Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,478)

Search Parameters:
Keywords = Economic Value Added

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 819 KiB  
Article
The Nexus Between Economic Growth and Water Stress in Morocco: Empirical Evidence Based on ARDL Model
by Mariam El Haddadi, Hamida Lahjouji and Mohamed Tabaa
Sustainability 2025, 17(15), 6990; https://doi.org/10.3390/su17156990 (registering DOI) - 1 Aug 2025
Abstract
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship [...] Read more.
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship between economic growth and water stress in Morocco while highlighting the importance of integrated water management and adaptive economic policies to enhance resilience to water scarcity. A mixed methodology, integrating both qualitative and quantitative methods, was adopted to overview the economic–environmental Moroccan context, and to empirically analyze the GDP (gross domestic product) and water stress in Morocco over the period 1975–2021 using an Autoregressive Distributed Lag (ARDL) approach. The empirical analysis is based on annual data sourced from the World Bank and FAO databases for GDP, agricultural value added, renewable internal freshwater resources, and water productivity. The results suggest that water productivity has a significant positive effect on economic growth, while the impacts of agricultural value added and renewable water resources are less significant and vary depending on the model specification. Diagnostic tests confirm the reliability of the ARDL model; however, the presence of outliers in certain years reflects the influence of exogenous shocks, such as severe droughts or policy changes, on the Moroccan economy. The key contribution of this study lies in the fact that it is the first to analyze the intrinsic link between economic growth and the environmental aspect of water in Morocco. According to our findings, it is imperative to continuously improve water productivity and adopt adaptive management, rooted in science and innovation, in order to ensure water security and support the sustainable economic development of Morocco. Full article
Show Figures

Graphical abstract

27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

12 pages, 1392 KiB  
Brief Report
Soft Fillets in a Sustainable Seafood Era: Assessing Texture, Yield Loss and Valorization Potential of ‘Mushy’ Greenland Halibut Fillets
by Natacha L. Severin and Kurt Buchmann
Fishes 2025, 10(8), 367; https://doi.org/10.3390/fishes10080367 (registering DOI) - 1 Aug 2025
Abstract
‘Mushy halibut syndrome’ (MHS) is associated with inferior fillet quality in Greenland halibut and is reported to occur in commercial catches across the North Atlantic. MHS constitutes a quality issue in fisheries and leads to economic losses and food wastage. Despite the known [...] Read more.
‘Mushy halibut syndrome’ (MHS) is associated with inferior fillet quality in Greenland halibut and is reported to occur in commercial catches across the North Atlantic. MHS constitutes a quality issue in fisheries and leads to economic losses and food wastage. Despite the known challenges associated with MHS, quantitative data on product properties are lacking, and yet they are crucial to assess actual losses and value-adding processing potential. As part of a larger effort to document and characterize MHS in Greenland halibut, we investigated how thaw drip loss (TDL), cooked drip loss (CDL), cooked yield, and tissue compressibility and elasticity differ between normal and ‘mushy’ halibut fillets. The fillets were sorted into three categories: normal, intermediate MHS, and severe MHS. The mean TDL and CDL increased more than three-fold in both MHS categories compared to normal fillets, while cooked yield decreased by approximately 20%. Fillets severely affected by MHS demonstrated high tissue compressibility (56%) and poor elasticity (46%), while the elasticity of the fillets belonging to the intermediate MHS category did not differ significantly from that of normal ones. These findings provide new insights into the product attributes of fillets affected by MHS, which are important for developing utilization and valorization strategies. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 (registering DOI) - 31 Jul 2025
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

42 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

20 pages, 3039 KiB  
Article
Heat Transfer Performance and Influencing Factors of Waste Tires During Pyrolysis in a Horizontal Rotary Furnace
by Hongting Ma, Yang Bai, Shuo Ma and Zhipeng Zhou
Energies 2025, 18(15), 4028; https://doi.org/10.3390/en18154028 - 29 Jul 2025
Viewed by 130
Abstract
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the [...] Read more.
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the effect laws of tire particle size, rotary furnace rotation speed, enhanced heat transfer materials, and adding spiral fins on heat transfer performance and pyrolysis product distribution were studied, respectively. The innovation lies in two aspects: first, aiming at the problems of slow heat transfer and low pyrolysis efficiency in horizontal rotary furnaces, we identified technical measures through experiments to enhance heat transfer, thereby accelerating pyrolysis and reducing energy consumption; second, with the goal of increasing high-value pyrolysis oil yield, we determined optimal operating parameters to improve economic and sustainability outcomes. The results showed that powdered particles of waste tires were heated more evenly during the pyrolysis process, which increased the overall heat transfer coefficient and the proportion of liquid products. When the rotational speed of the rotary pyrolysis furnace exceeded 2 rpm, there was sufficient contact between the material and the furnace wall, which was beneficial to the improvement of heat transfer performance. Adding heat transfer enhancement materials such as carborundum and white alundum could improve the heat transfer performance between the pyrolysis furnace and the material. Notably, a rotational speed of 3 rpm and carborundum were used as a heat transfer enhancement material with powdered waste tire particles during the pyrolysis process; the overall heat transfer coefficient was the highest, which was 16.89 W/(m2·K), and the proportion of pyrolysis oil products was 46.1%. When spiral fins were installed, the comprehensive heat transfer coefficient was increased from 12.78 W/(m2·K) to 16.32 W/(m2·K). The experimental results show that by increasing the speed of the pyrolysis furnace, adding heat transfer enhancing materials with high thermal conductivity to waste tires, and appropriate particle size, the heat transfer performance and pyrolysis rate can be improved, and energy consumption can be reduced. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 322
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

32 pages, 1269 KiB  
Review
Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds
by Gabriela Sousa, Suzana Ferreira-Dias, Carla Tecelão and Vítor D. Alves
Foods 2025, 14(15), 2555; https://doi.org/10.3390/foods14152555 - 22 Jul 2025
Viewed by 538
Abstract
Oceans are increasingly viewed as a new frontier for economic development, contributing to the bridge between food industry, sea bioeconomy, and health. Nowadays, oceans are under attention as a strategy for creating opportunities and driving innovation, and their vital importance will become even [...] Read more.
Oceans are increasingly viewed as a new frontier for economic development, contributing to the bridge between food industry, sea bioeconomy, and health. Nowadays, oceans are under attention as a strategy for creating opportunities and driving innovation, and their vital importance will become even more evident in the years to come. Therefore, it is crucial to study oceans under a holistic approach, taking the maximum value of their abundant resources in a sustainable way. As such, blue bioeconomy is the path forward, since it is a development strategy that meets the economic potential without compromising the environmental health. A special look needs to be taken at the underutilized resources and by-products, which hold unexploited value. For instance, green macroalgae are widespread marine macroalgae that lack industry applications, despite being rich in biopolymers (polysaccharides) and antioxidants. Moreover, fish by-products are also rich sources of biopolymers, mostly proteins. Thus, among other potential uses, raw materials could be explored to produce functional edible coatings under a blue bioeconomy approach. A detailed characterization of raw materials is the first step for the development of value-added products. These topics will be addressed in this review. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

40 pages, 3563 KiB  
Review
Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects
by Mariya P. Shcherbakova-Sandu, Eugene P. Meshcheryakov, Semyon A. Gulevich, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Molecules 2025, 30(14), 3012; https://doi.org/10.3390/molecules30143012 - 18 Jul 2025
Viewed by 419
Abstract
The demand for biomass has been growing in recent years for several reasons, related to environmental, economic, and social trends. In the context of global climate changes and the depletion of natural resources, the recycling of plant biomass waste is a promising strategy [...] Read more.
The demand for biomass has been growing in recent years for several reasons, related to environmental, economic, and social trends. In the context of global climate changes and the depletion of natural resources, the recycling of plant biomass waste is a promising strategy for sustainable development that contributes to minimizing waste, improving resource efficiency, and achieving the goal of creating a circular economy. One of the highly demanded products of agricultural waste recycling is glucose. Glucose is an important organic substrate that allows a number of value-added products to be obtained. In this review, we focused on the commercially significant products of glucose oxidation: gluconic and glucaric acids. This review summarized the latest available data on the scope of the application of each product as well as the methods of their production. The capabilities and limitations of currently used methods of synthesis were highlighted. Full article
Show Figures

Graphical abstract

17 pages, 1525 KiB  
Article
Effects of Dietary Tussah Immunoreactive Pupa Powder on Growth, Gonad Quality, Antioxidant Capacity, and Gut Microbiota of the Sea Urchin Strongylocentrotus intermedius
by Shufeng Li, Fenglin Tian, Weiyan Li, Haoran Xiao, Ye Tian, Yajie Deng, Lingshu Han, Chong Zhao and Jun Ding
Biology 2025, 14(7), 874; https://doi.org/10.3390/biology14070874 - 17 Jul 2025
Viewed by 214
Abstract
Tussah immunoreactive pupa powder (IPP) is composed of various active substances. We speculated that it has the potential to improve key economic traits of sea urchins. Therefore, we conducted a 60-day experiment to examine the effects of IPP on growth, antioxidant capacity, gonad [...] Read more.
Tussah immunoreactive pupa powder (IPP) is composed of various active substances. We speculated that it has the potential to improve key economic traits of sea urchins. Therefore, we conducted a 60-day experiment to examine the effects of IPP on growth, antioxidant capacity, gonad quality, and gut microbiota of sea urchins (Strongylocentrotus intermedius). The experiment involved the preparation of a kelp group and four types of feed containing 0% (the control group), 0.5%, 1.0%, and 1.5% IPP. The results indicated that IPP had no significant impact on the survival of sea urchins (p > 0.05). Firstly, adding IPP promoted the growth of sea urchins. The 1.0% IPP group showed the highest weight gain rate among the feed group, significantly higher than that of the control group (p < 0.05). Secondly, compared with the kelp group, the addition of IPP significantly improved the growth and quality of sea urchin gonads (p < 0.05), which demonstrated certain industrial value. Thirdly, following the addition of IPP, the activities of SOD, CAT, and POD significantly increased in comparison to the control group (p < 0.05). Lastly, added IPP increased the abundance of Firmicutes, Bacteroidetes, and Rhodobacteraceae, while reducing the abundance of Ralstonia and Vibrio. This indicates that added IPP may improve the digestive function and gut health of sea urchins. Overall, added IPP can improve certain economic traits and antioxidant capacity of sea urchins. This manuscript provides a theoretical reference for the healthful aquaculture of S. intermedius. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

24 pages, 2413 KiB  
Article
Agricultural Land Market Dynamics and Their Economic Implications for Sustainable Development in Poland
by Marcin Gospodarowicz, Bożena Karwat-Woźniak, Emil Ślązak, Adam Wasilewski and Anna Wasilewska
Sustainability 2025, 17(14), 6484; https://doi.org/10.3390/su17146484 - 15 Jul 2025
Viewed by 520
Abstract
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), [...] Read more.
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), while agricultural gross value added (–2.698, p = 0.009), soil quality (–6.241, p < 0.001), and land turnover (–0.395, p < 0.001) are associated with lower prices. Spatial dependence is confirmed (λ = 0.74), revealing strong regional spillovers. The volume of state-owned WRSP land sales declined from 37.4 thousand hectares in 2015 to 3.1 thousand hectares in 2023, while non-market transfers, such as donations, exceeded 49,000 annually. Although these trends support farmland protection and family farms, they also reduce market mobility and hinder generational renewal. The findings call for more flexible, sustainability-oriented land governance that combines ecological performance, regional equity, and improved access for young farmers. Full article
Show Figures

Figure 1

16 pages, 2052 KiB  
Article
Exploring the Potential of Granite Sawing Sludge from Cuasso Al Monte (Italy) for the Development of Aluminosilicate Gel for a Sustainable Industry
by Sabrina Elettra Zafarana, Alessandro Achilli, Germana Barone, Danilo Bersani, Claudio Finocchiaro, Laura Fornasini, Silvia Portale and Paolo Mazzoleni
Minerals 2025, 15(7), 718; https://doi.org/10.3390/min15070718 - 9 Jul 2025
Viewed by 196
Abstract
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical [...] Read more.
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical analysis, was employed to assess the suitability of these precursors to produce AAMs. X-Ray diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FT-IR) confirmed the occurred activation reaction with the consequent increase in the amorphous content. Raman spectroscopy was used to further explore the mineralogical composition of the consolidated specimens, helping in the detection of salts, whose formation is ascribed to secondary carbonatation processes. Morphological analysis (SEM-EDS) displayed relatively uniform microstructures for all specimens. Compressive strength tests revealed that MK rich samples achieved best values compared to FC rich formulations, which exhibited reduced strength resistance. This study highlights, for the first time, the benefits of incorporating Cuasso al Monte granite sawing sludges into alkali-activated binders. Results suggested that the incorporation of FC is recommended for both environmental and economic advantages. Full article
Show Figures

Figure 1

26 pages, 7085 KiB  
Review
Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
by Weijian Yu, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang and Honghu Tang
Separations 2025, 12(7), 180; https://doi.org/10.3390/separations12070180 - 7 Jul 2025
Viewed by 332
Abstract
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews [...] Read more.
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews the harmless process and resource technology of EMR, efficiency bottlenecks, and the current status of industrial applications. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed. Among these, electrochemical purification stands out for its efficiency and environmental benefits, positioning it as a promising option for broad industrial use. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed, revealing the complementarity between building materials and chemical materials (microcrystalline glass) in scale and high-value-added production. But the lack of impurity separation accuracy and market standards restricts its promotion. Finally, it proposes future directions for EMR resource utilization based on practical and economic considerations. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

14 pages, 1023 KiB  
Article
Economic Impact of Abortions in Dairy Cow Herds
by Osvaldo Palma, Lluís M. Plà-Aragonès, Alejandro Mac Cawley and Víctor M. Albornoz
Vet. Sci. 2025, 12(7), 645; https://doi.org/10.3390/vetsci12070645 - 7 Jul 2025
Viewed by 394
Abstract
This study aimed to explore Markov decision methods in order to solve the problem of dairy cow replacement, adding the special characteristics of two types of abortions due to different sanitary reasons that influence the economic, production, and reproduction performance of these animals. [...] Read more.
This study aimed to explore Markov decision methods in order to solve the problem of dairy cow replacement, adding the special characteristics of two types of abortions due to different sanitary reasons that influence the economic, production, and reproduction performance of these animals. The model was successfully validated against other models published in the literature. Python code v.3.13 was used to solve the problem and to ease future extensions with the inclusion of new variables. The results constitute tools that allow the veterinarian to explore more realistic scenarios by running a Markov simulation model that avoids the complexities leading to the problem of dimensionality in dynamic optimization models. In our study, the economic value of the herd considering RA and NLA abortions shows that the maximum net benefit is USD 178.77 per cow, and non-pregnant cows are slaughtered upon reaching six months of lactation, a value that is within the range of values reported by the literature that we have identified. At the optimum, the replacement model extended with abortion generates a difference of USD 0.69 per cow per month compared to the model that does not include the special abortion features. The changes in the net present value of each cow according to the month of culling depend on the variability of milk income and slaughter value and heifers’ replacement values, suggesting that any measure that seeks to improve the economic benefit of dairy cows should take greater account of these variables. Full article
Show Figures

Figure 1

31 pages, 56365 KiB  
Article
The Quiet Architecture of Informality: Negotiating Space Through Agency
by Rim Mrani, Jérôme Chenal, Hassan Radoine and Hassan Yakubu
Buildings 2025, 15(13), 2357; https://doi.org/10.3390/buildings15132357 - 4 Jul 2025
Viewed by 288
Abstract
Housing informality in Morocco has taken root within Rabat’s formal neighborhoods, quietly reshaping façades, extending plot lines, and redrawing the texture of entire blocks. This ongoing transformation runs up against the rigidity of official planning frameworks, producing tension between state enforcement and tacit [...] Read more.
Housing informality in Morocco has taken root within Rabat’s formal neighborhoods, quietly reshaping façades, extending plot lines, and redrawing the texture of entire blocks. This ongoing transformation runs up against the rigidity of official planning frameworks, producing tension between state enforcement and tacit tolerance, as residents navigate persistent legal and economic ambiguities. Prior Moroccan studies are neighborhood-specific or socio-economic; the field lacks a city-wide, multi-class analysis linking everyday tactics to long-term governance dilemmas and policy design. The paper, therefore, asks how and why residents and architects across affordable, middle-class, and affluent districts craft unapproved modifications, and what urban order emerges from their cumulative effects. A mixed qualitative design triangulates (i) five resident focus groups and two architect focus groups, (ii) 50 short, structured interviews, and (iii) 500 geo-referenced façade photographs and observational field notes, thematically coded and compared across housing types. In addition to deciphering informality methods and impacts, the results reveal that informal modifications are shaped by both reactive needs—such as accommodating family growth and enhancing security—and proactive drivers, including esthetic expression and real estate value. Despite their legal ambiguity, these modifications are socially normalized and often viewed by residents as value-adding improvements rather than infractions. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop