 and 0.24, respectively. The qualitative evaluation yielded coefficients of determination of 95.01 and 94.07. The values of the trend parameters were strongly dependent on the design solution and model/type of injector. Inferring the effect of operating condition on the trend parameter values, a one-factor analysis of variance was performed, which showed the significance of only the directional coefficient. A comparison of the same BN and IO injector model showed an apparent change in the value of the intercept only. No significant relationships between the injector opening and closing times and the trend parameters were shown. Thus, the usefulness of using the Szpica–Warakomski rectilinear trend in the functional evaluation of gas injectors of different designs and under different operating conditions was demonstrated. Full article
(This article belongs to the Special Issue Sensors for Predictive Maintenance of Machines)
Show Figures

Graphical abstract

23 pages, 9227 KiB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 728
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

19 pages, 3341 KiB  
Article
Investigating the Effect of Lubricating Oil Volatility and Ash Content on the Emission of Sub-23 nm Particles
by Salvatore Lagana, Sebastian A. Pfau, Ephraim Haffner-Staton, Antonino La Rocca and Alasdair Cairns
Appl. Sci. 2025, 15(4), 2212; https://doi.org/10.3390/app15042212 - 19 Feb 2025
Cited by 1 | Viewed by 779
Abstract
As the world transitions to decarbonized fuels, understanding the impact of engine oil on emissions remains crucial. Lubricant-derived particulate emissions can influence air quality and regulatory compliance in future transport. Researchers have predominantly focused on transient driving cycles to replicate real-world conditions and [...] Read more.
As the world transitions to decarbonized fuels, understanding the impact of engine oil on emissions remains crucial. Lubricant-derived particulate emissions can influence air quality and regulatory compliance in future transport. Researchers have predominantly focused on transient driving cycles to replicate real-world conditions and capture the full range of particle size. This emphasis has led to a lack of comprehensive data on oil-related particulate emissions during steady-state operations, particularly for particles smaller than 23 nm. This paper addresses this gap as upcoming regulations, such as Euro 7, are expected to impose stricter limits by extending measurement thresholds down to 10 nm. The investigation was conducted on a 1.0 L gasoline direct injection engine, assessing total particulate number (TPN) emissions using three oil formulations: a baseline oil with mid-ash content and mid-volatility, a low-ash and low-volatility oil (LoLo), and a high-ash and high-volatility oil (HiHi). A DMS500, with and without a catalytic stripper, measured particle size distribution and TPN. Two digital filters were applied to obtain particle number (PN) metrics comparable to condensation particle counters: “F1-PN > 23” with d50 = 23 nm and “F3-PN > 10” with d50 = 10 nm. Sub-23 nm particles dominated emissions, with baseline oil generally producing higher PN emissions except at low loads. Using F1-PN > 23, HiHi exhibited higher PN counts across moderate to high speeds, while F3-PN > 10 revealed lower PN emissions for HiHi at specific conditions, excluding 2250 rpm-fast idle. By a weighted arithmetic mean, HiHi’s emissions were 9.7% higher than LoLo with F1-PN > 23 and 3.6% higher with F3-PN > 10. Oil formulation did not influence nucleation mode diameter. A three-way ANOVA demonstrated that load and speed were the predominant factors affecting emissions over the entire testing map; albeit at specific operating conditions the effect of the oil is evident. This suggests that under steady-state conditions, carbon-based fuel still plays a key role in particle formation. Future work will investigate decarbonised fuels to further isolate the effect of oil on emissions. Full article
(This article belongs to the Special Issue Novel Advances of Combustion and Its Emissions)
Show Figures

Figure 1

17 pages, 3430 KiB  
Article
Chemical Assessment of Real Driving Tire and Road Wear Particles in Urban and Suburban Seoul, Korea
by Sunhee Mun, Hwansoo Chong, Yunsung Lim and Sangil Kwon
Sustainability 2024, 16(23), 10395; https://doi.org/10.3390/su162310395 - 27 Nov 2024
Cited by 1 | Viewed by 1394
Abstract
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. [...] Read more.
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. The regulations on emissions have been discussed in earnest, starting with the introduction of brake wear particle emission standards in Euro 7. Various indoor and outdoor experiments have been conducted, such as analysis of the amount of wear on tires and brakes, and analysis of the physical and chemical properties of fine particles, and the effect of non-exhaust fine wear particles on the atmosphere and human health, as fundamental data for the introduction of emission standards and the development of low-wear tires and brakes to meet regulations. Recently, international standardized indoor experimental methods for brakes have been announced, and indoor and outdoor experimental methods for tires have been continuously studied to develop international standardized methods. In particular, tire and road wear particles, including brake wear particles, are usually mixed with each other in the non-exhaust particles from a vehicle driving on real roads, and in-depth research is being performed on their accurate classification and characteristic analysis. In this study, the characteristics of the volatile organic compounds and marker substances for tire and tire and road wear particles were analyzed. A system was installed on the vehicle to collect non-exhaust wear fine particles from the vehicle running on two different roads, urban and suburban, of the Seoul area, and the proving ground road. The specific findings are as follows: (1) From the chemical analysis of the volatile organic compounds, high n-hexane and n-dodecane were measured in the tire–road-wear particles. (2) The volatile organic compound species in the PM2.5 (aerodynamic diameter ≤ 2.5 µm) increased as the vehicle velocity increased. (3) For the PM10 (aerodynamic diameter ≤ 10 µm), high volatile organic compound species were recorded at 40 km/h of the vehicle velocity. (4) This study also revealed that higher vinylcyclohexene and dipentene were measured in the particle size below 10 μm than those in PM2.5. Full article
Show Figures

Figure 1

21 pages, 20484 KiB  
Article
Structure and Strength Optimization of the Bogdan ERCV27 Electric Garbage Truck Spatial Frame Under Static Loading
by Kostyantyn Holenko, Oleksandr Dykha, Eugeniusz Koda, Ivan Kernytskyy, Orest Horbay, Yuriy Royko, Yevhen Fornalchyk, Oksana Berezovetska, Vasyl Rys, Ruslan Humenuyk, Serhii Berezovetskyi, Mariusz Żółtowski, Adam Baryłka, Anna Markiewicz, Tomasz Wierzbicki and Hydayatullah Bayat
Appl. Sci. 2024, 14(23), 11012; https://doi.org/10.3390/app142311012 - 27 Nov 2024
Cited by 2 | Viewed by 1199
Abstract
Taking into account the requirements to reduce the release of harmful emissions into the environment, the EU’s environmental standards when transitioning to the Euro 7 standard in 2025 will actually lead vehicles having to operate without producing emissions in all driving situations. Carmakers [...] Read more.
Taking into account the requirements to reduce the release of harmful emissions into the environment, the EU’s environmental standards when transitioning to the Euro 7 standard in 2025 will actually lead vehicles having to operate without producing emissions in all driving situations. Carmakers believe that the new, much stricter regulations will mark the end of the internal combustion engine era. For example, in 2030, the manufacturer SEAT will cease its activities, leaving behind the Cupra brand, which will be exclusively electric in the future. This trend will apply not only to private vehicles (passenger cars), but also to utility vehicles, which is the subject of our research, namely the spatial tubular frame in the Bogdan ERCV27 garbage truck, presented in the form of a solid model. The peculiarity of the studied model is the installation of a battery block behind the driver’s cabin, causing an additional load to be placed on the spatial frame of the garbage truck, which in terms of its architecture is more like the body of a bus. During the conditions involving various modes of operation of a full-scale Bogdan ERCV27 garbage truck sample, questions about the strength and uniformity of its load-bearing spatial frame inevitably arise, which are decisive, even at the stage of designing and preparing the technical documentation. The main static load mode, which, despite its name, also covers dynamic conditions, was modeled using the appropriate coefficient kd = 2.0. The maximum stresses on the model during the “bending” mode were 381.13 MPa before structure optimization and 270.5 MPa as a result of the improvement measures. The spatial frame mass was reduced by 4.13%. During the “torsion” mode, the maximum deformation values were 12.1–14.5 mm, which guarantees the normal operation of the aggregates and units of the truck. Full article
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Alternative Analyzers for the Measurement of Gaseous Compounds During Type-Approval of Heavy-Duty Vehicles
by Ricardo Suarez-Bertoa, Roberto Gioria, Christian Ferrarese, Lorenzo Finocchiaro and Barouch Giechaskiel
Energies 2024, 17(22), 5676; https://doi.org/10.3390/en17225676 - 13 Nov 2024
Viewed by 1189
Abstract
Emissions standards describe the fuels, the procedures, and, among others, the analyzers to be used for the measurement of the different compounds during the type-approval of heavy-duty engines and vehicles. Traditionally, NOx, CO, hydrocarbons, and CO2 were the gaseous compounds measured within [...] Read more.
Emissions standards describe the fuels, the procedures, and, among others, the analyzers to be used for the measurement of the different compounds during the type-approval of heavy-duty engines and vehicles. Traditionally, NOx, CO, hydrocarbons, and CO2 were the gaseous compounds measured within the Euro standard, with the later addition of CH4 and NH3. Euro 7, introduced in early 2024, expanded those compounds, requiring the measurement of N2O and HCHO. With an increasing number of molecules that need to be measured and introducing carbonless fuels, such as hydrogen, that present different requirements compared to carbon-based fuels, the test procedure needs to be updated. The performances of three laboratory-grade instruments and three portable emissions measurement systems based on Fourier-transformed infrared (FTIR) or quantum cascade laser infrared (QCL-IR) technologies were investigated while measuring from the tailpipe of a Diesel engine and a compressed natural gas (CNG) vehicle. All instruments presented good agreement when emissions of NOx, CO, CH4, NH3, N2O, HCHO, and CO2 were compared using: Z-score, F-test and two tail t-test of student. Water concentration measured by the four FTIRs was also in good agreement. Moreover, the dry emissions of CO2 and CO measured by the laboratory non-dispersive infrared (NDIR) and corrected using water were a few percentages different from those obtained using the regulated carbon-based approach. The results indicate that all the investigated systems are suitable for the measurement of the investigated gaseous compounds, including CO2 and H2O. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 8375 KiB  
Article
Tyre Wear under Urban, Rural, and Motorway Driving Conditions at Two Locations in Spain and China
by Barouch Giechaskiel, Theodoros Grigoratos, Liang Li, Sheng Zang, Bo Lu, David Lopez and Juan J. García
Lubricants 2024, 12(10), 338; https://doi.org/10.3390/lubricants12100338 - 30 Sep 2024
Cited by 2 | Viewed by 2193
Abstract
The recently introduced Euro 7 emissions standard regulation foresees the addition of abrasion limits for tyres sold in the European Union. The measurement procedures for tyre abrasion are described in the newly introduced Annex 10 of the United Nations (UN) Regulation 117. However, [...] Read more.
The recently introduced Euro 7 emissions standard regulation foresees the addition of abrasion limits for tyres sold in the European Union. The measurement procedures for tyre abrasion are described in the newly introduced Annex 10 of the United Nations (UN) Regulation 117. However, the limits are not yet defined as there is no data available regarding the new procedure. For this reason, a market assessment campaign is ongoing under the auspices of the UN Task Force on Tyre Abrasion (TFTA). Recent reviews on the topic also concluded that there is a lack of studies measuring the abrasion rates of tyres. In this study, we measured the abrasion rate of one tyre model at two different locations (Spain and China) with the aim of deep diving into possible influencing factors. Additionally, wear rates were studied separately for urban, rural, and motorway routes to get more insight into the impact of the route characteristics. The abrasion rates varied from 22 mg/km to 123 mg/km per vehicle, depending on the route (urban, rural, motorway) and ambient temperature. The overall average trip abrasion rates were 75 mg/km and 45 mg/km per vehicle at the two locations, respectively. However, when corrected for the different ambient temperatures, the rates were 63 mg/km and 60 mg/km per vehicle, respectively. The impacts of other parameters, such as driving dynamics and road surface, on the final results are also discussed. The average tread depth reduction was estimated to be 0.8–1.4 mm every 10,000 km. Full article
(This article belongs to the Special Issue Emission and Transport of Wear Particles)
Show Figures

Figure 1

16 pages, 3419 KiB  
Article
Calibrations, Validations, and Checks of a Dual 23 nm and 10 nm Diffusion Charger-Based Portable Emissions Measurement System (PEMS)
by Anastasios Melas, Maria Trikka, Sara Valentini, Giulio Cotogno and Barouch Giechaskiel
Nanomaterials 2024, 14(15), 1258; https://doi.org/10.3390/nano14151258 - 27 Jul 2024
Cited by 4 | Viewed by 1593
Abstract
The upcoming Euro 7 vehicle exhaust emissions regulation includes particle number (PN) limits for all vehicles, not only those with direct fuel injection. It also sets the lower detection particle size of the PN methodology to 10 nm from 23 nm. Recently, a [...] Read more.
The upcoming Euro 7 vehicle exhaust emissions regulation includes particle number (PN) limits for all vehicles, not only those with direct fuel injection. It also sets the lower detection particle size of the PN methodology to 10 nm from 23 nm. Recently, a commercial diffusion charger-based PEMS added the possibility of switching the lower size between 23 nm and 10 nm. In this study, we assessed the dual PEMS in the calibration laboratory using diffusion flame soot or spark discharge graphite particles following the regulated procedures. Furthermore, we compared the dual PEMS with a laboratory grade system (LABS) using soot, graphite, and vehicle exhaust particles. To put the results into perspective, we added comparisons (validations) of two additional 23 nm PEMSs with LABSs over a three-year period. The results showed that the differences of the 23 nm PEMSs remained the same (around 35% underestimation) over the years and were similar to the dual PEMS. This difference is still well within the permissible tolerance from the regulation (50%). We argued that the reason is the calibration material used by the manufacturer (spark discharge graphite). We demonstrated that calibrating with combustion soot could reduce the differences. The 10 nm PEMS gave similar results but with much smaller differences, indicating that the calibration material is of less importance for the Euro 7 step. The results showed that the measurement uncertainty has not increased but rather decreased for the specific PEMS switching from 23 nm to 10 nm. Full article
Show Figures

