Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (712)

Search Parameters:
Keywords = EcoCrop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 920 KiB  
Article
Toxicity and Detoxification Enzyme Inhibition in the Two-Spotted Spider Mite (Tetranychus urticae Koch) by Artemisia annua L. Essential Oil and Its Major Monoterpenoids
by Fatemeh Nasr Azadani, Jalal Jalali Sendi, Asgar Ebadollahi, Roya Azizi and William N. Setzer
Insects 2025, 16(8), 811; https://doi.org/10.3390/insects16080811 (registering DOI) - 5 Aug 2025
Abstract
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the [...] Read more.
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the introduction of effective and low-risk alternatives is essential. The promising pesticidal effects of essential oils (EOs) isolated from Artemisia annua have been documented in recent studies. In the present study, the acaricidal effects of an A. annua EO, along with its two dominant monoterpenoids, 1,8-cineole and camphor, were investigated against adults of T. urticae. Artemisia annua EO, 1,8-cineole, and camphor, with 24 h-LC50 values of 0.289, 0.533, and 0.64 µL/L air, respectively, had significant toxicity by fumigation against T. urticae adults. Along with lethality, A. annua EO and monoterpenoids had significant inhibitory effects on the activity of detoxifying enzymes, including α- and β-esterases, glutathione S-transferases, and cytochrome P-450 monooxygenase. According to the findings of the present study, A. annua EO and its two dominant monoterpenoids, 1,8-cineole and camphor, with significant toxicity and inhibitory effects on detoxifying enzymes, can be introduced as available, effective, and eco-friendly acaricides in the management of T. urticae. Full article
(This article belongs to the Special Issue Plant Essential Oils for the Control of Insects and Mites)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 (registering DOI) - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

23 pages, 2656 KiB  
Article
rRNA-specific antisense DNA and dsDNA trigger rRNA biogenesis and cause potent insecticidal effect on insect pest Coccus hesperidum L.
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 (registering DOI) - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 (registering DOI) - 31 Jul 2025
Viewed by 372
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 323
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

19 pages, 3352 KiB  
Article
Inhibitory Effects and Underlying Mechanisms of a Selenium Compound Agent Against the Pathogenic Fungus Sclerotinia sclerotiorum Causing Sclerotinia Stem Rot in Brassica napus
by Xiaojuan Zhang, Yangzi Hou, Xiuqi Ma, Xiaomin Sun, Qiao Chen, Lele Wu and Chenlu Zhang
Agronomy 2025, 15(8), 1764; https://doi.org/10.3390/agronomy15081764 - 23 Jul 2025
Viewed by 210
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite [...] Read more.
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite and cuminic acid to screen for the optimal mixing ratio and investigate its inhibitory effects and mechanisms against S. sclerotiorum. The results demonstrated that synergistic effects were observed with a 1:3 combination ratio of sodium selenite to cuminic acid. After treatment with the selenium compound agent, ultrastructural observations revealed that the hyphae of S. sclerotiorum became severely shriveled, deformed, and twisted. The agent significantly reduced oxalic acid production and the activities of polymethylgalacturonide (PMG) and carboxymethylcellulose enzymes (Cx), while increasing the exocytosis of nucleic acids and proteins from the mycelium. Foliar application of the selenium compound agent significantly reduced lesion areas in rapeseed. Combined with the results of transcriptome sequencing, this study suggests that the compound agent effectively inhibits the growth of S. sclerotiorum by disrupting its membrane system, reducing the activity of cell wall-degrading enzymes, and suppressing protein synthesis, etc. This research provides a foundation for developing environmentally friendly and effective fungicides to control S. sclerotiorum. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Graphical abstract

29 pages, 4742 KiB  
Article
Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers
by Silpi Sorongpong, Sourav Debnath, Praveen Rahi, Biswajit Bera and Piyush Pandey
Microorganisms 2025, 13(8), 1715; https://doi.org/10.3390/microorganisms13081715 - 22 Jul 2025
Viewed by 954
Abstract
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial [...] Read more.
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial isolates—Lysinibacillus fusiformis, five strains of Serratia marcescens, and two Bacillus spp.—based on their phosphate and zinc solubilization abilities and production of ACC deaminase, indole-3-acetic acid, and siderophores. The consortium was tested in both pot and field conditions using two tea clones, S3A3 and TS491, and compared with a chemical fertilizer treatment. Plants treated with the consortium showed enhanced growth, biomass, and antioxidant activity. The total phenolic contents increased to 1643.6 mg GAE/mL (S3A3) and 1646.93 mg GAE/mL (TS491), with higher catalase (458.17–458.74 U/g/min), glutathione (34.67–42.67 µmol/gfw), and superoxide dismutase (679.85–552.28 units/gfw/s) activities. A soil metagenomic analysis revealed increased microbial diversity and the enrichment of phyla, including Acidobacteria, Proteobacteria, Actinobacteria, Chloroflexi, and Firmicutes. Functional gene analysis showed the increased abundance of genes for siderophore biosynthesis, glutathione and nitrogen metabolism, and indole alkaloid biosynthesis. This study recommends the potential of a PGPB consortium as a sustainable alternative to chemical fertilizers, enhancing both the tea plant performance and soil microbial health. Full article
Show Figures

Figure 1

18 pages, 2538 KiB  
Article
Harnessing Streptomyces for the Management of Clubroot Disease of Chinese Cabbage (Brassica rapa subsp. Pekinensis)
by Shan Chen, Yang Zheng, Qing Wang, Rong Mu, Xianchao Sun, Guanhua Ma, Liezhao Liu, Jiequn Ren, Kuo Huang and Guokang Chen
Plants 2025, 14(14), 2195; https://doi.org/10.3390/plants14142195 - 16 Jul 2025
Viewed by 323
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it [...] Read more.
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it reduces the risk of pathogen resistance development. In this study, our objective was to screen for actinomycetes that can effectively inhibit clubroot. We screened 13 actinomycete strains, identifying 2, XDS3-6 and CD1-1, with substantial in vivo inhibitory effects, achieving infection suppression rates above 64% against P. brassicae. Phylogenetic analysis classified XDS3-6 and CD1-1 as Streptomyces virginiae and Streptomyces cinnamonensis, respectively. Both strains exhibited protease and glucanase production capabilities, essential for pathogenic suppression. Additionally, these strains induced host defense responses, as evidenced by increased jasmonic acid (JA) and salicylic acid (SA) accumulation and elevated activities of defense-related enzymes. Colonization studies of XDS3-6 and CD1-1 mutant strains in cabbage roots indicated sustained root colonization, with peak colony-forming units (CFUs) at 20 days post-inoculation, reaching 11.0 × 104 CFU/g and 8.5 × 104 CFU/g, respectively, and persisting for at least 30 days. Overall, these findings underscore the potential of Streptomyces strains XDS3-6 and CD1-1 as effective biocontrol agents, providing a theoretical foundation for their application in managing clubroot in Chinese cabbage. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

19 pages, 2405 KiB  
Article
Antifungal Activity of Quaternary Pyridinium Salts Against Fusarium culmorum in Wheat Seedlings
by Tamara Siber, Elena Petrović, Jasenka Ćosić, Valentina Bušić, Dajana Gašo-Sokač and Karolina Vrandečić
Appl. Sci. 2025, 15(14), 7889; https://doi.org/10.3390/app15147889 - 15 Jul 2025
Viewed by 232
Abstract
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control [...] Read more.
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control strategies, such as crop rotation and the use of fungicides, are often inadequate and contribute to the development of resistance, particularly with the overuse of similar modes of action. This study investigated quaternary pyridinium salts—nicotinamide and isonicotinamide derivatives—as potential sustainable antifungal agents. In vivo tests involved treating sterilized wheat seeds grown in sterile sand that had been inoculated with F. culmorum, using compounds previously confirmed to be active in vitro. Disease index, shoot and root length, and fresh and dry biomass were measured. Among the tested compounds, nicotinamide derivatives (2) and (3) showed the lowest disease index (0.9) at a concentration of 10 µg/mL. Most compounds promoted plant and root growth. Isonicotinamide derivatives (6) and (7) at 100 µg/mL increased root dry weight, while compound (6) at 10 µg/mL resulted in the most significant increase in plant length. These findings highlight the dual antifungal and growth-promoting potential of certain eco-friendly derivatives for managing F. culmorum and supporting wheat seedling development. Full article
Show Figures

Figure 1

21 pages, 687 KiB  
Review
Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring
by Quanzhi Wang, Yibing Han, Zhaoyi Yu, Siyuan Tian, Pengpeng Sun, Yixiao Shi, Chao Peng, Tingting Gu and Zhen Li
Agronomy 2025, 15(7), 1699; https://doi.org/10.3390/agronomy15071699 - 14 Jul 2025
Viewed by 557
Abstract
In this review, we aim to provide a comprehensive overview of the roles of fungi in horticultural crops. Their beneficial roles and pathogenic effects are investigated. In addition, the recent advancements in fungal detection and management strategies (especially the use of spectral analysis) [...] Read more.
In this review, we aim to provide a comprehensive overview of the roles of fungi in horticultural crops. Their beneficial roles and pathogenic effects are investigated. In addition, the recent advancements in fungal detection and management strategies (especially the use of spectral analysis) are summarized. Beneficial fungi, including plant growth-promoting fungi (PGPF), ectomycorrhizal fungi (ECM), and arbuscular mycorrhizal fungi (AMF), enhance nutrient uptake, promote root and shoot development, improve photosynthetic efficiency, and support plant resilience against biotic and abiotic stresses. Additionally, beneficial fungi contribute to flowering, seed germination, and disease management through biofertilizers, microbial pesticides, and mycoinsecticides. Conversely, pathogenic fungi cause significant diseases affecting roots, stems, leaves, flowers, and fruits, leading to crop yield losses. Advanced spectral analysis techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), Near-Infrared Spectroscopy (NIR), Raman, and Visible and Near-Infrared Spectroscopy (Vis-NIR), alongside traditional methods like Polymerase Chain Reaction (PCR) and Enzyme-Linked Immunosorbent Assay (ELISA), have shown promise in detecting and managing fungal pathogens. Emerging applications of fungi in sustainable agriculture, including biofertilizers and eco-friendly pest management, are discussed, underscoring their potential to enhance crop productivity and mitigate environmental impacts. This review provides a comprehensive understanding of the complex roles of fungi in horticulture and explores innovative detection and management strategies. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture—Nutrition and Health of Plants)
Show Figures

Figure 1

30 pages, 4836 KiB  
Article
Evaluation of Stress-Tolerant Serratia and Enterobacter as PGPR for Nutrient Solubilization and Dose-Dependent Bioformulation to Enhance Tomato Seedlings
by Indu Bhardwaj, Vijay Kumar, Somvir Singh, Arti Jamwal Sharma, Shikha Kumari, Nidhi Bhardwaj, Kanika Dulta, Lukas Peter, Richa Verma, Nitesh Kumar, Yogesh K. Ahlawat, Anurag Malik, Mohammad K. Okla, Rosa Porcel, José M. Mulet and Karthikeyan Jayabalan
Plants 2025, 14(14), 2154; https://doi.org/10.3390/plants14142154 - 13 Jul 2025
Viewed by 481
Abstract
Plant growth-promoting rhizobacteria (PGPR) are eco-friendly and sustainable options for agrochemicals, particularly for enhancing crop productivity under stress conditions. The present research aims to isolate and characterize native PGPR from tomato rhizospheric soil and to evaluate their effectiveness as a dose-dependent response to [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are eco-friendly and sustainable options for agrochemicals, particularly for enhancing crop productivity under stress conditions. The present research aims to isolate and characterize native PGPR from tomato rhizospheric soil and to evaluate their effectiveness as a dose-dependent response to enhance the growth of tomato seedlings. Out of 112 isolates, 10 bacterial strains were selected based on key PGPR traits, including indole-3-acetic acid (IAA), ammonia production, hydrogen cyanide (HCN), exopolysaccharide (EPS) synthesis, hydrolytic enzyme activity, potassium solubilization, antifungal activity against Fusarium oxysporum, and tolerance to pH and heat stress. Molecular identification via 16S rRNA gene sequencing confirmed that these isolates belong to the genera Serratia and Enterobacter. S. marcescens So-1 and Enterobacter sp. So-12 produced the highest levels of IAA (2.6–24.1 µg/mL). In vitro tomato seed germination tests using bacterial suspensions at three concentrations (106, 107, and 108 CFU/mL) showed dose-dependent improvements, with T1 increasing germination up to 108.3% compared to the control. In polyhouse trials using cocopeat formulations, seedling growth improved noticeably. T2 increased the root length (28.3 ± 2.98 cm) by over 1560%, and the shoot length (35.7 ± 0.57 cm) increased by 55% against the control, whose root length is 1.7 ± 0.47. The chlorophyll amount of the treated leaves further showed significant results over the control. Collectively, these findings suggest that using native PGPR in a dose-dependent way can help tomato seedlings grow better and promote more sustainable crop production. Full article
Show Figures

Figure 1

25 pages, 1275 KiB  
Review
Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
by Yanga Mgxaji, Charles S. Mutengwa, Patrick Mukumba and Admire R. Dzvene
Agronomy 2025, 15(7), 1683; https://doi.org/10.3390/agronomy15071683 - 11 Jul 2025
Viewed by 345
Abstract
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient [...] Read more.
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient availability. It focuses on the sources and properties of BGS, its application methods, and their effects on the soil nutrient dynamics and crop productivity. The findings indicate that BGS improves the soil health and crop yields, offering an eco-friendly alternative to synthetic fertilizers, especially in resource-limited settings. Despite these benefits, research gaps persist, including the need for long-term field trials, the optimization of application strategies for sandy soils, and comprehensive economic evaluations. Additionally, concerns such as nutrient imbalances, phosphorus accumulation, and slurry composition variability must be addressed. This review recommends standardizing BGS nutrient profiling and adopting site-specific management practices to maximize its agronomic benefits and environmental safety. Integrating BGS into sustainable soil fertility programs could contribute significantly to achieving agricultural resilience and circular economy goals. Full article
Show Figures

Figure 1

23 pages, 1343 KiB  
Review
Nano-Enabled Insecticides for Efficient Pest Management: Definition, Classification, Synergistic Mechanism, and Safety Assessment
by Ying Wei, Jingyi Chen, Min Dong, Meizhen Yin, Jie Shen, Le Gao and Shuo Yan
Nanomaterials 2025, 15(13), 1050; https://doi.org/10.3390/nano15131050 - 6 Jul 2025
Viewed by 441
Abstract
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient [...] Read more.
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient to meet the demands for sustainable modern agriculture. Recent advances in nanotechnology offer innovative strategies for improving pesticide delivery, bioavailability, and selectivity. This review systematically summarizes the current progress in nano-insecticides, including their definitions, classification, preparation techniques, synergistic mechanisms, insecticidal performance, and safety evaluation. In addition, emerging strategies, such as multi-stimuli responsive systems, co-delivery with multiple agents or genetic materials, and integration with biological control, are discussed. Finally, future perspectives are proposed to guide the design/development of intelligent, efficient, and eco-friendly nano-insecticides for sustainable pest management in modern agriculture. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 1442 KiB  
Article
The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Agriculture 2025, 15(13), 1433; https://doi.org/10.3390/agriculture15131433 - 3 Jul 2025
Cited by 1 | Viewed by 458
Abstract
Integrating organic soil amendments such as vermicompost (VC) and vermicompost tea (VCT) in agriculture has received increasing attention as a sustainable strategy to improve soil fertility, enhance plant growth, and suppress pest infestations. This study aimed to evaluate the effects of varying concentrations [...] Read more.
Integrating organic soil amendments such as vermicompost (VC) and vermicompost tea (VCT) in agriculture has received increasing attention as a sustainable strategy to improve soil fertility, enhance plant growth, and suppress pest infestations. This study aimed to evaluate the effects of varying concentrations of VCT (10%, 20%, and 40%), alone and in combination with VC (2.47 ton/ha), on the development and yield of corn (Zea mays), and suppression of fall armyworm (FAW, Spodoptera frugiperda) infestation. The experiment was conducted in seven raised beds with seven treatments: V0 (control), VCT10, VCT20, VCT40, VC1 + VCT10, VC1 + VCT20, and VC1 + VCT40. Six weekly applications of VCT were applied starting at the V2 stage, and soil and plant nutrient contents were determined post-harvest. Additionally, relative chlorophyll content, height, cob yield, dry biomass, and FAW infestations were assessed. Results show that both VC and VCT significantly enhanced soil nutrient content compared to the control treatment (V0). VCT20 and VC1 + VCT10 improved plant N, K, and micronutrient uptake. Corn treated with VCT10 and VC1 + VCT10 had the highest biomass (6.52 and 6.57 tons/ha, respectively), while VCT20 produced the highest cob yield (6.0 tons/ha), which was more than eight times that of V0. SPAD values and corn height were significantly high across all treatments, with VCT20 achieving the highest SPAD readings while the control achieved the lowest. For FAW infestation, the control treatment experienced moderate infestation. At the same time, there was complete suppression in VCT20 and VCT40 treatments and a reduction in VC + VCT treatments, likely due to the bioactive compounds and beneficial microbes in VC and VCT that strengthened plant immunity. The results suggest that VCT20 is a cost-effective, eco-friendly amendment for improving corn performance and FAW resistance. This study contributes to sustainable agriculture by demonstrating how organic amendments can enhance crop resilience while supporting environmentally friendly farming practices. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Graphical abstract

17 pages, 4961 KiB  
Article
Maize and Pea Root Interactions Promote Symbiotic Nitrogen Fixation, Thereby Accelerating Nitrogen Assimilation and Partitioning in Intercropped Pea
by Yali Sun, Zefeng Wu, Falong Hu, Hong Fan, Wei He, Lianhao Zhao, Congcong Guo, Xiaoyuan Bao, Qiang Chai and Cai Zhao
Agronomy 2025, 15(7), 1615; https://doi.org/10.3390/agronomy15071615 - 1 Jul 2025
Viewed by 421
Abstract
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor [...] Read more.
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor influencing SNF in intercropped legumes. Currently, it remains unclear whether and how IRIs modulate SNF to affect NUE and yield formation in legume species. In this study, maize/pea intercropping with different types of root separation [no barrier (NB) and plastic barrier (PB)] and pea monocropping (IP) were simulated in a nitrogen (N)-free nutrient matrix in pots, and the SNF, N metabolism, and N partitioning were investigated. We demonstrated that IRIs optimize SNF performance. N assimilation is positively regulated following increases in enzyme activity and gene expression in intercropped roots and nodules. Furthermore, IRIs facilitate amino acid (AA) export from nodules to roots and shoots, which is followed by an increase in AA levels in leaves (source) and leaf exudates (sink). Overall, intensive SNF drives N metabolism and alters source-to-sink N partitioning, thereby increasing NUE (by 23%) and yield (by 15%) in intercropped pea. This study reveals the positive roles of IRIs to the NUE and yield and provides useful reference material for increasing N contents derived from SNF to maximize NUE and crop yields in intercropped legumes. Full article
Show Figures

Figure 1

Back to TopTop