Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = Eisenia fetida

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 - 1 Aug 2025
Viewed by 145
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 324
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

16 pages, 747 KiB  
Article
Thermoset Polyester Resin Microplastics: Effects on Enzymatic Biomarkers and Toxicological Endpoint Responses of Eisenia fetida Earthworms
by David Amaya-Vías, Gemma Albendín, Vanessa Aranda-Quirós, Rocío Rodríguez-Barroso, Dolores Coello and Juana María Arellano
Toxics 2025, 13(7), 602; https://doi.org/10.3390/toxics13070602 - 17 Jul 2025
Viewed by 400
Abstract
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the [...] Read more.
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the potential effects of two thermoset polyester resin-derived microplastics (R930A-SP and R930A-DVE1) on the survival, behavior, morphological changes and subcellular damage of earthworms Eisenia fetida. The proposed experimental conditions simulated environmentally relevant concentrations, taking as a reference other related microplastics present in the environment. Thus, E. fetida specimens were exposed to five concentrations (100, 500, 1000, 1500 and 2000 mg resin per kg soil) of these two resins for 14 days. At concentrations and exposure times studied, no significant effects on growth, measured as weight loss, or on the enzyme biomarkers (cholinesterase, carboxylesterase and glutathione S-transferase) were observed. Similarly, no behavioral changes were detected in earthworms, and the survival rate was 100%. Likewise, no differences were observed between the different formulations of the polyester resins studied. However, this study could serve as a starting point for further studies with higher concentrations and/or exposure times, as well as in combination with other pollutants. Full article
(This article belongs to the Special Issue Ecotoxicological Effects of Microplastics on the Soil Environment)
Show Figures

Graphical abstract

22 pages, 4798 KiB  
Article
Earthworm (Eisenia fetida) Mediated Macropore Network Formation in Black Soil: Decay Straw as a Trigger for Sustainable Tillage
by Baoguang Wu, Pu Chen, Yuping Liu, Zhipeng Yin, Qiuju Wang, Shun Xu, Jinsong Zhang, Bingqi Bai, Deyi Zhou and Yuxin Liu
Agriculture 2025, 15(13), 1397; https://doi.org/10.3390/agriculture15131397 - 29 Jun 2025
Viewed by 363
Abstract
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis [...] Read more.
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis, on macropore formation were systematically studied. A 3D visualization technique was used to render the pore network model. When compared with undisturbed soil, the results demonstrate that cultivation using earthworms attracted by food sources from decomposing straw creates a soil pore structure with the most significant effect. The 3D porosity of the soil increased 6.90-fold, its average pore volume increased 5.49-fold, and its equivalent diameter increased 4.88-fold. Cylindrical pores, which accounted for the largest proportion (4.38%), had a channel radius of 1–5 mm and comprised approximately 86.7% of all macropores. The channel length increased by 28.5%, the average roundness decreased by 2.5%, and the average coordination number increased by 33.3%. The macroporous network structure formed by these earthworm-generated pores was more beneficial for improving the structure of phaeozem, offering technical support for the field application of earthworm farming. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 1472 KiB  
Article
Valorization of Underused Biomass of Acacia dealbata and Acacia melanoxylon Through Vermicomposting as an Alternative Substrate for Cucumber Production
by Maria C. Morais, Elisabete Nascimento-Gonçalves, Tiago Azevedo, Henda Lopes, Helena Ferreira, Ana M. Coimbra, Berta Gonçalves, João R. Sousa, Marta Roboredo and Paula A. Oliveira
Recycling 2025, 10(3), 120; https://doi.org/10.3390/recycling10030120 - 17 Jun 2025
Viewed by 340
Abstract
Invasive alien species are one of the main threats to global biodiversity, and pose significant management challenges in several areas outside their natural range. In southern Mediterranean Europe, the invasion of Acacia species is particularly severe and its control requires costly and often [...] Read more.
Invasive alien species are one of the main threats to global biodiversity, and pose significant management challenges in several areas outside their natural range. In southern Mediterranean Europe, the invasion of Acacia species is particularly severe and its control requires costly and often ineffective actions. The use of vermicompost derived from these species to replace peat-based substrates in horticulture offers a promising alternative to mitigate their economic and environmental impacts while enhancing the sustainability of their control. This study explored the potential of vermicompost produced from the fresh aboveground waste biomass (leaves + stems + flowers) of Acacia dealbata and Acacia melanoxylon (75:25 w/w), two of the most aggressive Acacia species in the Mediterranean, using Eisenia fetida over twelve weeks. In essence, this study aimed to evaluate the quality of the produced vermicompost and its suitability as a partial substitute for potting substrate in the production of cucumber (Cucumis sativus) seedlings for transplant. Four substrate mixtures containing 0%, 10%, 30%, and 50% of Acacia vermicompost (w/w), combined with commercial peat-based potting substrate and perlite (20%) were tested in polystyrene seedling trays. Seedling emergence, growth, and leaf biochemical parameters (photosynthetic pigments, phenolics, soluble sugars and starch, and total thiobarbituric acid-reactive substances—TBARSs) were evaluated. The results showed that the addition of Acacia vermicompost to the commercial substrate did not affect its germination but significantly enhanced seedling growth, particularly in mixtures containing 30% and 50% Acacia vermicompost. In addition, the absence of accumulation of TBARSs also reflected the superiority of these two treatments. These findings suggest that vermicompost derived from A. dealbata and A. melanoxylon biomass can be a viable peat-based substrate alternative for horticultural production, with the dual benefit of promoting sustainable agricultural practices and contributing to invasive species management. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

20 pages, 3403 KiB  
Article
Invertebrates of Siberia, a Potential Source of Animal Protein for Innovative Food and Feed Production: Biomass Nutrient Composition Change in the Earthworm Eisenia fetida (Savigny, 1826) and the House Cricket Acheta domesticus (Linnaeus, 1758)
by Sergei E. Tshernyshev, Andrei S. Babenko, Irina B. Babkina, Ruslan T.-O. Baghirov, Vera P. Modyaeva, Margarita D. Morozova, Ksenia E. Skribtcova, Elena Y. Subbotina, Mikhail V. Shcherbakov and Anastasia V. Simakova
Insects 2025, 16(6), 632; https://doi.org/10.3390/insects16060632 - 16 Jun 2025
Viewed by 534
Abstract
The possibility of designing the nutrient composition of invertebrate biomass was investigated. Two model species of terrestrial invertebrates, the house cricket Acheta domesticus (Linnaeus, 1758) and the earthworm Eisenia fetida (Savigny, 1826), were studied after feeding on substrates alternately enriched with certain nutrient [...] Read more.
The possibility of designing the nutrient composition of invertebrate biomass was investigated. Two model species of terrestrial invertebrates, the house cricket Acheta domesticus (Linnaeus, 1758) and the earthworm Eisenia fetida (Savigny, 1826), were studied after feeding on substrates alternately enriched with certain nutrient precursors proposed in single and double doses. Crickets and earthworms showed similar tendencies to increase the B vitamin content of those vitamins whose initial level was high. Double-dose enrichment of the food substrate increased the levels of vitamin C, fat-soluble vitamins and most B vitamins. In a control group of crickets, vitamin C levels were 1.5 times lower than in a control group of earthworms. After enrichment of the feed substrate, the vitamin C content in the biomass of the crickets did not change significantly, but in the earthworms it increased significantly. The content of a wide range of minerals did not change after single-dose enrichment, but some micro-elements such as Pb and Se decreased significantly in earthworms after double-dose enrichment of the feed substrate. The calorific value of crickets was twice that of earthworms and did not change significantly after double-dose enrichment. It is shown that the nutrient composition of invertebrate biomass can be increased by enriching the feed substrate with precursors. The most effective increases are observed for all vitamins and several minerals. The results can be used to achieve specific nutrient concentrations in biomass for food and medical purposes. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
Show Figures

Figure 1

15 pages, 1459 KiB  
Article
A Novel Tool for Biodiversity Studies: Earthworm Classification via NGS and Neural Networks
by Tadeusz Malewski, Ewa Ropelewska, Andrzej Skwiercz, Anastasiia Lutsiuk and Anita Zapałowska
Appl. Sci. 2025, 15(12), 6597; https://doi.org/10.3390/app15126597 - 12 Jun 2025
Viewed by 423
Abstract
Earthworms are important in agriculture in the process of soil fertilization and influence its physicochemical properties. The taxonomic classification of earthworms using morphological characteristics requires experts, is difficult, and can require specimen dissection to extract detailed anatomical studies. Molecular techniques are time-consuming and [...] Read more.
Earthworms are important in agriculture in the process of soil fertilization and influence its physicochemical properties. The taxonomic classification of earthworms using morphological characteristics requires experts, is difficult, and can require specimen dissection to extract detailed anatomical studies. Molecular techniques are time-consuming and expensive. The objective of this study was to distinguish earthworms belonging to different genera, Eisenia, Dendrobaena, and Lumbricus, using an innovative approach involving machine learning models built based on image texture parameters from individual color channels R, G, B, L, a, b, X, Y, Z, U, V, and S. The earthworms Eisenia fetida, Dendrobaena ssp., and Lumbricus terrestris were used as research materials. Image acquisition was performed using a flatbed scanner on a black background. In the case of each earthworm, 2172 texture parameters from images in individual color channels R, G, B, L, a, b, X, Y, Z, U, V, and S were extracted. Textures after selection were used to develop classification models using machine learning algorithms. The earthworms Eisenia fetida, Dendrobaena ssp., and Lumbricus terrestris were distinguished with the accuracy reaching 100% for models built using Logistic, Ensemble, and Narrow Neural Network. All earthworms were correctly classified. Also, in the case of other models, earthworm classes were distinguished with high accuracies, such as 99% (Naive Bayes, Random Forest, SVM, KNN), 97% (Simple Logistic), and 94% (KStar). For the most important species, E. fetida, the correctness of the species identification was confirmed by direct RNA sequencing. The application of image analysis and machine learning turned out to be a non-destructive, inexpensive, and objective approach to distinguishing earthworms belonging to different genera. Full article
(This article belongs to the Special Issue Engineering of Smart Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 1497 KiB  
Article
Valorization of Vineyard By-Products Through Vermicomposting: A Comparative Pilot-Scale Study with Eisenia fetida and Eisenia andrei
by Tiago Azevedo, Elisabete Nascimento-Gonçalves, Henda Lopes, Catarina Medeiros, Virgílio Falco, João R. Sousa, Ana M. Coimbra, Marta Roboredo, Paula A. Oliveira and Maria C. Morais
Agronomy 2025, 15(6), 1340; https://doi.org/10.3390/agronomy15061340 - 30 May 2025
Viewed by 580
Abstract
Vermicomposting aims to convert organic residues into valuable end products within a circular economy-based framework. Vineyards generate significant amounts of by-products, namely vine prunings (VPs), typically landfilled or incinerated, and rotten grape clusters (RGCs), which stay on the vines until removed by pruning. [...] Read more.
Vermicomposting aims to convert organic residues into valuable end products within a circular economy-based framework. Vineyards generate significant amounts of by-products, namely vine prunings (VPs), typically landfilled or incinerated, and rotten grape clusters (RGCs), which stay on the vines until removed by pruning. This pilot-scale study aimed to explore the role of two earthworm species (Eisenia fetida and Eisenia andrei) in transforming VP and RGC substrates by evaluating their physicochemical properties, phytotoxicity, and polyphenolic content before and after vermicomposting and the microbial activity at the end of the process. The substrates were vermicomposted in 2 L containers with coconut fiber (1:1 ratio) and 7.5 g of each earthworm species (clitellated and non-clitellated) per container for 100 days, with the earthworm biomass monitored every other week. Phytotoxicity was assessed using garden cress (Lepidium sativum L.) and lettuce (Lactuca sativa L.) seeds, and biological stability was assessed by microbial activity and polyphenolic content evaluation using the Folin–Ciocalteu method. The results showed that differences in the vermicompost properties were primarily substrate-dependent. The RGC-based vermicomposts exhibited higher electrical conductivity and P, K, S, and B levels, while the VP-based composts had higher C/N ratios. E. fetida produced vermicomposts with significantly higher K, Ca, and Mg contents and consistently lower phytotoxicity in germination assays with garden cress and lettuce, compared with E. andrei. Vermicomposting led to a decrease in polyphenolic content for both species. This study highlights the importance of earthworm species selection for vermicomposting vineyard residues. Further research should explore how these species perform with other residues to understand their suitability for producing high quality vermicomposts. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

14 pages, 5914 KiB  
Article
Effect of Microplastics on the Bioavailability of (Semi-)Metals in the Soil Earthworm Eisenia fetida
by Xue Xiao, Jia-Ling Li, Wan-Li Rao, Chun-Mei Zhao, Er-Kai He, Ye-Tao Tang, Hua-Yi Chen and Rong-Liang Qiu
Agronomy 2025, 15(5), 1052; https://doi.org/10.3390/agronomy15051052 - 27 Apr 2025
Viewed by 715
Abstract
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of [...] Read more.
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of organisms. In the present study, we exposed Cd or As (Cd/As) to the earthworm Eisenia fetida (Savigny, 1826) in uncontaminated paddy soil, both in the presence and absence of polystyrene (PS) MPs (100~300 μm). The results show that MPs exhibit a significant influence on the physicochemical properties of As-contaminated soil, notably reducing the pH while increasing the electrical conductivity (EC), redox potential (Eh), and dissolved organic carbon (DOC), relative to single As treatment. At a Cd concentration of 40 mg·kg−1, the addition of MPs substantially altered the soil properties, decreasing the pH while increasing the EC and DOC. The effect of MPs on the bioavailable Cd content in soil was associated with Cd concentration. Specifically, MPs significantly increased the content of DGT (diffusion gradient technology)-Cd at a Cd concentration of 60 mg·kg−1. Regarding the bioavailable As content in the soil, MPs led to an increase at a high As concentration (40 mg·kg−1). Moreover, the addition of MPs amplified the uptake rate constants (ku) of DGT-Cd/As at various exposure concentrations, expediting the uptake of Cd/As by earthworms. In addition, compared to Cd treatment, the growth inhibition of earthworms in the As-treatment group was more significant due to microplastics. The results show that MPs in terrestrial environments magnify the negative effects of (semi-)metals, a phenomenon intricately tied to the degree of contamination by (semi-)metals. The interaction between MPs and metals may induce higher ecological risks for organisms. Full article
Show Figures

Graphical abstract

14 pages, 3219 KiB  
Article
Bioaccumulation, Biotransformation and Oxidative Stress of 6:2 Fluorotelomer Sulfonamidoalkyl Betaine (6:2 FTAB) in Earthworms (Eisenia fetida)
by Xinlei Zhang, Mengyao Fang, Zhiyuan Bai, Yulu Zong, Shuyan Zhao and Jingjing Zhan
Toxics 2025, 13(5), 337; https://doi.org/10.3390/toxics13050337 - 24 Apr 2025
Cited by 1 | Viewed by 479
Abstract
As a novel perfluorooctane sulfonate (PFOS) alternative, 6:2 fluorotelomer sulfonamide alkylbetaine (6: 2 FTAB) has been detected in the environment and biotas. However, its behaviors and toxicity in earthworms remain unclear. Here, earthworms (Eisenia fetida) were exposed to 6:2 FTAB to [...] Read more.
As a novel perfluorooctane sulfonate (PFOS) alternative, 6:2 fluorotelomer sulfonamide alkylbetaine (6: 2 FTAB) has been detected in the environment and biotas. However, its behaviors and toxicity in earthworms remain unclear. Here, earthworms (Eisenia fetida) were exposed to 6:2 FTAB to investigate its bioaccumulation, biotransformation and toxicity. Results indicated that 6:2 FTAB could be biodegraded in soil into perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA) and perfluoropropionic acid (PFPrA). The uptake rate constant (ku) and the bioaccumulation factor (BAF) of 6:2 FTAB in earthworms were 0.0504 goc gww−1 d and 1.65 goc gww−1, respectively. 6:2 FTAB was biotransformed to form PFHxA, PFPeA, PFBA and PFPrA in earthworms after in vivo and in vitro exposure. The aerobic bacteria isolated from worm gut could degrade 6:2 FTAB to form PFPeA and PFHxA, while the anaerobic bacteria did not contribute to 6:2 FTAB biodegradation in worms. Peroxidase (POD) and superoxide dismutase (SOD) activities were significantly increased, while no significant changes were observed for catalase (CAT) activities, demonstrating activation of the primary antioxidant defense system against oxidative stress in earthworms after exposure to 6:2 FTAB. The significant increase of glutathione-S-transferase (GST) activities suggested indirect evidence on the conjugation of 6:2 FTAB or its metabolites in phase II of detoxication. This study provides important information on the fate of 6:2 FTAB in earthworms. Full article
Show Figures

Figure 1

24 pages, 2228 KiB  
Article
A Bioremediation and Soil Fertility Study: Effects of Vermiremediation on Soil Contaminated by Chlorpyrifos
by Francesca Tagliabue, Enrica Marini, Arianna De Bernardi, Costantino Vischetti, Gianluca Brunetti and Cristiano Casucci
Environments 2025, 12(5), 136; https://doi.org/10.3390/environments12050136 - 24 Apr 2025
Cited by 1 | Viewed by 783
Abstract
Although the broad-spectrum pesticide chlorpyrifos (CP) was banned in many developed countries, it is still widely used in developing countries. Its residues persist in the environment for unpredictable times. CP is toxic to various non-target organisms and humans and inhibits soil enzyme activity [...] Read more.
Although the broad-spectrum pesticide chlorpyrifos (CP) was banned in many developed countries, it is still widely used in developing countries. Its residues persist in the environment for unpredictable times. CP is toxic to various non-target organisms and humans and inhibits soil enzyme activity and bacterial and fungal abundance. This paper aimed to evaluate the effect of vermiremediation on soil chlorpyrifos content and soil fertility. The application of Eisenia fetida or vermicompost was studied in terms of soil chlorpyrifos concentration, microbial biomass content, and enzymatic activities in a 120-day trial. Pesticide application rates were 0, 25, and 50 ppm. The CP did not affect the earthworm survival rate at the tested doses. The earthworms markedly increased microbial biomass carbon and the activity of β-glucosamminidase, while the vermicompost had a noticeably positive effect mainly on alkaline phosphatase activity. Finally, although the vermiremediation techniques studied did not perform a bioremediation activity, they proved effective in improving the biological fertility of the soil in the presence of high concentrations of chlorpyrifos. Full article
Show Figures

Graphical abstract

18 pages, 2151 KiB  
Article
Effect of Silver Nanoparticles and Vermicompost on the Control of Aphelenchoides fragariae and Meloidogyne hapla in Jerusalem Artichoke (Helianthus tuberosus L.)
by Andrzej Tomasz Skwiercz, Anita Zapałowska, Magdalena Szczech, Beata Kowalska, Dawid Kozacki, Tatyana Stefanovska, Olexander Zhukov, Małgorzata Sekrecka, Katarzyna Wójcik and Krzysztof Klamkowski
Sustainability 2025, 17(7), 2997; https://doi.org/10.3390/su17072997 - 27 Mar 2025
Viewed by 552
Abstract
Root-knot nematodes Meloidogyne spp. are sedentary endoparasites that infest a wide range of plant species; they are also widely distributed, making them one of the most economically significant pests. Similarly, damage caused by Aphelenchoides fragariae can lead to substantial reductions in both crop [...] Read more.
Root-knot nematodes Meloidogyne spp. are sedentary endoparasites that infest a wide range of plant species; they are also widely distributed, making them one of the most economically significant pests. Similarly, damage caused by Aphelenchoides fragariae can lead to substantial reductions in both crop yield and quality. This research focused on the rhizosphere of Helianthus tuberosus L. (variety Albik), grown in a Polish plantation. The experiment was conducted at the National Institute of Horticultural Research in Skierniewice, using concrete rings filled with medium sandy soil amended with 10% peat. The treatments included the following: control (no amendments), silver solution (Ag+) (120 mg/L soil), and vermicompost (Ve) (20 L of Eisenia fetida vermicompost). Each treatment was replicated four times. Compared with control, (Ve) significantly decreased the numbers of Aphelenchoides fragariae and Meloidogyne hapla, by about 48% and 31%. The application of (Ag+) led to the most significant reduction in population density in both nematode species, with A. fragariae decreasing by over 67% and M. hapla by approximately 75%. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

24 pages, 2800 KiB  
Article
Synergistic Neuroprotective and Immunomodulatory Effects of Cocoa Seed Husk and Guarana Extract: A Nutraceutical Approach for Parkinson’s Disease Management
by Vitória Farina Azzolin, Verônica Farina Azzolin, Euler Esteves Ribeiro, Juliane Santiago Sasso, Douglas Reis Siqueira, Nathalia Cardoso de Afonso Bonotto, Bárbara Osmarin Turra, Marco Aurélio Echart Montano, Ednea Aguiar Maia Ribeiro, Raquel de Souza Praia, Maria Fernanda Mânica-Cattani, Cristina Maranghello, Railla da Silva Maia, Erickson Oliveira dos Santos, Pedro Luis Sosa Gonzalez, Cleideane Cunha Costa, Vanusa Nascimento, Fernanda Barbisan and Ivana Beatrice Mânica da Cruz
Antioxidants 2025, 14(3), 348; https://doi.org/10.3390/antiox14030348 - 15 Mar 2025
Viewed by 1044
Abstract
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder linked to oxidative stress, mitochondrial dysfunction, and neuroinflammation. This study evaluates the neurofunctional and immunomodulatory effects of an aqueous extract combining cocoa seed husk and guarana powder (GuaCa). Eighteen extracts were characterized by flavonoid [...] Read more.
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder linked to oxidative stress, mitochondrial dysfunction, and neuroinflammation. This study evaluates the neurofunctional and immunomodulatory effects of an aqueous extract combining cocoa seed husk and guarana powder (GuaCa). Eighteen extracts were characterized by flavonoid and polyphenol content, antioxidant activity, and genoprotective potential. The HCE3 extract, rich in catechins, quercetin, and epigallocatechin gallate, was selected for further analysis in three models: Eisenia fetida earthworms, SH-SY5Y neuron-like cells, and peripheral blood mononuclear cells (PBMCs) from PD patients. Results: The extracts showed antioxidant and genoprotective activity and contained flavonoid. No significant toxicity was observed in Eisenia fetida. In SH-SY5Y cells, GuaCa increased cell viability and brain-derived neurotrophic factor (BDNF) levels and reduced mitochondrial damage by lowering extracellular NDUSF7 (subunit of the NADH dehydrogenase (ubiquinone) complex) levels. In dPD-PBMCs cultures, GuaCa reduced pro-inflammatory cytokine IL-6 levels, indicating immunomodulatory effects. Conclusion: GuaCa shows promise as a nutraceutical for managing neuroinflammation and mitochondrial dysfunction in PD. Further clinical studies are needed to confirm GuaCa extract efficacy and potential for neuroprotective dietary strategies. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

12 pages, 1267 KiB  
Article
Toxicity of Four Commercial Fungicides, Alone and in Combination, on the Earthworm Eisenia fetida: A Field Experiment
by Tommaso Campani, Ilaria Caliani, Agata Di Noi and Silvia Casini
Toxics 2025, 13(3), 209; https://doi.org/10.3390/toxics13030209 - 14 Mar 2025
Viewed by 683
Abstract
This study investigated the sub-lethal effects of four commercial fungicides—two foliar (Amistar®Xtra and Mirador®) and two ear fungicides (Prosaro® and Icarus®)—applied alone and in combination to wheat crops on caged earthworms (Eisenia fetida). We [...] Read more.
This study investigated the sub-lethal effects of four commercial fungicides—two foliar (Amistar®Xtra and Mirador®) and two ear fungicides (Prosaro® and Icarus®)—applied alone and in combination to wheat crops on caged earthworms (Eisenia fetida). We measured biomarkers that included detoxification responses (glutathione S-transferase, GST), oxidative stress levels (lipid peroxidation, LPO, and catalase, CAT), DNA damage (comet assay), energy reserves (lactate dehydrogenase, LDH), and immune response (lysozyme activity, LYS). The absence of significant differences in catalase and lipid peroxidation levels suggested no oxidative stress due to fungicide exposure. However, the foliar fungicide Amistar®Xtra induced the highest GST activity and DNA fragmentation, suggesting synergistic effects between its active ingredients and undisclosed co-formulants. Similar effects observed with the Amistar®Xtra-Prosaro® mixture confirmed the greater toxicity of Amistar®Xtra. This study provides novel insights into the sub-lethal effects of single and combined commercial fungicides on a standard toxicity test organism, shedding light on the ecological implications of fungicide use in agroecosystems and reinforcing the need for pesticide reduction. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

23 pages, 8696 KiB  
Article
Effects of Microplastics on Selected Earthworm Species
by Marek Klimasz and Anna Grobelak
Toxics 2025, 13(3), 201; https://doi.org/10.3390/toxics13030201 - 11 Mar 2025
Cited by 2 | Viewed by 1464
Abstract
Microplastics currently pose a serious threat to aquatic and terrestrial ecosystems. The high mobility of particles and their diversity in size, material and shape lets them spread widely. Further complicating matters is the ever-expanding plastics industry and modifications to its manufacturing processes. To [...] Read more.
Microplastics currently pose a serious threat to aquatic and terrestrial ecosystems. The high mobility of particles and their diversity in size, material and shape lets them spread widely. Further complicating matters is the ever-expanding plastics industry and modifications to its manufacturing processes. To date, many cases of negative, often toxic effects of microplastics on various species such as fish, birds and mammals have been documented. The methodology for measuring and determining the effects of microplastics on soil organisms is still an area of little understanding and certainly requires further study. In our conducted experiment, we reported the effects of selected microplastics in soil (polyethylene, polyethylene terephthalate, polystyrene, polyamide and a mixture of these plastics) at concentrations of 0.1% w/v and 1% w/v at two time intervals, one and three months, on five different earthworm species, identifying the species-related microplastic response. This study investigated the effects of different microplastics on biological parameters such as survival and respiration and biochemical parameters such as effects on glutathione s-transferase (GST), a marker of detoxification and adaptive response in earthworm species Eisenia andrei, Eisenia fetida, Lumbricus terrestris, Apporectoda caliginosa and Dendrobena veneta. The choices of species and the types of microplastic selected are intended to map the occurrence of microplastic contamination in the soil and determine the adaptation of earthworms to changing environmental conditions, considering their ecological significance and functional diversity in soil ecosystems. Full article
Show Figures

Graphical abstract

Back to TopTop