Figure 1

19 pages, 2949 KiB  
Article
Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe
by Barouch Giechaskiel, Victor Valverde, Anastasios Melas, Michaël Clairotte, Pierre Bonnel and Panagiota Dilara
Energies 2024, 17(6), 1308; https://doi.org/10.3390/en17061308 - 8 Mar 2024
Cited by 3 | Viewed by 1608
Abstract
On-road real-driving emissions (RDE) tests with portable emissions measurement systems (PEMS) are part of the vehicle emissions regulations in the European Union (EU). For a given vehicle, the final emission results depend on the influence of the ambient conditions and the trip characteristics [...] Read more.
On-road real-driving emissions (RDE) tests with portable emissions measurement systems (PEMS) are part of the vehicle emissions regulations in the European Union (EU). For a given vehicle, the final emission results depend on the influence of the ambient conditions and the trip characteristics (including the driver’s behaviour) on the vehicle performance and the instrument measurement uncertainty. However, there are not many studies that have examined the emissions variability of a single vehicle following different routes. In this study, a 1.2 L gasoline direct injection (GDI) Euro 5b passenger car without a particulate filter and a PEMS was circulated in seven European laboratories. At their premises, the laboratories performed two to five repetitions of on-road trips compliant with the EU RDE regulation. The ambient temperature ranged between 7 °C and 23 °C. The average emission levels of the vehicle were 135 g/km for CO2, 77 mg/km for CO, 55 mg/km for NOx, and 9.2 × 1011 #/km for particle number. The coefficient of variance in the emissions following the same route was 2.9% for CO2, 23.8% for CO, 23.0% for NOx, and 5.8% for particle number. The coefficient of variance in the emissions following different routes in Europe was 6.9% for CO2, 9.1% for CO, 0.0% for NOx, and 9.1% for particle number. The previous values include the specific vehicle emissions variability under the narrow test conditions of this study, but only partly the PEMS measurement uncertainty because the same instrument was used in all the trips. The results of this study can be used by laboratories conducting RDE tests to assess their uncertainty budget when testing or comparing vehicles of similar technology. Full article
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Solid Particle Number (SPN) Portable Emission Measurement Systems (PEMS) for Heavy-Duty Applications
by Barouch Giechaskiel, Anastasios Melas, Stijn Broekaert, Roberto Gioria and Ricardo Suarez-Bertoa
Appl. Sci. 2024, 14(2), 654; https://doi.org/10.3390/app14020654 - 12 Jan 2024
Cited by 2 | Viewed by 1871
Abstract
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS [...] Read more.
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS started in 2021 for compression ignition (diesel) vehicles and in 2023 for positive ignition vehicles, thus including those operating with compressed natural gas (CNG). Even though today only particles with sizes > 23 nm are regulated, the Euro 7 proposal includes particles > 10 nm. There are not many studies on the accuracy of the SPN PEMS, especially for heavy-duty applications. In this study, PEMS measuring > 23 and >10 nm from two instrument manufacturers were compared with laboratory-grade instruments. The particle detector of one PEMS was a condensation particle counter (CPC), and of the other a the diffusion charger (DC). The results showed the robustness and good accuracy (40% or 1 × 1011 #/kWh) of the PEMS for ambient temperatures from −7 °C to 35 °C, active regeneration events, different fuels (Diesel B7, HVO, and CNG), different test cycles, cold start or hot engine operations, and high exhaust gas humidity content. Nevertheless, for the DC-based PEMS, sensitivity to pre-charged urea particles was identified, and for the CPC-based PEMS, sensitivity to pressure changes with one vehicle was nnoticed. Nevertheless, the results of this study confirm that the PEMS are accurate enough to measure even the stricter Euro 7 limits. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Dispersion and Environmental Behavior)
Show Figures

