Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = EZ water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5365 KiB  
Article
Impact of Post-Fire Rehabilitation Treatments on Forest Soil Infiltration in Mediterranean Landscapes: A Two-Year Study
by Nikolaos D. Proutsos, Stefanos P. Stefanidis, Alexandra D. Solomou, Panagiotis Michopoulos, Athanasios Bourletsikas and Panagiotis Lattas
Fire 2025, 8(7), 269; https://doi.org/10.3390/fire8070269 - 6 Jul 2025
Viewed by 666
Abstract
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this [...] Read more.
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this study, we investigated the performance of three types of erosion control structures (log dams, log barriers, and wattles), two years after fire, in three Mediterranean areas that were burnt by severe forest fires in 2021. The wooden structures’ ability to infiltrate precipitation was evaluated by 100 infiltration experiments in 25 plots, one and two years after the wildfires. The unsaturated hydraulic conductivity K was determined at two zones formed between consecutive wooden structures, i.e., the erosion zone (EZ) where soil erosion occurs, and the deposition zone (DZ) where the soil sediment is accumulated. These zones showed significant differences concerning their hydraulic behavior, with DZ presenting enhanced infiltration ability by 130 to 300% higher compared to EZ, during both years of measurements. The findings suggest that the implementation of emergency restoration actions after a wildfire can highly affect the burned forest soils’ ability to infiltrate water, preventing surface runoff and erosion, whereas specific structures such as the log dams can be even more effective. Full article
Show Figures

Figure 1

26 pages, 23610 KiB  
Article
Innovative Low-Cost Composite Nanoadsorbents Based on Eggshell Waste for Nickel Removal from Aqueous Media
by Adina-Elena Segneanu, Roxana Trusca, Claudiu Cepan, Maria Mihailescu, Cornelia Muntean, Dumitru Daniel Herea, Ioan Grozescu and Athanasios Salifoglou
Nanomaterials 2023, 13(18), 2572; https://doi.org/10.3390/nano13182572 - 16 Sep 2023
Cited by 6 | Viewed by 2265
Abstract
In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two [...] Read more.
In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two new low-cost nanoadsorbents for the retrieval of nickel from aqueous solutions. Scanning electron microscopy (SEM) results show that in the first eggshell–zeolite (EZ) adsorbent, the zeolite nanoparticles were loaded in the eggshell pores. The preparation for the second (iron(III) oxide-hydroxide)–eggshell–zeolite (FEZ) nanoadsorbent led to double functionalization of the eggshell base with the zeolite nanoparticles, upon simultaneous loading of the pores of the eggshell and zeolite surface with FeOOH particles. Structural modification of the eggshell led to a significant increase in the specific surface, as confirmed using BET analysis. These features enabled the composite EZ and FEZ to remove nickel from aqueous solutions with high performance and adsorption capacities of 321.1 mg/g and 287.9 mg/g, respectively. The results indicate that nickel adsorption on EZ and FEZ is a multimolecular layer, spontaneous, and endothermic process. Concomitantly, the desorption results reflect the high reusability of these two nanomaterials, collectively suggesting the use of waste in the design of new, low-cost, and highly efficient composite nanoadsorbents for environmental bioremediation. Full article
(This article belongs to the Special Issue Nanomaterials for Green and Sustainable World)
Show Figures

Graphical abstract

6 pages, 522 KiB  
Proceeding Paper
Soil Optical and Hydraulic Properties of Burnt Forest Areas in Greece after the Implementation of Postfire Restoration Works–Preliminary Results
by Nikolaos D. Proutsos, Alexandra D. Solomou, Panagiotis Michopoulos, Athanassios Bourletsikas, Stavros Tsilikounas, Vereniki Louka, Panagiotis Lattas and Panagiotis Kalliris
Environ. Sci. Proc. 2023, 26(1), 27; https://doi.org/10.3390/environsciproc2023026027 - 23 Aug 2023
Cited by 2 | Viewed by 1197
Abstract
The short-term changes in micrometeorological and hydraulic attributes of burnt forest soils were evaluated under the influence of three types of post-fire restoration works (wattles, log barriers, and log dams). Comparisons between the two zones (erosion EZ and deposition DZ) formed at the [...] Read more.
The short-term changes in micrometeorological and hydraulic attributes of burnt forest soils were evaluated under the influence of three types of post-fire restoration works (wattles, log barriers, and log dams). Comparisons between the two zones (erosion EZ and deposition DZ) formed at the area between two consecutive restoration work units were performed. The reflectance presents minor differences in the two zones, being slightly higher in the EZ, whereas cooler surface temperature and higher soil moisture were recorded in the DZ. The DZ can effectively infiltrate precipitation water with rates of about 150% higher compared to the EZ. Full article
Show Figures

Figure 1

16 pages, 1491 KiB  
Article
Fast Chromatographic Determination of Free Amino Acids in Bee Pollen
by Beatriz Martín-Gómez, Laura Salahange, Jesús A. Tapia, María T. Martín, Ana M. Ares and José Bernal
Foods 2022, 11(24), 4013; https://doi.org/10.3390/foods11244013 - 12 Dec 2022
Cited by 11 | Viewed by 3769
Abstract
The consumption of bee pollen has increased in the last few years due to its nutritional and health-promoting properties, which are directly related to its bioactive constituents, such as amino acids. Currently, there is great interest in understanding the role of these in [...] Read more.
The consumption of bee pollen has increased in the last few years due to its nutritional and health-promoting properties, which are directly related to its bioactive constituents, such as amino acids. Currently, there is great interest in understanding the role of these in bee products as it provides relevant information, e.g., regarding nutritional value or geographical and botanical origins. In the present study, two fast chromatographic methods were adapted based on commercial EZ:faast™ kits for gas chromatography-mass spectrometry and liquid chromatography–mass spectrometry for determining free amino acids in bee pollen. Both methods involved the extraction of amino acids with water, followed by a solid phase extraction to eliminate interfering compounds, and a derivatization of the amino acids prior to their chromatographic separation. The best results in terms of run time (<7 min), matrix effect, and limits of quantification (3–75 mg/kg) were obtained when gas chromatography–mass spectrometry was employed. This latter methodology was applied to analyze several bee pollen samples obtained from local markets and experimental apiaries. The findings obtained from a statistical examination based on principal component analysis showed that bee pollen samples from commercial or experimental apiaries were different in their amino acid composition. Full article
(This article belongs to the Special Issue Application of Chromatography to Food Analysis)
Show Figures

Graphical abstract

34 pages, 9953 KiB  
Article
Coffee Leaf Tea from El Salvador: On-Site Production Considering Influences of Processing on Chemical Composition
by Marc C. Steger, Marina Rigling, Patrik Blumenthal, Valerie Segatz, Andrès Quintanilla-Belucci, Julia M. Beisel, Jörg Rieke-Zapp, Steffen Schwarz, Dirk W. Lachenmeier and Yanyan Zhang
Foods 2022, 11(17), 2553; https://doi.org/10.3390/foods11172553 - 23 Aug 2022
Cited by 14 | Viewed by 6276
Abstract
The production of coffee leaf tea (Coffea arabica) in El Salvador and the influences of processing steps on non-volatile compounds and volatile aroma-active compounds were investigated. The tea was produced according to the process steps of conventional tea (Camellia sinensis [...] Read more.
The production of coffee leaf tea (Coffea arabica) in El Salvador and the influences of processing steps on non-volatile compounds and volatile aroma-active compounds were investigated. The tea was produced according to the process steps of conventional tea (Camellia sinensis) with the available possibilities on the farm. Influencing factors were the leaf type (old, young, yellow, shoots), processing (blending, cutting, rolling, freezing, steaming), drying (sun drying, oven drying, roasting) and fermentation (wild, yeast, Lactobacillus). Subsequently, the samples were analysed for the maximum levels of caffeine, chlorogenic acid, and epigallocatechin gallate permitted by the European Commission. The caffeine content ranged between 0.37–1.33 g/100 g dry mass (DM), the chlorogenic acid was between not detectable and 9.35 g/100 g DM and epigallocatechin gallate could not be detected at all. Furthermore, water content, essential oil, ash content, total polyphenols, total catechins, organic acids, and trigonelline were determined. Gas chromatography—mass spectrometry—olfactometry and calculation of the odour activity values (OAVs) were carried out to determine the main aroma-active compounds, which are β-ionone (honey-like, OAV 132-927), decanal (citrus-like, floral, OAV 14-301), α-ionone (floral, OAV 30-100), (E,Z)-2,6-nonadienal (cucumber-like, OAV 18-256), 2,4-nonadienal (melon-like, OAV 2-18), octanal (fruity, OAV 7-23), (E)-2 nonenal (citrus-like, OAV 1-11), hexanal (grassy, OAV 1-10), and 4-heptenal (green, OAV 1-9). The data obtained in this study may help to adjust process parameters directly to consumer preferences and allow coffee farmers to earn an extra income from this by-product. Full article
Show Figures

Figure 1

18 pages, 4995 KiB  
Article
Co-Amorphous Formation of Simvastatin-Ezetimibe: Enhanced Physical Stability, Bioavailability and Cholesterol-Lowering Effects in LDLr−/−Mice
by Shamuha Bahetibieke, Sakib M. Moinuddin, Asiya Baiyisaiti, Xiaoang Liu, Jie Zhang, Guomin Liu, Qin Shi, Ankang Peng, Jun Tao, Chang Di, Ting Cai and Rong Qi
Pharmaceutics 2022, 14(6), 1258; https://doi.org/10.3390/pharmaceutics14061258 - 13 Jun 2022
Cited by 8 | Viewed by 3425
Abstract
Hypercholesterolemia is one of the independent risk factors for the development of cardiovascular diseases such as atherosclerosis. The treatment of hypercholesterolemia is of great significance to reduce clinical cardiovascular events and patient mortality. Simvastatin (SIM) and ezetimibe (EZE) are commonly used clinically as [...] Read more.
Hypercholesterolemia is one of the independent risk factors for the development of cardiovascular diseases such as atherosclerosis. The treatment of hypercholesterolemia is of great significance to reduce clinical cardiovascular events and patient mortality. Simvastatin (SIM) and ezetimibe (EZE) are commonly used clinically as cholesterol-lowering drugs; however, their treatment efficacy is severely affected by their poor water solubility and low bioavailability. In this study, SIM and EZE were made into a co-amorphous system to improve their dissolution, oral bioavailability, storage stability, and cholesterol-lowering effects. The SIM-EZE co-amorphous solids (CO) were prepared successfully using the melt-quenched technique, and the physicochemical properties of CO were characterized accordingly, which exhibited improved physical stability and faster dissolution release profiles than their physical mixture (PM). In the pharmacokinetic study, the SIM-EZE CO or PM was given once by oral gavage, and mouse blood samples were collected retro-orbitally at multiple time points to determine the plasma drug concentrations. In the pharmacodynamic study, low-density lipoprotein receptor-deficient (LDLr−/−) mice were fed with a high-fat diet (HFD) for two weeks to establish a mouse model of hypercholesterolemia. Using PM as a control, we investigated the regulation of CO on plasma lipid levels in mice. Furthermore, the mice feces were collected to determine the cholesterol contents. Besides, the effect of EZE on the NPC1L1 mRNA expression level in the mouse intestines was also investigated. The pharmacokinetics results showed that the SIM-EZE CO has improved bioavailability compared to the PM. The pharmacodynamic studies showed that SIM-EZE CO significantly increased the cholesterol-lowering effects of the drugs compared to their PM. The total cholesterol excretion in the mouse feces and inhibitory effect on NCP1L1 gene expression in the mouse intestines after being given the SIM-EZE CO were more dramatic than the PM. Our study shows that the SIM-EZE CO prepared by the melt-quenched method can significantly improve the stability, bioavailability, and cholesterol-lowering efficacy with excellent development potential as a new drug formulation. Full article
Show Figures

Graphical abstract

16 pages, 956 KiB  
Review
Tissutal and Fluidic Aspects in Osteopathic Manual Therapy: A Narrative Review
by Marco Verzella, Erika Affede, Luca Di Pietrantonio, Vincenzo Cozzolino and Luca Cicchitti
Healthcare 2022, 10(6), 1014; https://doi.org/10.3390/healthcare10061014 - 31 May 2022
Cited by 8 | Viewed by 5340
Abstract
Over the years, several authors have discussed the possibility of considering somatic dysfunction (SD) as a “nosological element” detectable on palpation. There are many aspects to consider regarding the etiology and diagnosis of SD, and the literature on osteopathic issues provides details on [...] Read more.
Over the years, several authors have discussed the possibility of considering somatic dysfunction (SD) as a “nosological element” detectable on palpation. There are many aspects to consider regarding the etiology and diagnosis of SD, and the literature on osteopathic issues provides details on physiological signs that characterize it, including tissue texture changes. Recent knowledge suggests that how tissue and, in particular, connective tissue, responds to osteopathic treatment may depend on the modulation of the inflammation degree. Low-grade inflammation (LGI) may act on the extracellular matrix (ECM) and on cellular elements; and these mechanisms may be mediated by biological water. With its molecules organized in structures called exclusion zones (EZ), water could explain the functioning of both healthy and injured tissues, and how they can respond to osteopathic treatment with possible EZ normalization as a result. The relationship between inflammation and DS and the mechanisms involved are described by several authors; however, this review suggests a new model relating to the characteristics of DS and to its clinical implications by linking to LGI. Tissue alterations detectable by osteopathic palpation would be mediated by body fluids and in particular by biological water which has well-defined biophysical characteristics. Research in this area is certainly still to be explored, but our suggestion seems plausible to explain many dynamics related to osteopathic treatment. We believe that this could open up a fascinating scenario of therapeutic possibilities and knowledge in the future. Full article
Show Figures

Figure 1

9 pages, 7848 KiB  
Article
The Identification of Ethidium Bromide-Degrading Bacteria from Laboratory Gel Electrophoresis Waste
by Vikram Pal Gandhi, Kavindra Kumar Kesari and Anil Kumar
BioTech 2022, 11(1), 4; https://doi.org/10.3390/biotech11010004 - 24 Feb 2022
Cited by 7 | Viewed by 6687
Abstract
Ethidium bromide (EtBr) is widely used in most laboratories to detect nucleic acids in gel electrophoresis applications. It is a well-known carcinogenic and mutagenic agent, which can affect biotic components of the place in which it is disposed. Usually the gel-waste is either [...] Read more.
Ethidium bromide (EtBr) is widely used in most laboratories to detect nucleic acids in gel electrophoresis applications. It is a well-known carcinogenic and mutagenic agent, which can affect biotic components of the place in which it is disposed. Usually the gel-waste is either buried in the ground or incinerated, whereas the liquid waste is disposed of down the sink following the recommended methods of treatment. The recommended methods do not involve biological potential, but rather make use of chemicals, which may further deteriorate soil and water quality. The present study identifies and characterizes the EtBr-degrading bacterial isolates BR3 and BR4. A bibliographic review of the risk status of using these isolates for the treatment of lab waste in laboratory settings is also presented. BR3 was identified as Proteus terrae N5/687 (LN680103) and BR4 as Morganella morganii subsp. morganii ATCC 25830 (AJ301681) with 99.9% and 99.48% similarity, respectively, using an EzBioCloud microbial identifier. The literature revealed the bacterium Proteus terrae as a non-pathogenic and natural microflora of humans, but Morganella morganii as an opportunistic pathogen. These organisms belong to risk group II. Screening the sensitivity of these isolates to antibiotics revealed a sufficient number of antibiotics, which can be used to control them, if required. BR3 and BR4 exhibited resistance to individual antibiotics, ampicillin and vancomycin, whereas only BR3 was resistant to tetracycline. The current investigation, along with earlier reported work on these isolates, identifies BR3 as a useful isolate in the industrial application for the degradation of EtBr. Identical and related microorganisms, which are available in the culture collection repositories, can also be explored for such potential to formulate a microbial consortium for the bioremediation of ethidium bromide prior to its disposal. Full article
Show Figures

Figure 1

20 pages, 3148 KiB  
Article
A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites
by Monika Domarecka, Agata Szczesio-Wlodarczyk, Michał Krasowski, Magdalena Fronczek, Tomasz Gozdek, Jerzy Sokolowski and Kinga Bociong
Coatings 2021, 11(10), 1255; https://doi.org/10.3390/coatings11101255 - 15 Oct 2021
Cited by 14 | Viewed by 5122
Abstract
Dual-curing composites have a wide spectrum of use in practice (rebuilding, reconstruction, and luting). The characterization of this type of material and comparative study of selected mechanical properties with light-cured materials were carried out for this paper. In this study, we used six [...] Read more.
Dual-curing composites have a wide spectrum of use in practice (rebuilding, reconstruction, and luting). The characterization of this type of material and comparative study of selected mechanical properties with light-cured materials were carried out for this paper. In this study, we used six materials with a dual-cure system—Bulk EZ, Fill-Up!, StarFill 2B, Rebilda DC, MultiCore Flow, Activa Bioactive-Restorative—and three light-cured materials—Filtek Bulk Fill Posterior, Charisma Classic, and G-aenial Universal Flo. The materials were conditioned for 24 h in water at 37 °C before testing. Selected material properties were determined: three-point bending flexural strength, diametral tensile strength, hardness, microhardness, and shrinkage stress. The highest three-point bending flexural strength (TPB) was 137.0 MPa (G-aenial Universal Flo), while the lowest amounted to 86.5 MPa (Activa Bioactive). The diametral tensile strength (DTS) values were in a range from 39.2 MPa (Rebilda DC) to 54.1 MPa (Charisma Classic). The lowest hardness (HV) value of 26 was obtained by the Activa Bioactive material, while the highest values were recorded for Filtek Bulk Fill Posterior and Charisma Classic-53. The shrinkage stress of the tested materials ranged from 6.3 MPa (Charisma Classic) to 13.2 MPa (G-aenial Universal Flo). Dual-curing composites were found to have similar properties to light-cured composites. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments)
Show Figures

Figure 1

10 pages, 9471 KiB  
Article
Biomapping of Microbial Indicators on Beef Subprimals Subjected to Spray or Dry Chilling over Prolonged Refrigerated Storage
by Diego E. Casas, Rosine Manishimwe, Savannah J. Forgey, Keelyn E. Hanlon, Markus F. Miller, Mindy M. Brashears and Marcos X. Sanchez-Plata
Foods 2021, 10(6), 1403; https://doi.org/10.3390/foods10061403 - 17 Jun 2021
Cited by 9 | Viewed by 3243
Abstract
As the global meat market moves to never frozen alternatives, meat processors seek opportunities for increasing the shelf life of fresh meats by combinations of proper cold chain management, barrier technologies, and antimicrobial interventions. The objective of this study was to determine the [...] Read more.
As the global meat market moves to never frozen alternatives, meat processors seek opportunities for increasing the shelf life of fresh meats by combinations of proper cold chain management, barrier technologies, and antimicrobial interventions. The objective of this study was to determine the impact of spray and dry chilling combined with hot water carcass treatments on the levels of microbial indicator organisms during the long-term refrigerated storage of beef cuts. Samples were taken using EZ-Reach™ sponge samplers with 25 mL buffered peptone water over a 100 cm2 area of the striploin. Sample collection was conducted before the hot carcass wash, after wash, and after the 24 h carcass chilling. Chilled striploins were cut into four sections, individually vacuum packaged, and stored to be sampled at 0, 45, 70, and 135 days (n = 200) of refrigerated storage and distribution. Aerobic plate counts, enterobacteria, Escherichia coli, coliforms, and psychrotroph counts were evaluated for each sample. Not enough evidence (p > 0.05) was found indicating the hot water wash intervention reduced bacterial concentration on the carcass surface. E. coli was below detection limits (<0.25 CFU/cm2) in most of the samples taken. No significant difference (p > 0.05) was found between coliform counts throughout the sampling dates. Feed type did not seem to influence the (p > 0.25) microbial load of the treatments. Even though no immediate effect was seen when comparing spray or dry chilling of the samples at day 0, as the product aged, a significantly lower (p < 0.05) concentration of aerobic and psychrotrophic organisms in dry-chilled samples could be observed when compared to their spray-chilled counterparts. Data collected can be used to select alternative chilling systems to maximize shelf life in vacuum packaged beef kept over prolonged storage periods. Full article
Show Figures

Figure 1

15 pages, 2069 KiB  
Article
Physicochemical Effects of Humid Air Treated with Infrared Radiation on Aqueous Solutions
by Olga Yablonskaya, Vladimir Voeikov, Ekaterina Buravleva, Aleksei Trofimov and Kirill Novikov
Water 2021, 13(10), 1370; https://doi.org/10.3390/w13101370 - 14 May 2021
Cited by 6 | Viewed by 5045
Abstract
Water vapor absorbs well in the infrared (IR) region of the spectra. On the other hand, it was recently demonstrated that IR radiation promotes formation of the so-called exclusion zones (EZ) at the interfaces between hydrophilic surfaces and water. EZ-water properties differ significantly [...] Read more.
Water vapor absorbs well in the infrared (IR) region of the spectra. On the other hand, it was recently demonstrated that IR radiation promotes formation of the so-called exclusion zones (EZ) at the interfaces between hydrophilic surfaces and water. EZ-water properties differ significantly from that of bulk water. It was studied for the first time whether treatment of water with humid air irradiated with IR-C band could change its physical-chemical properties, making it EZ-water-like. Humid air irradiated with IR was called coherent humidity (CoHu). Redox potential and surface tension decreased in deionized water and mineral water samples that were treated with CoHu, while dielectric constant increased in such water samples. After such treatment of carbonate or phosphate buffers, their buffer capacity against acidification and leaching significantly increased. No such changes were observed in water samples treated with non-irradiated humid air. Thus, after treatment of tested aqueous systems with humid air exposed to IR radiation, their properties change, making them more like EZ-water. The results suggest that IR irradiation of humid air converts it into a carrier of a certain physical signal that affects water properties. Full article
(This article belongs to the Special Issue Gas-Liquid Two-Phase Flow in the Pipe or Channel)
Show Figures

Figure 1

18 pages, 7984 KiB  
Article
Formation of Water-Free Cavity in the Process of Nafion Swelling in a Cell of Limited Volume; Effect of Polymer Fibers Unwinding
by Barry W. Ninham, Polina N. Bolotskova, Sergey V. Gudkov, Yulchi Juraev, Mariya S. Kiryanova, Valeriy A. Kozlov, Roman S. Safronenkov, Alexey V. Shkirin, Elena V. Uspenskaya and Nikolai F. Bunkin
Polymers 2020, 12(12), 2888; https://doi.org/10.3390/polym12122888 - 2 Dec 2020
Cited by 14 | Viewed by 2916
Abstract
When Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell [...] Read more.
When Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell whose dimension is close to the EZ size. It was also shown that, upon swelling in water, Nafion fibers “unwind” into the water bulk. In the case of a cell of limited volume, unwound fibers abut against the cell windows, and water is completely pushed out from the region between the polymer and the cell window, resulting in a cavity appearance. The temporal dynamics of the collapse of this cavity was studied depending on the cell size. It is shown that the cavity formation occurs due to long-range forces between polymer strands. It turned out that this scenario depends on the isotopic composition of the water, ionic additives and water pretreatment. The role of nanobubbles in the formation and collapse of the cavity were analyzed. The results obtained allowed us to conclude that the EZ formation is precisely due to the unwinding of polymer fibers into the liquid bulk. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 1051 KiB  
Review
Exclusion Zone Phenomena in Water—A Critical Review of Experimental Findings and Theories
by Daniel C. Elton, Peter D. Spencer, James D. Riches and Elizabeth D. Williams
Int. J. Mol. Sci. 2020, 21(14), 5041; https://doi.org/10.3390/ijms21145041 - 17 Jul 2020
Cited by 29 | Viewed by 8257
Abstract
The existence of the exclusion zone (EZ), a layer of water in which plastic microspheres are repelled from hydrophilic surfaces, has now been independently demonstrated by several groups. A better understanding of the mechanisms which generate EZs would help with understanding the possible [...] Read more.
The existence of the exclusion zone (EZ), a layer of water in which plastic microspheres are repelled from hydrophilic surfaces, has now been independently demonstrated by several groups. A better understanding of the mechanisms which generate EZs would help with understanding the possible importance of EZs in biology and in engineering applications such as filtration and microfluidics. Here we review the experimental evidence for EZ phenomena in water and the major theories that have been proposed. We review experimental results from birefringence, neutron radiography, nuclear magnetic resonance, and other studies. Pollack theorizes that water in the EZ exists has a different structure than bulk water, and that this accounts for the EZ. We present several alternative explanations for EZs and argue that Schurr’s theory based on diffusiophoresis presents a compelling alternative explanation for the core EZ phenomenon. Among other things, Schurr’s theory makes predictions about the growth of the EZ with time which have been confirmed by Florea et al. and others. We also touch on several possible confounding factors that make experimentation on EZs difficult, such as charged surface groups, dissolved solutes, and adsorbed nanobubbles. Full article
(This article belongs to the Special Issue The Structure and Function of the Second Phase of Liquid Water)
Show Figures

Figure 1

21 pages, 2928 KiB  
Article
Improvement in the Oral Bioavailability and Efficacy of New Ezetimibe Formulations—Comparative Study of a Solid Dispersion and Different Micellar Systems
by Carlos Torrado-Salmerón, Víctor Guarnizo-Herrero, Teresa Gallego-Arranz, Yvonne del Val-Sabugo, Guillermo Torrado, Javier Morales and Santiago Torrado-Santiago
Pharmaceutics 2020, 12(7), 617; https://doi.org/10.3390/pharmaceutics12070617 - 2 Jul 2020
Cited by 18 | Viewed by 3764
Abstract
Ezetimibe (EZ) is a poorly water-soluble drug with low bioavailability. Strategies such as solid dispersions (SD) and micellar systems (MS) were developed to identify the most effective drug delivery formulations with the highest oral bioavailability, and to improve their lipid-lowering effect. The EZ [...] Read more.
Ezetimibe (EZ) is a poorly water-soluble drug with low bioavailability. Strategies such as solid dispersions (SD) and micellar systems (MS) were developed to identify the most effective drug delivery formulations with the highest oral bioavailability, and to improve their lipid-lowering effect. The EZ formulations were prepared with different proportions of Kolliphor® RH40 as a surfactant (1:0.25, 1:0.5 and 1:0.75) and croscarmellose as a hydrophilic carrier. These excipients, and the addition of microcrystalline cellulose during the production process, led to significant improvements in the dissolution profiles of MS. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) revealed an amorphous form of ezetimibe with different semicrystalline states of microcrystalline cellulose for MS-I (1:0.75) and MS-II (1:0.75). Pharmacokinetic analysis after administration of MS-II (1:0.75) demonstrated a 173.86% increase in maximum plasma concentration (Cmax) and a 142.99% increase in oral bioavailability compared to EZ raw material (EZ-RM). Efficacy studies with the micellar system MS-II (1:0.75) in rats with hyperlipidemia showed that total cholesterol, triglycerides and high-density lipoprotein were reduced to normal levels and revealed improvements in low-density lipoprotein, aspartate and alanine aminotransferase. The improvement in the dissolution rate with micellar systems increases bioavailability and enhances the anti-hyperlipidemic effect of EZ. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

12 pages, 3405 KiB  
Communication
Aviculin Isolated from Lespedeza cuneata Induce Apoptosis in Breast Cancer Cells through Mitochondria-Mediated Caspase Activation Pathway
by Dahae Lee, Yong Hoon Lee, Kwang Ho Lee, Bum Soo Lee, Akida Alishir, Yoon-Joo Ko, Ki Sung Kang and Ki Hyun Kim
Molecules 2020, 25(7), 1708; https://doi.org/10.3390/molecules25071708 - 8 Apr 2020
Cited by 17 | Viewed by 4521
Abstract
The global incidence of breast cancer has increased. However, there are many impediments to the development of safe and effective anticancer drugs. The aim of the present study was to evaluate the effect of aviculin isolated from Lespedeza cuneata (Dum. Cours.) G. Don. [...] Read more.
The global incidence of breast cancer has increased. However, there are many impediments to the development of safe and effective anticancer drugs. The aim of the present study was to evaluate the effect of aviculin isolated from Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae) on MCF-7 human breast cancer cells and determine the underlying mechanism. Using the bioassay-guided isolation by water soluble tetrazolium salt (WST-1)-based Ez-Cytox assay, nine compounds (four lignan glycosides (14), three flavonoid glycosides (57), and two phenolic compounds (8 and 9)) were isolated from the ethyl acetate (EA) fraction of the L. cuneata methanolic extract. Of these, aviculin (2), a lignan glycoside, was the only compound that reduced metabolic activity on MCF-7 cells below 50% (IC50: 75.47 ± 2.23 μM). The underlying mechanism was analyzed using the annexin V Alexa Fluor 488 binding assay and Western blotting. Aviculin (2) was found to induce apoptotic cell death through the intrinsic apoptosis pathway, as indicated by the increased expression of initiator caspase-9, executioner caspase-7, and poly (ADP-ribose) polymerase (PARP). Aviculin (2)-induced apoptotic cell death was accompanied by an increase in the Bax/Bcl-2 ratio. These findings demonstrated that aviculin (2) could induce breast cancer cell apoptosis through the intrinsic apoptosis pathway, and it can therefore be considered an excellent candidate for herbal treatment of breast cancer. Full article
(This article belongs to the Special Issue Cytotoxic Activity of Plant Extracts)
Show Figures

Graphical abstract

Back to TopTop