Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects
Abstract
1. Introduction
2. Gluconic Acid
2.1. Product Significance
2.2. Gluconic Acid Production
- -
- Catalytic, using noble metals;
- -
- Electrocatalytic, using electrodes based on noble metals;
- -
- Photocatalytic;
- -
- Enzymatic, using immobilized enzymes.
2.2.1. Microbiological Synthesis
- Key producers:
- –
- Aspergillus niger: The most widely used fungus, showing high productivity (yields up to 311 g/L [89]) on various substrates.
- –
- –
- –
- Carbon sources:
- –
- Pure glucose: Used to achieve high titers (yield) but increases the cost of the process.
- –
- Complex media: Hydrolysates (breadfruit, corn cobs), molasses, must (grape, banana), puree, etc., reduce the cost but can complicate the purification.
- Fermentation conditions and modes:
- –
- Parameters: Typically mesophilic temperature (≈30–39 °C), controlled pH (often 5.0–6.5, strain-dependent), aeration (1–3 vvm), and agitation.
- –
- Modes: Batch, fed-batch (often gives best results in terms of gluconic acid yield >140 g/L for A. niger [87]), submerged fermentation.
- Product yields vary widely (from ~15 g/L to >300 g/L). Glucose conversion efficiencies are often high (>85–95% of theoretical).
2.2.2. Heterogeneous Catalytic Oxidation of Glucose
2.2.3. Glucose Electrooxidation
2.2.4. Photocatalytic Oxidation of Glucose
2.2.5. Glucose Oxidation in the Presence of Immobilized Glucose Oxidase
3. Glucaric Acid
3.1. Product Significance
3.2. Glucaric Acid Production
3.2.1. Biotechnological Methods of Obtaining Glucaric Acid
3.2.2. Chemical Methods of Obtaining Glucaric Acid
3.2.3. D-Glucose Oxidation to Glucaric Acid Using Catalysts
3.2.4. The Electrochemical Method of D-Glucose Oxidation to Glucaric Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, G.; Kaur, M.; Punj, S.; Singh, K. Biomass as a sustainable resource for value-added modern materials: A review. Biofuels Bioprod. Biorefining 2020, 14, 673–695. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Sri Shalini, S.; Palanivelu, K.; Ramachandran, A.; Raghavan, V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Conv. Bioref 2021, 11, 2247–2267. [Google Scholar] [CrossRef]
- Cai, W.; Luo, Z.; Zhou, J.; Wang, Q. A review on the selection of raw materials and reactors for biomass fast pyrolysis in China. Fuel Process. Technol. 2021, 221, 106919. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Liao, Y.; Koelewijn, S.-F.; Van den Bossche, G.; Van Aelst, J.; Van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; Van Aelst, K.; Maesen, M.; et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 2020, 367, 1385–1390. [Google Scholar] [CrossRef]
- Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y.; et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelkova, D.; Win, M.M.; Thu, A.M.; Puchor, T. Biomass Energy: An Overview of Biomass Sources, Energy Potential, and Management in Southeast Asian Countries. Resources 2019, 8, 81. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelková, D. Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook. Resources 2019, 8, 102. [Google Scholar] [CrossRef]
- Duque, A.; Álvarez, C.; Doménech, P.; Manzanares, P.; Moreno, A.D. Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes 2021, 9, 206. [Google Scholar] [CrossRef]
- Álvarez, C.; Mullen, A.M.; Pojić, M.; Hadnađev, T.D.; Papageorgiou, M. Classification and Target Compounds. In Food Waste Recovery; Academic Press: Cambridge, MA, USA, 2021; pp. 21–49. [Google Scholar]
- Galanakis, C.M. Food Waste Recovery: Processing Technologies and Industrial Techniques; Academic Press: Amsterdam, The Netherlands, 2020; p. 560. [Google Scholar]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of agro-industrial waste for sustainable green production: A review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Kukharets, V.; Juočiūnienė, D.; Hutsol, T.; Sukmaniuk, O.; Čėsna, J.; Kukharets, S.; Piersa, P.; Szufa, S.; Horetska, I.; Shevtsova, A. An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania. Energies 2023, 16, 548. [Google Scholar] [CrossRef]
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.L.C.; Bezerra, F.W.F.; Pinto, R.H.H.; de Carvalho Junior, R.N. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resour. Conserv. Recycl. 2021, 169, 105466. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, R.; Zicari, S. Integrated Processing Technologies for Food and Agricultural By-Products; Academic Press: London, UK; San Diego, CA, USA, 2019. [Google Scholar]
- Mansor, A.M.; Lim, J.S.; Ani, F.N.; Hashim, H.; Ho, W.S. Characteristics of Cellulose, Hemicellulose and Lignin of MD2 Pineapple Biomass. Chem. Eng. Trans. 2019, 72, 79–84. [Google Scholar] [CrossRef]
- Rusanen, A.; Lappalainen, K.; Kärkkäinen, J.; Tuuttila, T.; Mikola, M.; Lassi, U. Selective hemicellulose hydrolysis of Scots pine sawdust. Biomass Convers. Biorefinery 2019, 9, 283–291. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green. Chem. 2013, 15, 1095. [Google Scholar] [CrossRef]
- Meenakshi, A.; Kumaresan, R. Ethanol production from corn, potato peel waste and its process development. Int. J. Chemtech Res. 2014, 6, 2843. [Google Scholar]
- Gharib-Bibalan, S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. Food Eng. Rev. 2018, 10, 95–111. [Google Scholar] [CrossRef]
- Industrial Glucose Global Market Report. 2025. Available online: https://www.thebusinessresearchcompany.com/report/industrial-glucose-global-market-report (accessed on 26 February 2025).
- Machado, J.V.; Silva, M.L.A.; Silva, C.L.S.; Correia, M.C.G.; Ruy, A.D.S.; Pontes, L.A.M. Catalysts and processes for gluconic and glucaric acids production: A comprehensive review of market and chemical routes. Catal. Commun. 2023, 182, 106740. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, Z.; Yu, I.K.M.; Tsang, D.C.W. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. J. Clean. Prod. 2021, 312, 127745. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Liu, K.; Wang, Y.; Fan, G.; Sun, S.; Xu, J.; Zhu, Y.; Li, Y. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: A comparative study of active metals. Biomass Bioenergy 2015, 72, 189–199. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S.; Kim, Y.T.; Kim, H.J.; Kim, K.-H. Catalytic and electrocatalytic conversion of glucose into value-added chemicals. Renew. Sustain. Energy Rev. 2023, 181, 113337. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Roncal, T. Production of Sorbitol from Biomass. In Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries; Fang, Z., Smith, R., Jr., Qi, X., Eds.; Springer: Singapore, 2017; pp. 265–309. [Google Scholar] [CrossRef]
- Liu, W.-J.; Xu, Z.; Zhao, D.; Pan, X.-Q.; Li, H.-C.; Hu, X.; Fan, Z.-Y.; Wang, W.-K.; Zhao, G.-H.; Jin, S.; et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265. [Google Scholar] [CrossRef]
- Anastassiadis, S.; Morgunov, I.G. Gluconic Acid Production. Recent. Pat. Biotechnol. 2007, 1, 167. [Google Scholar] [CrossRef]
- Cañete-Rodríguez, A.M.; Santos-Dueñas, I.M.; Jiménez-Hornero, J.E.; Ehrenreich, A.; Liebl, W.; García-García, I. Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Wulaningsih, T.I. Gluconolactone in Cosmetic (Review Article). KESANS Int. J. Health Sci. 2023, 2, 730–745. [Google Scholar] [CrossRef]
- Ataman Chemicals. Gluconic Acid. Available online: https://www.atamanchemicals.com/gluconic-acid_u32471/ (accessed on 26 February 2025).
- Market Research Future, Gluconic Acid Market Overview. Available online: https://www.marketresearchfuture.com/reports/gluconic-acid-market-21714 (accessed on 26 February 2025).
- Kirimura, K.; Yoshioka, I. Gluconic and Itaconic Acids. In Comprehensive Biotechnol; Elsevier: Amsterdam, The Netherlands, 2019; pp. 166–171. [Google Scholar]
- Gluconic Acid Market Size By Application, By Downstream Potential Analysis, Share, Growth Forecast, 2024–2032. 2024. Available online: https://www.gminsights.com/industry-analysis/gluconic-acid-market (accessed on 26 February 2025).
- Kornecki, J.F.; Carballares, D.; Tardioli, P.W.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Alcántara, A.R.; Fernandez-Lafuente, R. Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions. Catal. Sci. Technol. 2020, 10, 5740–5771. [Google Scholar] [CrossRef]
- Hustede, H.; Haberstroh, H.; Schinzig, E. Gluconic Acid. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000; Volume 15, pp. 211–216. [Google Scholar] [CrossRef]
- Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic Acid: Properties, Applications and Microbial Production. Food Technol. Biotechnol. 2006, 44, 185–195. Available online: http://ir.niist.res.in:8080/jspui/handle/123456789/2172 (accessed on 26 February 2025).
- Choi, I.; Zhong, Q. Gluconic acid as a chelator to improve clarity of skim milk powder dispersions at pH 3.0. Food Chem. 2021, 344, 128639. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Kumar, R.; Banerjee, S. Manufacture of gluconic acid: A review towards process intensification for green production. Chem. Eng. Process. Process Intensif. 2016, 104, 160–171. [Google Scholar] [CrossRef]
- Ramachandran, S.; Nair, S.; Larroche, C.; Pandey, A. Gluconic Acid. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–599. [Google Scholar] [CrossRef]
- Jungbunzlauer Suisse AG. Glucono-delta-Lactone. Available online: https://www.jungbunzlauer.com/en/products/gluconates/glucono-delta-lactone (accessed on 26 February 2025).
- Yadav, P.; Chauhan, A.K.; Singh, R.B.; Khan, S.; Halabi, G. Organic Acids: Microbial Sources, Production, and Applications. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 325–337. [Google Scholar] [CrossRef]
- Mycielska, M.E.; Mohr, M.T.J.; Schmidt, K.; Drexler, K.; Rümmele, P.; Haferkamp, S.; Schlitt, H.J.; Gaumann, A.; Adamski, J.; Geissler, E.K. Potential Use of Gluconate in Cancer Therapy. Front. Oncol. 2019, 9, 522. [Google Scholar] [CrossRef]
- Guo, Y.; Messner, F.; Beck, S.E.; Lozano, M.I.; Schwelberger, H.; Zhang, Y.; Kammers, K.; Oh, B.C.; Greene, E.D.; Brandacher, G.; et al. Gluconate-Lactobionate-Dextran Perfusion Solutions Attenuate Ischemic Injury and Improve Function in a Murine Cardiac Transplant Model. Cells 2022, 11, 1653. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, Y.; Chensny, L.; Shepherd, R.E.; Zhang, S.; Kortes, R.; John, K. Lactobionic and gluconic acid complexes of FeII and FeIII; control of oxidation pathways by an organ transplantation preservant. J. Inorg. Biochem. 1993, 49, 23–48. [Google Scholar] [CrossRef]
- Mossad, S.B.; Macknin, M.L.; Mendendorp, S.V.; Mason, P. Zinc gluconate lozenges for treating the common cold. A randomized, double-blind, placebo-controlled study. Ann. Intern. Med. 1996, 125, 81–88. [Google Scholar] [CrossRef]
- Roxas, M.; Jurenka, J. Colds and Influenza: A Review of Diagnosis and Conventional, Botanical, and Nutritional Considerations. Altern. Med. Rev. 2007, 12, 25–48. Available online: https://anaturalhealingcenter.com/documents/Thorne/articles/Influenza12-1.pdf (accessed on 16 April 2025).
- Zeichner, J.A. Cosmeceuticals for the Treatment of Acne Vulgaris In Cosmeceuticals and Cosmetic Practice; John Wiley & Sons: Chichester, UK, 2013; pp. 209–217. [Google Scholar] [CrossRef]
- Morelli, V.; Calmet, E.; Jhingade, V. Alternative Therapies for Common Dermatologic Disorders, Part 2. Prim. Care Clin. Off. Pr. 2010, 37, 285–296. [Google Scholar] [CrossRef]
- Mycielska, M.E.; Dettmer, K.; Rümmele, P.; Schmidt, K.; Prehn, C.; Milenkovic, V.M.; Jagla, W.; Madej, M.G.; Lantow, M.; Schladt, M.; et al. Extracellular citrate affects critical elements of cancer cell metabolism and supports cancer development in vivo. Cancer Res. 2018, 78, 2513–2523. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Monosaccharides, Disaccharides, and Related Ingredients as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 5S–38S. [Google Scholar] [CrossRef]
- Woźniak, B.; Chudzińska, J.; Szczyglewska, P.; Nowak, I.; Feliczak-Guzik, A. Optimization of the Composition of a Cosmetic Formulation Containing Tremella fuciformis Extract (Fungi). Cosmetics 2023, 10, 82. [Google Scholar] [CrossRef]
- Green, B.A. Cosmeceutical Uses and Benefits of Alpha, Poly and Bionic Hydroxy Acids. In Cosmeceuticals and Cosmetic Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 67–80. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Lu, C.; Huang, Z. Effects of sodium gluconate on early hydration and mortar performance of Portland cement-calcium aluminate cement-anhydrite binder. Constr. Build. Mater. 2017, 157, 1065–1073. [Google Scholar] [CrossRef]
- Dai, L.; Lian, Z.; Zhang, R.; Nawaz, A.; ul Haq, I.; Zhou, X.; Xu, Y. Multi-strategy in production of high titer gluconic acid by the fermentation of concentrated cellulosic hydrolysate with Gluconobacter oxydans. Ind. Crops Prod. 2022, 189, 115748. [Google Scholar] [CrossRef]
- Qi, H.; Ma, B.; Tan, H.; Li, C.; Zhi, Z.; Wang, H.; Liu, X.; Yang, Q. A review of zinc-based battery from alkaline to acid. J. Mol. Model. 2020, 26, 45. [Google Scholar] [CrossRef]
- Seymour, D.J.; Sanz-Fernandez, M.V.; Daniel, J.B.; Martín-Tereso, J.; Doelman, J. Effects of supplemental calcium gluconate embedded in a hydrogenated fat matrix on lactation, digestive, and metabolic variables in dairy cattle. J. Dairy Sci. 2021, 104, 7845–7855. [Google Scholar] [CrossRef]
- McKnight, L.L.; Doelman, J.; Carson, M.; Waterman, D.F.; Metcalf, J.A. Effect of hydrogenated fat-embedded calcium gluconate on lactation performance in dairy cows. Can. J. Anim. Sci. 2019, 99, 563–569. [Google Scholar] [CrossRef]
- Leonhard-Marek, S.; Becker, G.; Breves, G.; Schröder, B. Chloride, Gluconate, Sulfate, and Short-Chain Fatty Acids Affect Calcium Flux Rates Across the Sheep Forestomach Epithelium. J. Dairy Sci. 2007, 90, 1516–1526. [Google Scholar] [CrossRef]
- Doelman, J.; McKnight, L.L.; Carson, M.; Nichols, K.; Waterman, D.F.; Metcalf, J.A. Postruminal infusion of calcium gluconate increases milk fat production and alters fecal volatile fatty acid profile in lactating dairy cows. J. Dairy Sci. 2019, 102, 1274–1280. [Google Scholar] [CrossRef]
- Kislyakova, E.M.; Vorobyova, S.L.; Kokonov, S.I. Influence of innovative calcium-containing additive on growth and development of heifer replacement. IOP Conf. Ser. Earth Environ. Sci. 2019, 315, 062020. [Google Scholar] [CrossRef]
- Zheng, L.; Hao, X.; Liu, Z.; Peng, H.; Chen, J.; Huang, W.; Yu, F. Foliar spraying of potassium gluconate promotes the synthesis of the seed oil of Styrax tonkinensis. J. Am. Oil Chem. Soc. 2023, 100, 623–634. [Google Scholar] [CrossRef]
- Magalhães Júnior, A.I.; Soccol, C.R.; Camara, M.C.; Aulestia, D.T.M.; de Souza Vandenberghe, L.P.; de Carvalho, J.C. Challenges in the production of second-generation organic acids (potential monomers for application in biopolymers). Biomass Bioenergy 2021, 149, 106092. [Google Scholar] [CrossRef]
- Saulnier, B.; Coudane, J.; Garreau, H.; Vert, M. Hydroxyl-bearing poly(α-hydroxy acid)-type aliphatic degradable polyesters prepared by ring opening (co)polymerization of dilactones based on glycolic, gluconic and l-lactic acids. Polymer 2006, 47, 1921–1929. [Google Scholar] [CrossRef]
- Saulnier, B.; Ponsart, S.; Coudane, J.; Garreau, H.; Vert, M. Lactic acid-based functionalized polymers via copolymerization and chemical modification. Macromol. Biosci. 2004, 4, 232–237. [Google Scholar] [CrossRef]
- Abtew, E.; Ezra, A.; Basu, A.F.; Domb, A.J. Biodegradable Poly(Acetonide Gluconic Acid) for Controlled Drug Delivery. Biomacromolecules 2019, 20, 2934–2941. [Google Scholar] [CrossRef]
- Lim, H.Y.; Dolzhenko, A.V. Gluconic acid aqueous solution: A bio-based catalytic medium for organic synthesis. Sustain. Chem. Pharm. 2021, 21, 100443. [Google Scholar] [CrossRef]
- Contreras-Esquivel, J.C.; Vasquez-Mejia, M.-J.; Sañudo-Barajas, A.; Vazquez-Vuelvas, O.F.; Galindo-Musico, H.; Velez-de-la-Rocha, R.; Perez-Cruz, C.; Balagurusamy, N. Gluconic Acid as a New Green Solvent for Recovery of Polysaccharides by Clean Technologies. In Alternative Solvents for Natural Products Extraction, Green Chemistry and Sustainable Technology; Chemat, F., Abert Vian, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2014; pp. 237–251. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green. Chem. 2011, 13, 2204. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, B.; Li, M.; Gu, Y. Gluconic acid aqueous solution: A task-specific bio-based solvent for ring-opening reactions of dihydropyrans. Tetrahedron 2013, 69, 1057–1064. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- CORE. Gluconic Acid and Its Derivatives—OECD SIDS. Available online: https://core.ac.uk/download/pdf/24065748.pdf (accessed on 26 February 2025).
- Mao, Y.; Jie, Y.; Zhi-hua, S.; Hui, C. Ferrous-gluconic acid compound tanning: A cleaner chrome-free tanning system. J. Am. Leather Chem. Assoc. 2013, 108, 257–265. [Google Scholar]
- Rezanezhad, S.; Nazarnezhad, N.; Resalati, H.; Zabihzadeh, S.M. The use of gluconic acid as an additive in magnetic paper. BioResources 2021, 17, 342–354. [Google Scholar] [CrossRef]
- Survila, A.; Mockus, Z.; Kanapeckaite, S.; Pileckiene, J.; Stalnionis, G. Cathodic processes in copper (II) solutions containing gluconic acid. Russ. J. Electrochem. 2011, 47, 129–135. [Google Scholar] [CrossRef]
- Talawat, S.; Ahantharik, P.; Laohawiwattanakul, S.; Premsuk, A.; Ratanapo, S. Considerations on the in-vitro inhibitor effect of kombucha on pseudomonas aeruginosa isolates from female urethral and periurethral area. J. Nat. Sci. 2006, 40, 925–933. [Google Scholar]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef]
- Li, R.; Xu, Y.; Chen, J.; Wang, F.; Zou, C.; Yin, J. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. LWT—Food Sci. Technol. 2022, 155, 112937. [Google Scholar] [CrossRef]
- Ma, J.-L.; Chen, H.-J.; Chung, K.-C.; Wu, Y.-F.; Yen, C.-Y.; Li, W.J.; Lin, H.-C. Effect of sodium gluconate addition on anomalous codeposition of electroplated nickel-iron alloys. Thin Solid. Film. 2024, 794, 140292. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Shi, D.; Fugen, S. Synthesis and application of low-cost layered double hydroxides intercalated by gluconic acid anion for flame retardancy and tensile strength conservation of high filling epoxy resin. J. Colloid. Interface Sci. 2021, 594, 791–801. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ajala, M.A.; Ogunniyi, D.S.; Sunmonu, M.O. Kinetics of gluconic acid production and cell growth in a batch bioreactor by Aspergillus niger using breadfruit hydrolysate. J. Food Process Eng. 2016, 40, e12461. [Google Scholar] [CrossRef]
- Fernandes, S.; Dias, B.; Belo, I.; Lopes, M. Enhancement of gluconic acid production by Aspergillus niger from by-products as glucose source using pressurized air conditions. J. Chem. Technol. Biotechnol. 2023, 98, 2146–2153. [Google Scholar] [CrossRef]
- Dai, L.; Lian, Z.; Fu, Y.; Zhou, X.; Xu, Y.; Zhou, X.; Kuznetsov, B.N.; Jiang, K. Low pH Stress Enhances Gluconic Acid Accumulation with Enzymatic Hydrolysate as Feedstock Using Gluconobacter oxydans. Fermentation 2023, 9, 278. [Google Scholar] [CrossRef]
- Lu, F.; Ping, K.; Wen, L.; Zhao, W.; Wang, Z.; Chu, J.; Zhuang, Y. Enhancing Gluconic Acid Production by Controlling the Morphology of Aspergillus niger in Submerged Fermentation. Process Biochem. 2015, 50, 1342–1348. [Google Scholar] [CrossRef]
- Dowdells, C.; Jones, R.L.; Mattey, M.; Benčina, M.; Legiša, M.; Mousdale, D.M. Gluconic acid production by Aspergillus terreus. Lett. Appl. Microbiol. 2010, 51, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Belo, I.; Lopes, M. Highly aerated cultures boost gluconic acid production by the yeast-like fungus Aureobasidium pullulans. Biochem. Eng. J. 2021, 175, 108133. [Google Scholar] [CrossRef]
- Fernandes, S.; Dias, B.; Gonçalves, D.A.; Nobre, C.; Belo, I.; Lopes, M. Co-production of Gluconic Acid and Fructo-oligosaccharides by Aureobasidium pullulans from Sugarcane Molasses: Effect of Oxygen Transfer Rate in Stirred Tank and Airlift Bioreactors. Food Bioprocess. Technol. 2023, 17, 1321–1334. [Google Scholar] [CrossRef]
- Cañete-Rodríguez, A.M.; Santos-Dueñas, I.M.; Torija-Martínez, M.J.; Mas, A.; Jiménez-Hornero, J.E.; García-García, I. Preparation of a pure inoculum of acetic acid bacteria for the selective conversion of glucose in strawberry purée into gluconic acid. Food Bioprod. Process. 2015, 96, 35–42. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Wei, D.; Shi, J.; Kim, C.H.; Jiang, B.; Han, Z.; Hao, J. Gluconic acid production by gad mutant of Klebsiella pneumoniae. World J. Microbiol. Biotechnol. 2016, 32, 132. [Google Scholar] [CrossRef]
- Purane, N.K.; Sharma, S.K.; Topre, S.D.; Panikar, S.S.; Labade, D.S. To study the various parameters for bioconversion of glucose to gluconic acid by Penicillium chrysogenum in submerged culture. Recent. Res. Sci. Technol. 2011, 3, 88–91. Available online: https://core.ac.uk/download/pdf/236009230.pdf (accessed on 26 February 2025).
- Ahmed, A.S.; Farag, S.S.; Hassan, I.A.; Botros, H.W. Production of gluconic acid by using some irradiated microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 374–380. [Google Scholar] [CrossRef]
- Han, X.; Liu, G.; Pan, Y.; Song, W.; Qu, Y. Consolidated bioprocessing for sodium gluconate production from cellulose using Penicillium oxalicum. Bioresour. Technol. 2018, 251, 407–410. [Google Scholar] [CrossRef]
- Folle, A.B.; Baschera, V.M.; Vivan, L.T.; Carra, S.; Polidoro, T.A.; Malvessi, E.; da Silveira, M.M. Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Bioprocess. Biosyst. Eng. 2017, 41, 185–194. [Google Scholar] [CrossRef]
- Zhang, H.; Toshima, N. Glucoseoxidation using Au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 2013, 3, 268–278. [Google Scholar] [CrossRef]
- Bin, D.; Wang, H.; Li, J.; Wang, H.; Yin, Z.; Kang, J.; He, B.; Li, Z. Controllable Oxidation of Glucose to Gluconic Acid and Glucaric Acid Using an Electrocatalytic Reactor. Electrochim. Acta 2014, 130, 170–178. [Google Scholar] [CrossRef]
- Okatsu, H.; Kinoshita, N.; Akita, T.; Ishida, T.; Haruta, M. Deposition of gold nanoparticles on carbons for aerobic glucose oxidation. Appl. Catal. A Gen. 2009, 369, 8–14. [Google Scholar] [CrossRef]
- Bao, J.; Furumoto, K.; Fukunaga, K.; Nakao, K. A Kinetic Study on Air Oxidation of Glucose Catalyzed by Immobilized Glucose Oxidase for Production of Calcium Gluconate. Biochem. Eng. J. 2001, 8, 91–102. [Google Scholar] [CrossRef]
- Liu, A.; Huang, Z.; Wang, X. Efficient Oxidation of Glucose into Gluconic Acid Catalyzed by Oxygen-Rich Carbon Supported Pd Under Room Temperature and Atmospheric Pressure. Catal. Lett. 2018, 148, 2019–2029. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Chi, Q.; Liu, X.; Chen, L. Cellulose-supported Pd nanoparticles: Effective for the selective oxidation of glucose into gluconic acid. Polym. Bull. 2020, 77, 1003–1014. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, M.; Shen, J.; Yan, W.; He, L.; Thapa, P.S.; Ren, S.; Subramaniam, B.; Chaudhari, R.V. Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. J. Catal. 2015, 330, 323–329. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 1994, 19, 247–283. [Google Scholar] [CrossRef]
- Cattaneo, S.; Stucchi, M.; Villa, A.; Prati, L. Gold Catalysts for the Selective Oxidation of Biomass-Derived Products. ChemCatChem 2019, 11, 309–323. [Google Scholar] [CrossRef]
- Karski, S.; Paryjczak, T.; Witonñska, I. Selective Oxidation of Glucose to Gluconic Acid over Bimetallic Pd–Me Catalysts (Me = Bi, Tl, Sn, Co). Kinet. Catal. 2003, 44, 618–622. [Google Scholar] [CrossRef]
- Witońska, I.; Frajtak, M.; Karski, S. Selective oxidation of glucose to gluconic acid over Pd–Te supported catalysts. Appl. Catal. A Gen. 2011, 401, 73–82. [Google Scholar] [CrossRef]
- Sandu, M.P.; Kovtunov, M.A.; Baturin, V.S.; Oganov, A.R.; Kurzina, I.A. Influence of the Pd : Bi ratio on Pd-Bi/Al2O3 catalysts: Structure, surface and activity in glucose oxidation. Phys. Chem. Chem. Phys. 2021, 23, 14889–14897. [Google Scholar] [CrossRef]
- Sandu, M.P.; Kovtunov, M.A.; Gromov, N.V.; Kurzina, I.A. Effects of external parameters and mass-transfer on the glucose oxidation process catalyzed by Pd–Bi/Al2O3. New J. Chem. 2021, 45, 22289–22298. [Google Scholar] [CrossRef]
- Biswas, S.; Pal, A.; Pal, T. Supported metal and metal oxide particles with proximity effect for catalysis. RSC Adv. 2020, 10, 35449–35472. [Google Scholar] [CrossRef]
- Pu, T.; Zhang, W.; Zhu, M. Engineering Heterogeneous Catalysis with Strong Metal–Support Interactions: Characterization, Theory and Manipulation. Angew. Chem. Int. Ed. 2022, 62, e202212278. [Google Scholar] [CrossRef]
- Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-Atom Catalysts Based on the Metal-Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. [Google Scholar] [CrossRef]
- Megías-Sayago, C.; Ivanova, S.; López-Cartes, C.; Centeno, M.A.; Odriozola, J.A. Gold catalysts screening in base-free aerobic oxidation of glucose to gluconic acid. Catal. Today 2017, 279, 148–154. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, X.; Iqbal, S.; Miedziak, P.J.; Edwards, J.K.; Armstrong, R.D.; Morgan, D.J.; Wang, J.; Hutchings, G.J. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catal. Sci. Technol. 2016, 6, 107–117. [Google Scholar] [CrossRef]
- Qi, P.; Chen, S.; Chen, J.; Zheng, J.; Zheng, X.; Yuan, Y. Catalysis and Reactivation of Ordered Mesoporous Carbon-Supported Gold Nanoparticles for the Base-Free Oxidation of Glucose to Gluconic Acid. ACS Catal. 2015, 5, 2659–2670. [Google Scholar] [CrossRef]
- Delidovich, I.V.; Moroz, B.L.; Taran, O.P.; Gromov, N.V.; Pyrjaev, P.A.P.A.P.A.; Prosvirin, I.P.; Bukhtiyarov, V.I.; Parmon, V.N. Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: Impact of the mass-transfer processes on the overall kinetics. Chem. Eng. J. 2013, 223, 921–931. [Google Scholar] [CrossRef]
- Liu, M.; Jin, X.; Zhang, G.; Xia, Q.; Lai, L.; Wang, J.; Zhang, W.; Sun, Y.; Ding, J.; Yan, H.; et al. Bimetallic AuPt/TiO2 Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O2. ACS Catal. 2020, 10, 10932–10945. [Google Scholar] [CrossRef]
- Zhuge, Y.; Fan, G.; Lin, Y.; Yang, L.; Li, F. A hybrid composite of hydroxyapatite and Ca–Al layered double hydroxide supported Au nanoparticles for highly efficient base-free aerobic oxidation of glucose. Dalton Trans. 2019, 48, 9161–9172. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, D.; Sun, Y.; Zhou, Z.; Du, Y.; Du, Y.; Li, Y.; Liu, M.; Zhang, Y.; Shen, J.; et al. Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose. Chin. J. Catal. 2020, 41, 1320–1336. [Google Scholar] [CrossRef]
- Arias, P.L.; Cecilia, J.A.; Gandarias, I.; Iglesias, J.; Granados, M.L.; Mariscal, R.; Morales, G.; Moreno-Tost, R.; Maireles-Torres, P. Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catal. Sci. Technol. 2020, 10, 2721–2757. [Google Scholar] [CrossRef]
- Wenkin, M.; Ruiz, P.; Delmon, B.; Devillers, M. The role of bismuth as promoter in Pd–Bi catalysts for the selective oxidation of glucose to gluconate. J. Mol. Catal. A-Chem. 2002, 180, 141–159. [Google Scholar] [CrossRef]
- Khawaji, M.; Zhang, Y.; Loh, M.; Graça, I.; Ware, E.; Chadwick, D. Composition dependent selectivity of bimetallic Au-Pd NPs immobilised on titanate nanotubes in catalytic oxidation of glucose. Appl. Catal. B Environ. 2019, 256, 117799. [Google Scholar] [CrossRef]
- Megías-Sayago, C.; Bobadilla, L.F.; Ivanova, S.; Penkova, A.; Centeno, M.A.; Odriozola, J.A. Gold catalyst recycling study in base-free glucose oxidation reaction. Catal. Today 2018, 301, 72–77. [Google Scholar] [CrossRef]
- Delidovich, I. Toward understanding base-catalyzed isomerization of saccharides. ACS Catal. 2023, 13, 2250–2267. [Google Scholar] [CrossRef]
- Fischer, M.; Drabo, P.; Delidovich, I. Study of base-catalyzed isomerization of d-glucose with a focus on reaction kinetics. React. Kinet. Mech. Catal. 2022, 135, 2357–2377. [Google Scholar] [CrossRef]
- Antolini, E. External abiotic glucose fuel cells. Sustain. Energy Fuels 2021, 5, 5038–5060. [Google Scholar] [CrossRef]
- Schlegel, N.; Bagger, A.; Rossmeisl, J.; Arenz, M. Elucidating the Reaction Pathway of Glucose Electrooxidation to Its Valuable Products: The Influence of Mass Transport and Electrode Potential on the Product Distribution. J. Phys. Chem. 2023, 127, 18609–18618. [Google Scholar] [CrossRef]
- Rafaïdeen, T.; Baranton, S.; Coutanceau, C. Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Appl. Catal. 2019, 243, 641–656. [Google Scholar] [CrossRef]
- Moggia, G.; Kenis, T.; Daems, N.; Breugelmans, T. Electrochemical Oxidation of d-Glucose in Alkaline Medium: Impact of Oxidation Potential and Chemical Side Reactions on the Selectivity to d-Gluconic and d-Glucaric Acid. ChemElectroChem 2020, 7, 86–95. [Google Scholar] [CrossRef]
- Pomilla, F.R.; García-López, E.I.; Marcì, G.; Palmisano, L.; Parrino, F. Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents. Mater. Today Sustain. 2021, 13, 100071. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Photocatalytic oxidation of glucose in water to value-added chemicals by zinc oxide-supported cobalt thioporphyrazine. Catal. Sci. Technol. 2019, 9, 6909–6919. [Google Scholar] [CrossRef]
- Roongraung, K.; Chuangchote, S.; Laosiripojana, N. Enhancement of Photocatalytic Oxidation of Glucose to Value-Added Chemicals on TiO2 Photocatalysts by A Zeolite (Type Y) Support and Metal Loading. Catalysts 2020, 10, 423. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Magdziarz, A.; Bielejewska, A. High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts. Bioresour. Technol. 2011, 102, 11254–11257. [Google Scholar] [CrossRef]
- Chen, R.; Yang, C.; Zhang, Q.; Zhang, B.; Deng, K. Visible-light-driven selective oxidation of glucose in water with H-ZSM-5 zeolite supported biomimetic photocatalyst. J. Catal. 2019, 374, 297–305. [Google Scholar] [CrossRef]
- Dubinina, T.V.; Borisova, N.E.; Sedova, M.V.; Tomilova, L.G.; Furuyama, T.; Kobayashi, N. Synthesis and spectral properties of nonclassical binuclear thienoporphyrazines. Dye. Pigment. 2015, 117, 1–6. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Yang, C.; Zhang, Z.; Zhang, B.; Deng, K. Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres. J. Environ. Sci. 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Highly selective oxidation of glucose to gluconic acid and glucaric acid in water catalyzed by an efficient synergistic photocatalytic system. Catal. Sci. Technol. 2020, 10, 2231–2241. [Google Scholar] [CrossRef]
- Zhang, Q.; Ge, Y.; Yang, C.; Zhang, B.; Deng, K. Enhanced photocatalytic performance for oxidation of glucose to value-added organic acids in water using iron thioporphyrazine modified SnO2. Green. Chem. 2019, 21, 5019–5029. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, X.; Ge, Y.; Yang, C.; Zhang, B.; Deng, K. Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J. Catal. 2020, 388, 11–19. [Google Scholar] [CrossRef]
- Bai, X.; Hou, Q.; Qian, H.; Nie, Y.; Xia, T.; Lai, R.; Yu, G.; Rehman, M.L.U.; Xie, H.; Ju, M. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl. Catal. B Environ. 2022, 303, 120895. [Google Scholar] [CrossRef]
- Zu, M.; Zhou, X.; Zhang, S.; Qian, S.; Li, D.-S.; Liu, X.; Zhang, S. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. J. Mater. Sci. Technol. 2021, 78, 202–222. [Google Scholar] [CrossRef]
- Da Vià, L.; Recchi, C.; Davies, T.E.; Greeves, N.; Lopez-Sanchez, J.A. Visible-Light-Controlled Oxidation of Glucose using Titania-Supported Silver Photocatalysts. ChemCatChem 2016, 8, 3475–3483. [Google Scholar] [CrossRef]
- Zhou, B.; Song, J.; Zhang, Z.; Jiang, Z.; Zhang, P.; Han, B. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. Green Chem. 2017, 19, 1075–1081. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, H.; Yu, X.; Hu, J.; Chen, Z. Glucose photorefinery for sustainable hydrogen and value-added chemicals coproduction. Chem. Synth. 2024, 4, 4. [Google Scholar] [CrossRef]
- Asgher, M.; Shahid, M.; Kamal, S.; Iqbal, H.M.N. Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial Biotechnol. J. Mol. Catal. Enzym. 2014, 101, 56–66. [Google Scholar] [CrossRef]
- Amin, F.; Bhatti, H.N.; Bilal, M.; Asgher, M. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int. J. Biol. Macromol. 2017, 95, 974–984. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Parra-Saldivar, R. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci. Total Environ. 2017, 576, 646–659. [Google Scholar] [CrossRef]
- Rehman, S.; Wang, P.; Bhatti, H.N.; Bilal, M.; Asgher, M. Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films. Int. J. Biol. Macromol. 2017, 97, 279–286. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.; Guo, S.; Hu, H.; Wang, W.; Zhang, X. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point. Int. J. Biol. Macromol. 2018, 108, 893–901. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.; Cui, J. Smart chemistry and its application in peroxidase immobilization using different support materials. Int. J. Biol. Macromol. 2018, 119, 278–290. [Google Scholar] [CrossRef]
- Edet, E.; Ntekpe, M.; Omereji, S. Current Trend in Enzyme Immobilization: A Review. Int. J. Mod. Biochem. 2013, 2, 31–49. [Google Scholar]
- Matveeva, V.; Golikova, E.; Lakina, N.; Sulman, A.; Sidorov, A.; Doluda, V.; Karpenkov, A.Y.; Sulman, E. Magnetically separable biocatalyst of D-glucose oxidation. AIP Conf. Proc. 2018, 2022, 020008. [Google Scholar] [CrossRef]
- Jaquish, R.; Reilly, A.K.; Lawson, B.P.; Golikova, E.; Sulman, A.M.; Stein, B.D.; Lakina, N.V.; Tkachenko, O.P.; Sulman, E.M.; Matveeva, V.G.; et al. Immobilized glucose oxidase on magnetic silica and alumina: Beyond magnetic separation. Int. J. Biol. Macromol. 2018, 120, 896–905. [Google Scholar] [CrossRef]
- Haskell, A.K.; Sulman, A.M.; Golikova, E.P.; Stein, B.D.; Pink, M.; Morgan, D.G.; Lakina, N.V.; Karpenkov, A.Y.; Tkachenko, O.P.; Sulman, E.M.; et al. Glucose Oxidase Immobilized on Magnetic Zirconia: Controlling Catalytic Performance and Stability. ACS Omega 2020, 5, 12329–12338. [Google Scholar] [CrossRef]
- Grebennikova, O.V.; Sulman, A.M.; Sidorov, A.I.; Sulman, M.G.; Molchanov, V.P.; Tikhonov, B.B.; Matveeva, V.G. Magnetically separable biocatalysts based on glucose oxidase for d-glucose oxidation. Russ. Chem. Bull. 2022, 71, 524–530. [Google Scholar] [CrossRef]
- DiCosimo, R.; McAuliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial use of immobilized enzymes. Chem. Soc. Rev. 2013, 42, 6437–6474. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Z.; Huang, S.-L.; Hou, J.; Guo, X.-P.; Wang, F.-S.; Sheng, J.-Z. Cell-based and cell-free biocatalysis for the production of d-glucaric acid. Biotechnol. Biofuels 2020, 13, 203. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green. Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- Fischer, K.; Bipp, H.-P. Removal of Heavy Metals from Soil Components and Soils by Natural Chelating Agents. Part II. Soil Extraction by Sugar Acids. In Water, Air, & Soil Pollution; Springer Nature: Cham, Switzerland, 2002; Volume 138, pp. 271–288. [Google Scholar] [CrossRef]
- Javier, A.; Lim, P.J. Zeolite-like Arabinose-based Coordination Polymers: Synthesis and Characterization for Heavy-Metal Sequestration Applications. Winnower 2015, 2, e142709.97833. [Google Scholar] [CrossRef]
- Subramanian, G.; Madras, G. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants. Water Res. 2016, 104, 168–177. [Google Scholar] [CrossRef]
- Johnston, E.R.; Smith, T.N.; Serban, M.A. Nanoparticulate Poly(glucaramide)-Based Hydrogels for Controlled Release Applications. Gels 2017, 3, 17. [Google Scholar] [CrossRef]
- Sakuta, R.; Nakamura, N. Production of Hexaric Acids from Biomass. Int. J. Mol. Sci. 2019, 20, 3660. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Ding, R.-H.; Ge, H.; Zhu, P.-L.; Ma, S.-S.; Zhang, B.; Song, X.-M. Solid-phase extraction of d-glucaric acid from aqueous solution. Sep. Purif. Technol. 2017, 175, 352–357. [Google Scholar] [CrossRef]
- Wu, Y.; Enomoto, Y.; Masaki, H.; Iwata, T. Synthesis of polyamides from sugar derived d-glucaric acid and xylylenediamines. J. Appl. Polym. Sci. 2019, 136, 47255. [Google Scholar] [CrossRef]
- Seo, J. D-Glucaric Acid Based Polymers and Crosslinker: Polyesters Bearing Pendent Hydroxyl Groups and Dissolvable Chemically Crosslinked Gels. Ph.D. Thesis, The University of Akron, Akron, OH, USA, 2019. [Google Scholar]
- Levvy, G.A.; Conchie, J. β-Glucuromdase and the Hydrolysis of Glucuronides. In Glucuronic Acid Free and Combined; Dutton, G.J., Ed.; Academic: New York, NY, USA, 1966; pp. 301–364. [Google Scholar]
- Zoltaszek, R.; Kowalczyk, P.; Kowalczyk, M.C.; Hanausek, M.; Kilianska, Z.M.; Slaga, T.J.; Walaszek, Z. Dietary D-glucarate effects on the biomarkers of inflammation during early post-initiation stages of benzo[a]pyrene-induced lung tumorigenesis in A/J mice. Oncol. Lett. 2011, 2, 145–154. [Google Scholar] [CrossRef]
- Simone, C.B.; Simone, N.L.; Pallante, M.; Simone, C.B. Cancer, Lifestyle Modification and Glucarate. J. Orthomol. Med. 2001, 16, 83–90. [Google Scholar]
- Khaw, B.-A.; Da Silva, J.; Petrov, A.; Hartner, W. Indium 111 antimyosin and Tc-99m glucaric acid for noninvasive identification of oncotic and apoptotic myocardial necrosis. J. Nucl. Cardiol. 2002, 9, 471–481. [Google Scholar] [CrossRef]
- Walaszek, Z.; Hanausek, M.; Szemraj, J.; Adams, A.K. D-glucaric acid as a prospective tumor marker. In Tumor Marker Protocols. Methods in Molecular Medicine™; Hanausek, M., Walaszek, Z., Eds.; Springer: Totowa, NJ, USA, 1998; Volume 14, pp. 487–495. [Google Scholar] [CrossRef]
- Li, J.; Beverly, L.; Gray, B.; Pak, K.; Ng, C. Effect of fructose and glucarate on 18F-fluoroglucaric acid uptake in cancer cells. J. Nucl. Med. 2020, 61, 1220. [Google Scholar]
- Su, H.; Guo, Z.; Wu, X.; Xu, P.; Li, N.; Zong, M.; Lou, W. Efficient Bioconversion of Sucrose to High-Value-Added Glucaric Acid by In Vitro Metabolic Engineering. ChemSusChem 2019, 12, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Zółtaszek, R.; Hanausek, M.; Kiliańska, Z.M.; Walaszek, Z. Biologiczna rola kwasu D-glukarowego i jego pochodnych; potencjalne zastosowanie w medycynie [The biological role of D-glucaric acid and its derivatives: Potential use in medicine]. Postepy Hig. Med. Dosw. 2008, 62, 451–462. Available online: https://www.medicinacomplementar.com.br/biblioteca/pdfs/Cancer/ca-1720.pdf (accessed on 26 February 2025).
- Mehtiö, T.; Toivari, M.; Wiebe, M.G.; Harlin, A.; Penttilä, M.; Koivula, A. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit. Rev. Biotechnol. 2015, 36, 904–916. [Google Scholar] [CrossRef]
- Brighten, J. The Benefits of Calcium D-Glucarate. Available online: https://drbrighten.com/benefits-of-calcium-d-glucarate/ (accessed on 26 February 2025).
- Diamond, G.M.; Murphy, V.; Boussie, T.R. Application of High Throughput Experimentation to the Production of Commodity Chemicals from Renewable Feedstocks. In Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014; pp. 288–309. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.; Yoon, H.; Shin, J.H.; Park, S.; Kwak, H.W.; Ahn, M.-R.; Koo, B.; Choi, I.-G. Glucaric Acid Production from Miscanthus sacchariflorus via TEMPO-Mediated Oxidation with an Efficient Separation System. ACS Omega 2024, 9, 9432–9442. [Google Scholar] [CrossRef]
- Koefod, R.S. Corrosion-Inhibiting Deicer Composition. U.S. Patent 7658861B2, 9 February 2010. [Google Scholar]
- Kiely, D.E.; Hash, K.R. Method of Oxidation Using Nitric Acid. U.S. Patent US9162959B2, 20 October 2015. [Google Scholar]
- Jin, X.; Zhao, M.; Vora, M.; Shen, J.; Zeng, C.; Yan, W.; Thapa, P.S.; Subramaniam, B.; Chaudhari, R. Synergistic Effects of Bimetallic PtPd/TiO2 Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Ind. Eng. Chem. Res. 2016, 55, 2932–2945. [Google Scholar] [CrossRef]
- Zhao, Y.; Zuo, F.; Shu, Q.; Yang, X.; Deng, Y. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2023, 6, e00535-23. [Google Scholar] [CrossRef]
- Moon, T.S.; Yoon, S.-H.; Lanza, A.M.; Roy-Mayhew, J.D.; Prather, K.L.J. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 589–595. [Google Scholar] [CrossRef]
- Moon, T.S.; Dueber, J.E.; Shiue, E.; Prather, K.L. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 2010, 12, 298–305. [Google Scholar] [CrossRef]
- Shiue, E.; Prather, K.L.J. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab. Eng. 2014, 22, 22–31. [Google Scholar] [CrossRef]
- Su, H.-H.; Peng, F.; Ou, X.-Y.; Zeng, Y.-J.; Zong, M.-H.; Lou, W.-Y. Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid. New Biotechnol. 2020, 59, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gong, X.; Wang, C.; Du, G.; Chen, J.; Kang, Z. Production of glucaric acid from myo-inositol in engineered Pichia pastor. Enzym. Microb. Technol. 2016, 91, 8–16. [Google Scholar] [CrossRef]
- Gupta, A.; Hicks, M.A.; Manchester, S.P.; Prather, J. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol. J. 2016, 11, 1201–1208. [Google Scholar] [CrossRef]
- Toivari, M.; Vehkomäki, M.-L.; Ruohonen, L.; Penttilä, M.; Wiebe, M.G. Production of d-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae. Biotechnol. Lett. 2024, 46, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Mehltretter, C.L.; Rist, C.E. Oxidation, Saccharic and Oxalic Acids by the Nitric Acid Oxidation of Dextrose. J. Agric. Food Chem. 1953, 1, 779–783. [Google Scholar] [CrossRef]
- Mustakas, G.C.; Slotter, R.L.; Zipf, R.L. Pilot plant potassium acid saccharate by nitric acid oxidation of dextrose. Ind. Eng. Chem. 1954, 46, 427–434. [Google Scholar] [CrossRef]
- Smith, T.N.; Hash, K.; Davey, C.-L.; Mills, H.; Williams, H.; Kiely, D.E. Modifications in the nitric acid oxidation of D-glucose. Carbohydr. Res. 2012, 350, 6–13. [Google Scholar] [CrossRef]
- Grigor’eva, I.A.; Chernaya, S.S.; Trusov, S.R. Oxidation of D-Glucose to D-Gluconic and D-Glucaric Acids Catalyzed by Sodium Nitrite. Russ. J. Appl. Chem. 2001, 74, 2021–2026. [Google Scholar] [CrossRef]
- Merbouh, N.; Thaburet, J.F.; Ibert, M.; Marsais, F.; Bobbitt, J.M. Facile Nitroxide-mediated Oxidations of D-Glucose to D-Glucaric Acid. Carbohydr. Res. 2001, 336, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Thaburet, J.-F.; Merbouh, N.; Ibert, M.; Marsais, F.; Queguiner, G. TEMPO-mediated oxidation of maltodextrins and D-glucose: Effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates. Carbohydrate Res. 2001, 330, 21–29. [Google Scholar] [CrossRef]
- Merbouh, N.; Bobbitt, J.M.; Brückner, C. 4-AcNH-TEMPO-Catalyzed oxidation of aldoses to aldaric acids using chlorine or bromine as terminal oxidants. J. Carbohydr. Chem. 2002, 21, 65–77. [Google Scholar] [CrossRef]
- Onda, A. Production of Platform Chemicals from Sustainable Resources; Biofuels and Biorefineries; Springer: Singapore, 2017; pp. 207–230. [Google Scholar]
- Besson, M.; Lahmer, F.; Gallezot, P.; Fuertès, P.; Flèche, G. Catalytic Oxidation of Glucose on Bismuth-Promoted Palladium Catalysts. J. Catal. 1995, 152, 116–121. [Google Scholar] [CrossRef]
- Lee, J.; Saha, B.; Vlachos, D.G. Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water. Green. Chem. 2016, 18, 3815–3822. [Google Scholar] [CrossRef]
- Moggia, G.; Schalck, J.; Daems, N.; Breugelmans, T. Two-steps synthesis of D-glucaric acid via D-gluconic acid by electrocatalytic oxidation of D-glucose on gold electrode: Influence of operational parameters. Electrochim. Acta 2021, 374, 137852. [Google Scholar] [CrossRef]
- Tian, Z.; Da, Y.; Wang, M.; Dou, X.; Cui, X.; Chen, J.; Jiang, R.; Xi, S.; Cui, B.; Luo, Y.; et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nat. Commun. 2023, 14, 142. [Google Scholar] [CrossRef]
- Ibert, M.; Fuertès, P.; Merbouh, N.; Fiol-Petit, C.; Feasson, C.; Marsais, F. Improved preparative electrochemical oxidation of d-glucose to d-glucaric acid. Electrochim. Acta 2010, 55, 3589–3594. [Google Scholar] [CrossRef]
Application | Additive | Functional Properties | Ref. |
---|---|---|---|
Food industry (food additives: E574–580) | D-gluconic acid (E-574) | Acidity regulator. Raising agent. Gluconic acid reduces the turbidity of dry diluted skim milk. | [34,40,41,42,43,44,45] |
Glucono-δ-lactone (E-575) | Glucono-δ-lactone is a leavening agent for preparing bakery products, as well as for reducing the absorption of fatty compounds. Glucono-δ-lactone is also added to yogurt, cottage cheese, meat, and pickles as an acidity regulator and to tofu for protein coagulation. Sequestering agent. | [34,46,47] | |
Sodium gluconate (E-576) | Sequestering agent. Stabilizer. Thickener. | [34] | |
Potassium gluconate (E-577) | Acidity regulator. Yeast nutrient. Nutritional supplement. | [34] | |
Calcium gluconate (E-578) | Acidity regulator. Hardener. Sequestering agent. Nutritional supplement. Calcium therapy. Animal nutrition. | [34,47] | |
Iron gluconate (E-579) | Color preservative. Stabilizer. Nutritional supplement. | [34] | |
Magnesium gluconate (E-580) | Magnesium gluconate is used as an acidity regulator in food products. Firming agent. Yeast nutrient. Nutrient supplement. | [34] | |
Cleaning agents (household chemicals) | D-gluconic acid | Gluconic acid replaces toxic phosphates that are harmful to the environment in dishwashing detergents and washing powders. Gluconic acid is used in water conditioning systems to remove alkaline and biofilms. Gluconic acid effectively cleans mineral deposits, rust, and scale from the surfaces of industrial equipment made of aluminum, steel, and metal alloys. | [34,41,42,43,44,45] |
Sodium gluconate | It is a component of washing powders and household detergents and bleaches, enhances the action of other components, reduces their corrosive properties, and improves solubility in water. It is used in professional alkaline cleaning agents for the industrial removal of organic and inorganic sediment, rust, carbon, and silicate deposits from glass surfaces and the cleaning of aluminum surfaces (e.g., the facades of buildings, aircraft, and containers). Alkaline solutions of sodium gluconate at a temperature of 368–373 K are an effective means for the rapid removal of paint and varnish without damaging the underlying surfaces. | [41,42,43,44,45] | |
Pharmaceutical industry and medicine | Calcium gluconate | Calcium gluconate in the form of a gel is used to heal burns caused by HCL. Calcium gluconate vaccinations are used for severe cases to avoid deep tissue necrosis, thereby driving industry growth. Calcium gluconate is used as a biologically neutral Ca2+ carrier and to replenish calcium deficiency in the human body. | [39,42,45,48] |
Copper gluconate | Copper gluconate is used as a biologically neutral carrier of Cu2+ and to replenish copper deficiency in the human body. | [48] | |
Potassium gluconate | Potassium gluconate is used as a biologically neutral K+ carrier and to replenish potassium deficiency in the human body. Complexes of Na and K gluconates are included in solutions for preserving transplanted organs during their transportation. | [49,50] | |
Zinc gluconate | Zinc gluconate is used as a biologically neutral carrier of Zn2+ and to replenish zinc deficiency in the human body. Zinc gluconate contributes to strengthening the immune system, relieving cold symptoms and reducing their duration. Zinc gluconate has been shown to be effective in treating skin conditions, including acne, and healing wounds and cuts. Zinc gluconate is used as an ingredient in the treatment of various conditions caused by zinc deficiency, such as delayed puberty, mental sluggishness, skin changes, and susceptibility to infections. | [45,47,48,51,52,53,54] | |
Sodium gluconate | Complexes of sodium and potassium gluconates are included in solutions for preserving transplanted organs during their transportation. Sodium gluconate complexes have demonstrated excellent anticancer activity. The in vivo application of gluconate has been found to specifically and irreversibly inhibit pmCiC (plasma membrane citrate transporter), thereby reducing subcutaneous pancreatic tumor growth and changing tissue metabolic characteristics. | [49,55] | |
Iron gluconate | Iron gluconate is used as a biologically neutral carrier of Fe2+ and to replenish iron deficiency in the human body. | [47,48] | |
Cosmetics | Gluconic acid | Gluconic acid is used in cosmetics as a divalent metal chelator, a preservative, and a pH regulator and is used in skincare products as a skin-protecting and fragrance agent. | [36,47,56,57,58] |
Calcium gluconate | These gluconates are used in skincare products as a protective and fragrance agent. | [47] | |
Potassium gluconate | |||
Sodium gluconate | |||
Glucono-δ-lactone | Glucono-δ-lactone is used in cosmetics as a divalent metal chelator, a preservative, and a pH regulator. Owing to its large molecule size, glucono-δ-lactone does not penetrate into the deep layers of the skin, thus minimizing the number of side effects. It is used as an active ingredient to combat aging and acne, and it contributes to building a natural protective skin barrier. Glucono-δ-lactone protects the skin from dehydration and free radicals and has a light peeling effect, which makes it suitable for use in skincare products. | [35,46,58] | |
Building and construction industry | Sodium gluconate | Sodium gluconate is added to cement to better retain the dispersion, to reduce the setting rate of cement mortars, and, as a result, to release less reaction heat, which reduces the risk of cracking when the cement dries. | [59,60,61] |
Gluconic acid | Gluconic acid is used as an additive in cement to control the setting and increase the strength and water resistance. | [44] | |
Agricultural industry | Calcium gluconate | Calcium gluconate is used as a feed additive for animals, increasing the milk yield in cows and improving the morphology and function of the gastrointestinal tract due to the stimulation of epithelial cell proliferation and the improvement in the intestinal barrier function of livestock. Calcium gluconate promotes weight gain. | [45,62,63,64,65,66,67] |
Iron gluconate | Iron gluconate is a foliar fertilizing agent in gardening. | [45] | |
Potassium gluconate | Spraying leaves with potassium gluconate enhances the photosynthesis of leaves in the light and dark phases and promotes the development and intensive growth of seeds of the Styrax tonkinensis species. Potassium gluconate enhances oil formation in seeds. | [67] | |
Biopolymers | Gluconic acid | Gluconic acid acts as a monomer for the synthesis of biodegradable copolymers, such as poly(glycolic acid-co-gluconic acid), poly(L-lactic acid-co-glycolic acid-co-gluconic acid), and poly(acetonide gluconic acid), which can be used for controlled drug delivery. | [68,69,70,71] |
“Green solvent” | Gluconic acid | A 50% aqueous solution has been applied as an environmentally friendly catalytic medium for organic synthesis and a “green” solvent. | [72,73,74,75,76] |
Textile industry | Sodium gluconate | Sodium gluconate prevents iron precipitation. | [44] |
Glucono-δ-lactone | Glucono-δ-lactone is a fabric-bleaching stabilizer. | [77] | |
Leather industry | Gluconic acid | A mixture of Fe2+ and gluconic acid in a molar ratio of 1:3 promotes the formation of a compound that increases the thermal stability of collagen and the aging time during leather tanning. | [78] |
Miscellaneous | Gluconic acid | Low concentrations of gluconic acid are used in water recirculation systems, such as cooling towers and heat exchangers. | [43] |
The addition of gluconic acid to the magnetic paper composition contributes to a reduction in the size of nanomagnetite particles and, as a result, to the manifestation of superparamagnetic properties. Gluconic acid enhances mechanical strength and increases the brightness and transparency of magnetic paper. | [79] | ||
Gluconic acid is a component of copper-bearing solutions, used in cathodic processes of copper electrodeposition. | [80] | ||
Gluconic acid exhibits antibacterial properties in fermented teas, including Kombucha. | [81,82,83] | ||
Sodium gluconate | Sodium gluconate is used as an environmentally friendly component for the galvanic codeposition of nickel-iron alloy. Composites that are based on epoxy resin with precipitated layered double hydroxides, intercalated with gluconic acid anion, have the potential for use as environmentally friendly flame antipyrenes. | [84,85] |
Microorganisms | Carbon Source | Conditions | Yield | Mode | Ref. |
---|---|---|---|---|---|
Aspergillus niger | Breadfruit hydrolysate (120 g/L) | T = 303 K, 72 h, pH of 5.5, agitated at 300 rpm, 2 vvm aeration rate. | 109.95 g/L (88.70%) | Batch bioreactor | [86] |
Aspergillus niger MUM 92.13 | Pure glucose (100 g/L) | T = 301 K, 24 h, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure. | 70 g/L (0.97 g/g) | Batch stirred tank reactor | [87] |
Sugarcane molasses (ScM): 100 g/L of glucose + sucrose | T = 301 K, 24 h, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure. | 78 g/L (1.23 g/g) | Batch stirred tank reactor | ||
T = 301 K, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure. One pulse of ScM (to attain 40 g/L of sucrose + glucose in the medium) is added to the batch culture after 48 h of cultivation. | 114 g/L (1.3 g/g) | Step-wise fed-batch (1 pulse) | |||
T = 301 K, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure. Two pulses of ScM (to attain 40 g/L of sucrose + glucose in the medium) are added to the batch culture after 48 h and 80 h of cultivation. | 140 g/L (1.3 g/g) | Step-wise fed-batch (2 pulses) | |||
Grape must (GM): 60 g/L of glucose + fructose | T = 301 K, 24 h, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure | 36 g/L (1.34 g/g) | Batch stirred tank reactor | ||
T = 301 K, pH of 6, stirring at 400 rpm, 1 vvm aeration rate, 4 bar air pressure. One pulse of GM (to attain 15 g/L of glucose in the medium) is added after 24 h to the batch culture | 47 g/L (0.91 g/g) 50 g/L (0.80 g/g) | Step-wise fed-batch (1 pulse) | |||
T = 301 K, pH of 6, stirring 400 at rpm, 1 vvm aeration rate, 4 bar air pressure. Two pulses of GM (to attain 15 g/L of glucose in the medium) are added after 24 h and 48 h to the batch culture. | Step-wise fed-batch (2 pulses) | ||||
Aspergillus niger AN151 | Pure glucose (330 g/L) | T = 311 K, pH of 5.5, 14.5 h, 0.1 MPa of pressure. Aeration and agitation rates are set at 1.2 vvm and 550 rpm. | 311 g/L (1.05 g/g) | Submerged fermentation | [89] |
Aspergillus terreus | Pure glucose (122.8 g/L) | T = 301 K, pH of 6.5, 144 h. Aeration and agitation rates are set at 1 vvm and 300 rpm. | 92 g/L (0.74 mol/mol·l−1) | Batch fermentation | [90] |
Aureobasidium pullulans NCYC 4012 | Pure glucose (80 g/L) | T = 301 K, pH of 6.5, 72 h. Aeration and agitation rates are set at 1 vvm and 400 rpm. | 0.48 g/g | Batch stirred tank reactor (conventional) | [91] |
T = 301 K, pH of 6.5, 72 h. Aeration and agitation rates are set at 3 vvm and 600 rpm. | 0.76 g/g | ||||
T = 301 K, pH of 6.5, 72 h. Aeration and agitation rates are set at 1 vvm and 600 rpm. T = 301 K, pH of 6.5, 72 h. Aeration and agitation rates are set at 3 vvm and 600 rpm. | 0.78 g/g | ||||
0.99 g/g | |||||
T = 301 K, pH of 6.5, 72 h. Aeration and agitation rates are set at 1 vvm and 400 rpm, 1 bar. | 0.40 g/g | Batch stirred tank reactor (pressurized) | |||
T = 301 K, 6.5 pH, 72 h. Aeration and agitation rates are set at 1 vvm and 400 rpm, 4 bars. | 0.42 g/g | ||||
ScM: 110 ± 10 g/L of glucose + sucrose | T = 301 K, pH of 6.5± 0.5, 96 h. Aeration and agitation rates are set at 1 vvm and 400 rpm at atmospheric pressure. | 0.88 g/g | Batch stirred tank reactor (conventional) | [92] | |
T = 301 K, pH of 6.5 ± 0.5, 96 h. Aeration and agitation rates are set at 1 vvm and 600 rpm, 1 bar air pressure. | 1.08 g/g | Batch stirred tank reactor (conventional) | |||
T = 301 K, pH of 6.5 ± 0.5, 96 h. Aeration and agitation rates are set at 1 vvm and 400 rpm, 1 bar air pressure. | 0.65 g/g | Batch stirred tank reactor (pressurized) | |||
T = 301 K, pH of 6.5 ± 0.5, 96 h. Aeration and agitation rates are set at 1 vvm and 400 rpm, 4 bar air pressure. | 0.83 g/g | ||||
T = 301 K, pH of 6.5 ± 0.5, 168 h. An aeration rate is set at 1 vvm, 1 bar air pressure. | 0.61 g/g | Airlift bioreactor | |||
T = 301 K, pH of 6.5 ± 0.5, 168 h. The aeration rate is set at 2 vvm, 1 bar air pressure. | 0.97 g/g | ||||
Gluconobacter oxydans 621H | Corncob enzymatic hydrolysate (100 g/L) | T = 303 K, pH of 2.5, 3 h. Aeration and agitation rates are set at 1.5 vvm and 220 rpm. | 72.7 g/L (88%) | Batch stirred tank reactor | [88] |
The same, but the pH is 3.5. | 79.6 g/L | ||||
The same, but the pH is 4.5. | 87.3 g/L | ||||
The same, but the pH is 5.5. | 90.3 g/L | ||||
The same, but the pH is 6.5. | 69.0 g/L | ||||
T = 303 K, pH of 5.5, 36 h. Aeration and agitation rates are set at 1.5 vvm and 220 rpm using CaCO3 as a neutralizer | A maximum of 70 g/L at 7 h | ||||
The same, but using NaOH as a neutralizer. | A maximum of 82 g/L at 7.5 h | ||||
The same, but using NH3·OH as a neutralizer. | A maximum of 63 g/L at 7.5 h | ||||
The same without any neutralizers. | A maximum of 96 g/L at 24 h | ||||
Gluconobacter oxydans | Pure glucose (60 g/L) | T = 303 K, pH of 5.5, 36 h. The agitation rate is set at 220 rpm. | A maximum of 32 g/L at 6 h | Batch fermentation in a shaken flask | [60] |
Pure glucose (120 g/L) | A maximum of 80 g/L at 12 h | ||||
Pure glucose (180 g/L) | A maximum of 180 g/L at 24 h | ||||
Pure glucose (240 g/L) | A maximum of 225 g/L at 36 h | ||||
Pure glucose (300 g/L) | A maximum of 159.5 g/L at 36 h | ||||
Concentrated enzymatic hydrolysate (CEH): 60 g/L of glucose | A maximum of 7 g/L at 6 h | ||||
CEH: 120 g/L of glucose | A maximum of 86 g/L at 18 h | ||||
CEH: 180 g/L of glucose | A maximum of 170 g/L at 36 h | ||||
CEH: 240 g/L of glucose | A maximum of 140 g/L at 36 h | ||||
CEH: 300 g/L of glucose | A maximum of 127 g/L at 36 h | ||||
CEH: 180 g/L of glucose | T = 303 K, pH of 5.5, 36 h. The agitation rate is set at 220 rpm. | 109.5 g/L | Batch fermentation in a shaken flask | ||
T = 303 K, pH of 5.5, 18 h. Aeration and agitation rates are set at 3 vvm and 500 rpm. | 132.9 g/L | Air-aerated stirred bioreactor (A-ASB) | |||
T = 303 K, pH of 5.5, 18 h. Aeration and agitation rates are set at 3 vvm and 500 rpm, the gas inlet pressure is maintained at 0.02–0.05 MPa | 181.3 g/L | Supply sealed stirred bioreactor (COS-SSB) | |||
Gluconobacter japonicus CECT 8443 | Strawberry purée (50 g/L of glucose + fructose with a ratio of 1:1) | T = 302 K, pH of 3.35–2.9, 20 h. The agitation rate is set at 500 rpm. | 0.83 g/g (76%) | Batch fermentation | [93] |
Klebsiella pneumoniae | Pure glucose (100 g/L) | T = 310 K, pH of 7 (first-stage fermentation), pH of 5 (second-stage fermentation), 12 h. The agitation rate is set at 500 rpm, bottles of the glucose solution (60% in weight) are added when the glucose level in the fermentation broth decreases to about 10–20 g. | 1 g/g (422 g/L) | Fed-batch fermentation | [94] |
Penicillium chysogenum | Pure glucose (50 g/L) | T = 311 K, pH of 5.5, 96 h. The agitation rate is set at 150 rpm. | 15.6 g/L | Submerged fermentation | [95] |
Pure glucose (100 g/L) | 31.2 g/L | ||||
Pure glucose (150 g/L) | 24 g/L | ||||
Pure glucose (200 g/L) | 20 g/L | ||||
Penicillium frequentans | Glucose (120 g/L) | T = 298 K, the initial pH is 6, 7 days, gamma irradiated (at 0.1 kGy), P. frequentans incubated at 301 K. | 32.13 g/L | Submerged fermentation | [96] |
The same, but T = 303 K. | 42.90 g/L | ||||
The same, but T = 308 K. | 27.15 g/L | ||||
The same, but T = 313 K. | 0 g/L | ||||
T = 303 K, pH of 4, 7 days, gamma irradiated (at 0.1 kGy), P. frequentans incubated at 303 K. | 26.04 g/L | ||||
The same, but the initial pH is 5. | 38.12 g/L | ||||
The same, but the initial pH is 6. | 44.16 g/L | ||||
The same, but the initial pH is 7. | 28.97 g/L | ||||
The same, but the initial pH is 8. | 20.14 g/L | ||||
Grape must (120 g/L of glucose) | T = 303 K, pH of 6, 7 days, gamma irradiated (at 0.1 kGy). | 44.75 g/L | |||
Banana must (120 g/L of glucose) | 47.15 g/L | ||||
Crude molasses (120 g/L of glucose) | 51.18 g/L | ||||
Penicillium puberulum | Glucose (120 g/L) | T = 298 K, the initial pH is 6, 7 days, gamma irradiated (at 0.1 kGy), P. frequentans incubated at 28 °C. | 45.06 g/L | Submerged fermentation | [96] |
The same, but T = 303 K. | 58.18 g/L | ||||
The same, but T = 308 K. | 31.17 g/L | ||||
The same, but T = 313 K. | 0 g/L | ||||
T = 303 K, pH of 4, 7 days, gamma irradiated (at 0.1 kGy), P. frequentans incubated at 303 K. | 32.39 g/L | ||||
The same, but the initial pH is 5. | 40.17 g/L | ||||
The same, but the initial pH is 6. | 58.41 g/L | ||||
The same, but the initial pH is 7. | 42.50 g/L | ||||
The same, but the initial pH is 8. | 30.07 g/L | ||||
Grape must (120 g/L of glucose) | T = 303 K, pH of 6, 7 days, gamma irradiated (at 0.1 kGy). | 52.75 g/L | |||
Banana must (120 g/L of glucose) | 56.37 g/L | ||||
Crude molasses (120 g/L of glucose) | 63.14 g/L | ||||
Penicillium oxalicum 114-2 (CGMCC 5302) | Corn cob residue from xylitol production, 10 g/L of wheat bran, 10 g/L of peptone, 10 g/L of glucose | T is set up to 303 K from 0 to 120 h and then raised up to 318 K after 120 h to 192 h with 20 g/L of the filter paper powder. The agitation rate is set at 200 rpm. | 13.54 g/L | Fed-batch, two-stage temperature control strategy | [97] |
Zymomonas mobilis | Glucose + fructose (400 mmol/L) | T = 312 K, pH of 6.4, 24 h. Aeration and agitation rates are set at 1 vvm and 100 rpm, untreated cells. | 0 mmol/L | Batch stirred tank reactor | [98] |
The same, but cells are treated with 0.5% (v/v) glutaraldehyde. | 356 mmol/L (0.94 mmol/mmol) | ||||
Glucose + fructose (700 mmol/L) | T = 312 K, pH of 6.4, 24 h. Aeration and agitation rates are set at 1 vvm and 100 rpm, untreated cells. | 186 mmol/L (0.29 mmol/mmol) | |||
The same, but cells are treated with 0.5% (v/v) glutaraldehyde. | 620 mmol/L (0.97 mmol/mmol) | ||||
Zymomonas mobilis cells immobilized in glutaraldehyde-cross-linked calcium alginate beads | Glucose + fructose (400 mmol/L) | T = 312 K, pH of 6.4, 24 h. Aeration and agitation rates are set at 1 vvm and 100 rpm. | 355 mmol/L (0.94 mmol/mmol) | ||
Glucose + fructose (700 mmol/L) | T = 312 K, pH of 6.4, 24 h. Aeration and agitation rates are set at 1 vvm and 100 rpm. | 590 mmol/L (0.92 mmol/mmol) |
Catalyst | O2 | T, K | Glucose Concentration | Glu:Me (mol/mol) | t, h | pH | X, % | S, % | Y, % | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1.8 %Pd/C | 0.1 MPa (30 mL/min) | Room | 270 mg (1.5 mmol) | 100 | 2 | - | 100 | 98 | 98 | [103] |
1% Pd/cellulose | 30 mL/min | Room | 180 mg (1 mmol) | 270 | 3 | - | 100 | 91.2 | 91.2 | [104] |
0.5% Pt/TiO2 | 0.1 MPa O2 | 318 | 2.62 g (0.0146 mol) | 5700 | 6 | - | 13.0 | 100 | 13.0 | [105] |
0.5% Pt/TiO2 | 12 | 33.1 | 81.1 | 26.8 | ||||||
0.5% Pt/TiO2 | 24 | 60.9 | 50.0 | 30.4 | ||||||
0.5% Pt-0.5% Cu/TiO2 | 6 | 100 | 37.7 | 37.7 | ||||||
0.5% Pt-0.5% Cu/TiO2 | 12 | 100 | 22.8 | 22.8 | ||||||
0.5% Pt-0.5% Cu/TiO2 | 24 | 100 | 10.0 | 10.0 | ||||||
5% Pd–5% Bi/C | 1 L/min | 333 | 1 M (72 g) | no data | 2 | 9 | 69 | 100 | 69 | [108] |
5% Pd–5% Tl/C | 42 | 50 | 21 | |||||||
5% Pd–5% Sn/C | 37 | 28 | 10 | |||||||
5% Pd–5% Co/C | 21 | 3 | <1 | |||||||
5% Pd/SiO2 | 0.9 L/min. | 333 | 1 M (45 g) | 530 | 2 | 9 | 59.4 | 73.5 | 43.7 | [109] |
5% Pd–0.3% Te/SiO2 | 83.2 | 91.5 | 76.1 | |||||||
5% Pd–0.5% Te/SiO2 | 86.6 | 91.0 | 78.8 | |||||||
5% Pd–1% Te/SiO2 | 100 | 100 | 100 | |||||||
5% Pd–2% Te/SiO2 | 96.2 | 99.7 | 95.9 | |||||||
5% Pd–5% Te/SiO2 | 76.1 | 97.4 | 74.1 | |||||||
5% Pd–8% Te/SiO2 | 48.8 | 95.6 | 46.6 | |||||||
5% Pd/Al2O3 | 48.9 | 87.2 | 42.6 | |||||||
5% Pd–1% Te/Al2O3 | 100 | 100 | 100 | |||||||
5% Pd–2% Te/Al2O3 | 100 | 100 | 100 | |||||||
5% Pd–1% Bi/SiO2 | 63.0 | 78.0 | 49.1 | |||||||
5% Pd–5% Bi/SiO2 | 64.0 | 89.0 | 57.0 | |||||||
5% Pd–8% Bi/SiO2 | 82.0 | 92.0 | 75.4 | |||||||
1.3% Pd/Al2O3 | 10 mL/min | 333 | 0.6 M (3.1 g) | 5000 | 2.5 | 9 | 29.1 | 93.1 | 27.1 | [110] |
3.5% Pd-2.4% Bi/Al2O3 (Pd3:Bi1) | 56.6 | >99.9 | 56.6 | |||||||
2.8%Pd-2.3%Bi/Al2O3 (Pd5:Bi2) | 52.2 | 99.2 | 51.8 | |||||||
2.5%Pd-2.3%Bi/Al2O3 (Pd2:Bi1) | 47.5 | 99.7 | 47.4 | |||||||
2.3%Pd-4.3%Bi/Al2O3 (Pd1:Bi1) | 42.1 | >99.9 | 42.1 | |||||||
1.1%Pd-3.9%Bi/Al2O3 (Pd1:Bi2) | 27.8 | >99.9 | 27.8 | |||||||
3.5%Pd-2.4%Bi/Al2O3 (Pd3:Bi1) | 10 mL/min | 333 | 0.6 M (3.1 g) | 15,000 | 2.5 | 9 | 17.4 | 92.0 | 16.0 | [111] |
7500 | 37.6 | >99.9 | 37.6 | |||||||
5000 | 56.6 | >99.9 | 56.6 | |||||||
2500 | 92.8 | >99.9 | 92.8 | |||||||
1250 | 100.0 | 95.5 | 95.5 | |||||||
500 | 100.0 | 86.2 | 86.2 | |||||||
10 mL/min | 293 | 0.6 M (3.1 g) | 5000 | 2.5 | 9 | 1.7 | >99.9 | 1.7 | ||
303 | 6.9 | >99.9 | 6.9 | |||||||
313 | 17.6 | >99.9 | 17.6 | |||||||
323 | 25.0 | >99.9 | 25.0 | |||||||
333 | 56.6 | >99.9 | 56.6 | |||||||
343 | 47.4 | 78.0 | 36.9 | |||||||
353 | 55.2 | 59.9 | 33.2 | |||||||
363 | 65.2 | 25.3 | 16.5 | |||||||
10 mL/min | 333 | 0.6 M (3.1 g) | 5000 | 2.5 | 6 | 3.6 | >99.9 | 3.6 | ||
7 | 17.1 | >99.9 | 17.1 | |||||||
8 | 51.0 | >99.9 | 51.0 | |||||||
9 | 56.6 | >99.9 | 56.6 | |||||||
10 | 72.9 | 94.3 | 68.7 | |||||||
11 | 78.3 | 80.8 | 63.3 | |||||||
12 | 88.1 | 43.2 | 38.1 | |||||||
3.94%Au/CeO2 | 0.1 MPa (20 mL/min) | 393 | 0.2 M | 100 | 18 | - | 74 | 91 | 67 | [115] |
2.36%Au/CeO2(20 wt%)/Al2O3 | 81 | 96 | 78 | |||||||
2.31%Au/CeO2(25 wt%)/ZrO2 | 77 | 85 | 65 | |||||||
2.39%Au/CeO2(50 wt%)/ZrO2 | 82 | 86 | 71 | |||||||
1 wt% Au/TiO2 (conventional impregnation) | 3 bar | 433 | 200 mg | 440 | 1 | - | 30.3 | 66.0 | 20.0 | [116] |
1 wt% Au/TiO2 (modified impregnation) | 22.8 | 23.2 | 5.3 | |||||||
1 wt% Au/TiO2 (deposition–precipitation) | 61.7 | 94.0 | 58.0 | |||||||
1 wt% Au/TiO2 (sol-immobilization method) | 71.1 | 94.6 | 67.3 | |||||||
Au/CMK-3 | 0.3 MPa | 383 | 360 mg | 1000 | 2 | - | 92.4 | 87.5 | 80.9 | [117] |
Au/SBA-15 | 67.0 | 92.4 | 61.9 | |||||||
Au/CNTs | 62.0 | 82.7 | 51.3 | |||||||
Au/graphene | 55.6 | 74.0 | 41.1 | |||||||
Au/graphite | 54.5 | 84.1 | 45.8 | |||||||
Au/AC | 20.8 | 91.4 | 19.0 | |||||||
Au/ZrO2 | 12.7 | 91.9 | 11.7 | |||||||
2%Au/Al2O3 | 10 mL/min | 333 | 0.6 M | 17,000 | 7 | 9 | 97 | 96 | 93 | [118] |
2%Au/Al2O3 | 11,000 | 100 | 95 | 95 | ||||||
2%Au/Al2O3 | 9000 | 96 | 97 | 93 | ||||||
2.5%Au/Al2O3 | 7000 | 100 | 97 | 97 | ||||||
2.5%Au/Al2O3 | 5500 | 85 | 93 | 79 | ||||||
2%Au/Al2O3 | 4000 | 38 | 75 | 28 | ||||||
2%Au/Al2O3 | 3600 | 70 | 88 | 62 | ||||||
2%Au/Al2O3 | 750 | 27 | 53 | 14 | ||||||
1.1%Au/Al2O3 | 6000 | 94 | 96 | 90 | ||||||
1.4%Au/Al2O3 | 6000 | 97 | 97 | 94 | ||||||
Au/TiO2 | 1 MPa | 383 | 0.3 M (810 mg) | 880 | 4 | - | 48.1 | 67.6 | 32.5 | [119] |
2%Pt/TiO2 | 890 | 38.2 | 63.2 | 21.1 | ||||||
2%Au-2%Pt/TiO2 | 880 | 100.0 | 57.1 | 57.1 | ||||||
2%Pt-2%Co/TiO2 | 890 | 38.8 | 48.9 | 19.0 | ||||||
2%Pt-2%Mn/TiO2 | 890 | 37.2 | 49.8 | 18.5 | ||||||
2%Au-2%Co/TiO2 | 880 | 78.1 | 62.2 | 48.6 | ||||||
2%Au-2%Mn/TiO2 | 880 | 72.2 | 41.6 | 30.0 | ||||||
0.2%Au/CeO2 | 0.5 MPa | 383 | 2.0 mmol (360 mg) | 1000 | 2 | - | 25.6 | 99.4 | 25.4 | [120] |
0.2%Au/TiO2 | 11.8 | 87.9 | 10.4 | |||||||
0.2%Au/HAP | 47.9 | 32.0 | 15.3 | |||||||
0.2%Au/LDH | 75.8 | 54.0 | 40.9 | |||||||
0.2%Au/HAP-LDH | 98.9 | 99.7 | 98.6 | |||||||
0.2%Au/(HAP + LDH) | 82.4 | 57.3 | 47.2 | |||||||
0.5%Au/HAP-LDH | 100 | 99.3 | 99.3 | |||||||
2%Au/HAP-LDH | 90.7 | 94.1 | 85.3 | |||||||
0.2%Au/HAP-LDH a | 59.6 | 47.7 | 28.4 | |||||||
0.2%Au/HAP-LDH b | 84.8 | 73.7 | 62.5 |
Catalyst | Glucose Concentration | T, K | Electrolyte | Process Characteristics | t | pH | X, % | S, % | ηF, % | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Au disk | 10 mmol | unknown | 0.1 M NaOH, 0.1 M NaClO4 | 0.55 VRHE, 0 rpm | 2 h | - | - | - | 22 | [129] |
0.55 VRHE, 900 rpm | - | - | 110 | |||||||
0.55 VRHE, 2500 rpm | - | - | 64 | |||||||
0.8 VRHE, 0 rpm | - | - | 6 | |||||||
0.8 VRHE, 900 rpm | - | - | 110 | |||||||
0.8 VRHE, 2500 rpm | - | - | 23 | |||||||
1.1 VRHE, 0 rpm | - | - | 56 | |||||||
1.1 VRHE, 900 rpm | - | - | 69 | |||||||
1.1 VRHE, 2500 rpm | - | - | 7 | |||||||
Pd3Au7/C | 0.1 M | 293 | 0.1 M NaOH | 0.4 VRHE, 50 rpm. Current density—2.58 mA/cm2: 2 on Au/C and 0.92 mA/cm2 on Pd/C | 6 h | - | 67 | 87 | 65 | [130] |
Absence of a catalyst | 0.04 M | 278 | 0.1 M NaOH | - | 65 h | 13 | 18.4 | 10.7 | - | [131] |
293 | 46.3 | 4.6 | - | |||||||
Cu | 0.04 M | 278 | 0.1 M NaOH | 0.84 VRHE | 65 h | 13 | - | 30.4 | - | |
1.11 VRHE | - | 44.5 | - | |||||||
1.80 VRHE | - | 17.8 | - | |||||||
Pt | 0.04 M | 278 | 0.1 M NaOH | 0.70 VRHE for 30 s, 2.40 VRHE for 1 s, 0 VRHE for 1 s | 65 h | 13 | - | 68.0 | - | |
0.1 M NaOH | 1.10 VRHE for 30 s, 2.40 VRHE for 1 s, 0 VRHE for 1 s | - | 78.4 | - | ||||||
Au | 0.04 M | 278 | 0.1 M NaOH | 0.55 VRHE for 30 s, 2.40 VRHE for 1 s, 0 VRHE for 1 s | 65 h | 13 | - | 86.6 | - | |
1.34 VRHE for 30 s, 2.40 VRHE for 1 s, 0 VRHE for 1 s | - | 65.8 | - | |||||||
Ti | 50.5 mmol/L | 303 | 10 g/L Na2SO4 | Current density—3 mA/cm2, 2.4 V | 16 min | 7 | 11 | 1 | - | [100] |
0.85%MnO2/Ti | 55 | 56 | - | |||||||
3.06%MnO2/Ti | 57 | 39 | - | |||||||
4.98%MnO2/Ti | 64 | 37 | - | |||||||
5.56%MnO2/Ti | 45 | 34 | - | |||||||
4.98%MnO2/Ti | 25.3 | 303 | 10 g/L Na2SO4 | Current density—3 mA/cm2, 2.4 V | 19 min | 7 | 99 | 34 | - | |
50.5 | 92 | 43 | - | |||||||
75.7 | 80 | 46 | - | |||||||
101 | 60 | 47 | - | |||||||
126.3 | 48 | 51 | - | |||||||
50.5 | 303 | 10 g/L Na2SO4 | Current density—3 mA/cm2, 2.4 V | 19 min | 2 | 90 | 42 | - | ||
4 | 91 | 43 | - | |||||||
7 | 92 | 45 | - | |||||||
8 | 92 | 38 | - | |||||||
10 | 93 | 37 | - | |||||||
50.5 | 288 | 10 g/L Na2SO4 | Current density—3 mA/cm2, 2.4 V | 19 min | 7 | 84 | 20 | - | ||
303 | 93 | 45 | - | |||||||
318 | 83 | 27 | - | |||||||
333 | 75 | 24 | - | |||||||
348 | 61 | 23 | - |
Catalyst | Glucose Concentration, mmol | T, K | Electrolyte | Process Characteristics | t | pH | X, % | S, % | ηF, % | Conversion, % Glucose | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
MnO2 | 25.3 | 303 | Current density—3 mA/cm−2 | 19 min | 7.0 | - | 58 | - | 99 | [100] | |
50.5 | 303 | Current density—4 mA/cm−2 | 42 | 48 | - | 92 | |||||
75.7 | 303 | Current density—3 mA/cm−2 | - | 42 | - | 80 | |||||
50.5 | 288 | Current density—3 mA/cm−2 | - | 65 | - | 84 | |||||
50.5 | 318 | Current density—3 mA/cm−2 | - | 45 | - | 83 | |||||
TEMPO | 20 | 278 | Na2CO3 | Current intensity—200 mA | - | 12.0 | 80 | - | 20 | - | [204] |
100 (sodium D-gluconate) | 278 | Na2CO3 | Current intensity—600 mA | - | 12.2 | 85 | - | 26 | - | ||
NiFeOx-NF | 10 | - | 0.1 M KOH | Current density—17.7 mA cm−2, VRHE—1.30 V, TOF—0.03 s−1 | 2 h | 13.9 | 83.3 | - | 87 | 98.3 | [32] |
50 | - | Current density—61.5 mA cm−2, VRHE—1.30 V, TOF—0.11 s−1 | 10 h | 13.9 | 75.3 | - | 79 | 93.1 | |||
100 | - | Current density—87.6 mA cm−2, VRHE—1.30 V, TOF—0.16 s−1 | 18 h | 13.9 | 71.2 | - | 73 | 90.6 | |||
100 | - | Current density—22.1 mA cm−2, VRHE—1.30 V, TOF—0.04 s−1 | 18 h | 13.9 | 63.8 | - | 68 | 92.7 | |||
NiFe(OH)x-NF | 100 | - | Current density—79.2 mA cm−2, VRHE—1.30 V, TOF—0.09 s−1 | 18 h | 13.9 | 56.9 | - | 64 | 88.6 | ||
Au | 100 | 313 | 0.1 M Na2CO3 | Two-step synthesis. 1 step: converting D-glucose to D-gluconic acid at 0.6 VRHE; | 48 h | 11.3 | - | - | - | 17.5 | [202] |
40 (gluconic acid) | 293 | 0.025 NaOH | Second oxidation step at 1.1 VRHE | 24 h | 11.3 | - | 89.5 | - | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherbakova-Sandu, M.P.; Meshcheryakov, E.P.; Gulevich, S.A.; Kushwaha, A.K.; Kumar, R.; Sonwane, A.K.; Samal, S.; Kurzina, I.A. Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects. Molecules 2025, 30, 3012. https://doi.org/10.3390/molecules30143012
Shcherbakova-Sandu MP, Meshcheryakov EP, Gulevich SA, Kushwaha AK, Kumar R, Sonwane AK, Samal S, Kurzina IA. Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects. Molecules. 2025; 30(14):3012. https://doi.org/10.3390/molecules30143012
Chicago/Turabian StyleShcherbakova-Sandu, Mariya P., Eugene P. Meshcheryakov, Semyon A. Gulevich, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal, and Irina A. Kurzina. 2025. "Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects" Molecules 30, no. 14: 3012. https://doi.org/10.3390/molecules30143012
APA StyleShcherbakova-Sandu, M. P., Meshcheryakov, E. P., Gulevich, S. A., Kushwaha, A. K., Kumar, R., Sonwane, A. K., Samal, S., & Kurzina, I. A. (2025). Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects. Molecules, 30(14), 3012. https://doi.org/10.3390/molecules30143012