Figure 1

20 pages, 2019 KiB  
Review
Light-Duty Vehicle Brake Emission Factors
by Barouch Giechaskiel, Theodoros Grigoratos, Panagiota Dilara, Traianos Karageorgiou, Leonidas Ntziachristos and Zissis Samaras
Atmosphere 2024, 15(1), 97; https://doi.org/10.3390/atmos15010097 - 11 Jan 2024
Cited by 19 | Viewed by 5998
Abstract
Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been proposed [...] Read more.
Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been proposed by the European Union for the upcoming Euro 7 step. For these reasons, interest in brake emissions has increased in the past few years. Realistic emission factors are necessary to accurately calculate the contribution of brake emissions to air pollution but also to estimate the emissions reduction potential of new or existing technologies and improved brake formulations. This paper reviews emission factors from light-duty vehicles reported in the literature, with a focus on those that followed the recently introduced Global Technical Regulation (GTR 24) methodology on brakes in light-duty vehicles. Reduction efficiencies of non-asbestos organic (NAO) pads, brake dust filters, ceramic discs, coated discs, and regenerative braking are also discussed. Finally, the emission factors are compared with roadside measurements of brake emissions and emission inventories worldwide. The findings of this study can be used as an input in emission inventories to estimate the contribution of brakes to air pollution. Full article
Show Figures

Figure 1

31 pages, 2008 KiB  
Review
Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution
by Barouch Giechaskiel, Theodoros Grigoratos, Marcel Mathissen, Joris Quik, Peter Tromp, Mats Gustafsson, Vicente Franco and Panagiota Dilara
Sustainability 2024, 16(2), 522; https://doi.org/10.3390/su16020522 - 7 Jan 2024
Cited by 48 | Viewed by 18443
Abstract
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is [...] Read more.
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is released into the aquatic environment, and a small percentage becomes airborne. Nevertheless, tyre abrasion contributes to 5–30% of road transport particulate matter (PM) emissions. This corresponds to approximately 5% of total ambient PM emissions. The particle mass size distribution peak at around 20 to 100 μm, with a second peak in the 2–10 μm range. A nucleation mode has been reported in some studies. The absolute abrasion levels depend on the tyre, vehicle, and road characteristics, but also on environmental conditions and driving style. Most tyre particle emission factors in the literature are based on data prior to the year 2000. We aggregated recent studies and found a mean abrasion of 110 mg/km per vehicle or 68 mg/km/t for passenger cars (based on approximately 300 measurements). Based on a limited number of studies, the PM10 emissions were 1.4–2.2 mg/km per tyre. On the other hand, the particle number emissions were in the order of 1010 #/km per tyre. The ratio of PM10 to total abrasion was found to be 2.5% on average. Finally, the ratio of PM2.5 to PM10 was calculated to be around 40%. Various mitigation measures for tyre particle pollution could be envisaged; the most direct is the limitation of the tyre abrasion rate, as proposed by the European Commission for the Euro 7 regulation. Other regulatory initiatives are also discussed. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

14 pages, 2197 KiB  
Article
Voltage-Based Braking Controls for Electric Vehicles Considering Weather Condition and Road Slope
by Jonghoek Kim
Appl. Sci. 2023, 13(24), 13311; https://doi.org/10.3390/app132413311 - 16 Dec 2023
Viewed by 1621
Abstract
This article addresses the braking controls for an electric vehicle with DC motors such that the voltage in the motors is used for controlling the wheel angular velocity. Other papers on the anti-lock braking system (ABS) handled how to derive the braking torque [...] Read more.
This article addresses the braking controls for an electric vehicle with DC motors such that the voltage in the motors is used for controlling the wheel angular velocity. Other papers on the anti-lock braking system (ABS) handled how to derive the braking torque (or braking pressure) for controlling the wheel angular velocity. However, heavy or prolonged braking can cause brake fade or wear. According to EURO 7 regulations, brake fade or wear is not desirable, since the regulations refer to the reduction in particles emitted from brake pads. For avoiding heavy or prolonged braking, this paper does not use a brake unit, such as electro-mechanical brake units or hydraulic brake units, for vehicle stop. Instead, the motor voltage is used for controlling the wheel angular velocity. While a vehicle moves, the goal of this paper is to provide automatic braking controls in real time, so that the vehicle stops safely and smoothly without slippage before colliding with an obstacle. In practice, road conditions can change depending on weather conditions, such as rain or snow. Moreover, road slope can have an effect on the braking distance for the vehicle. Thus, this article introduces automatic braking controls, while considering both road slope and road conditions. This article is unique in presenting automatic braking controls for the smooth stop of electric vehicles with DC motors, while considering both road slope and road conditions. In addition, this article is unique in controlling the motor voltage for controlling the wheel angular velocity, while not requiring any brake units. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop