Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = ESI-TRAP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3974 KiB  
Article
Broadly Targeted Metabolomics Analysis of Differential Metabolites Between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd.
by Min Li, Quanfang Zhang, Tongshan Zhu, Guoxia Liu, Wenxiao Chen, Yanli Chen, Xun Bu, Zhifeng Zhang and Yongqing Zhang
Metabolites 2025, 15(2), 119; https://doi.org/10.3390/metabo15020119 - 11 Feb 2025
Cited by 1 | Viewed by 889
Abstract
Background/Objectives: Bupleuri Radix is a plant in the Apiaceae family Bupleurum Chinense DC. or Bupleurum scorzonerifolium Willd. root. The dissimilarities in the metabolite profiles of plants directly correlate with the disparities in their clinical efficacy. Methods: Therefore, the wild Bupleurum Chinense DC. [...] Read more.
Background/Objectives: Bupleuri Radix is a plant in the Apiaceae family Bupleurum Chinense DC. or Bupleurum scorzonerifolium Willd. root. The dissimilarities in the metabolite profiles of plants directly correlate with the disparities in their clinical efficacy. Methods: Therefore, the wild Bupleurum Chinense DC. (YBC) and wild Bupleurum scorzonerifolium Willd. (YNC) were used as research materials. They were analyzed using the UPLC-MS/MS and the similarities and differences were uncovered based on differential metabolites. Results: Our results proved that the differences in clinical efficacy between YBC and YNC may be attributed to their distinct metabolite profiles, as follows: (1) a total of 12 classes of 2059 metabolites were identified in the roots, with phenolic acids, terpenoids, and flavonoids being the most abundant metabolic products, with 2026 shared components between the two, 2045 in YBC, and 2040 in YNC; (2) a total of 718 differential metabolites were identified, accounting for 35.44% of the shared metabolites. Among them, YBC had 452 metabolites with higher content relative to YNC, representing 62.95%, and 266 components with lower content, representing 37.05%; (3) the KEEG enrichment analysis results show that the differential metabolic pathways are flavone and flavonol biosynthesis, linoleic acid metabolism, arachidonic acid metabolism, sesquiterpenoid and triterpenoid biosynthesis, and linolenic acid metabolism. Conclusions: These new findings will serve as a foundation for further study of the BR biosynthetic pathway and offer insights into the practical use of traditional Chinese medicine in clinical settings. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

15 pages, 2419 KiB  
Article
Complete Polar Lipid Profile of Kefir Beverage by Hydrophilic Interaction Liquid Chromatography with HRMS and Tandem Mass Spectrometry
by Giovanni Ventura, Mariachiara Bianco, Ilario Losito, Tommaso R. I. Cataldi and Cosima D. Calvano
Int. J. Mol. Sci. 2025, 26(3), 1120; https://doi.org/10.3390/ijms26031120 - 28 Jan 2025
Viewed by 1002
Abstract
Kefir, a fermented milk product produced using kefir grains, is a symbiotic consortium of bacteria and yeasts responsible for driving the fermentation process. In this study, an in-depth analysis of kefir’s lipid profile was conducted, with a focus on its phospholipid (PL) content, [...] Read more.
Kefir, a fermented milk product produced using kefir grains, is a symbiotic consortium of bacteria and yeasts responsible for driving the fermentation process. In this study, an in-depth analysis of kefir’s lipid profile was conducted, with a focus on its phospholipid (PL) content, employing liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Nearly 300 distinct polar lipids were identified through hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization (ESI) and Fourier-transform orbital-trap MS and linear ion-trap tandem MS/MS. The identified lipids included phosphatidylcholines (PCs), lyso-phosphatidylcholines (LPCs), phosphatidylethanolamines (PEs) and lyso-phosphatidylethanolamines (LPEs), phosphatidylserines (PSs), phosphatidylglycerols (PGs), and phosphatidylinositols (PIs). The presence of lysyl-phosphatidylglycerols (LyPGs) was identified as a key finding, marking a lipid class characteristic of Gram-positive bacterial membranes. This discovery highlights the role of viable bacteria in kefir and underscores its probiotic potential. The structural details of minor glycolipids (GLs) and glycosphingolipids (GSLs) were further elucidated, enriching the understanding of kefir’s lipid complexity. Fatty acyl (FA) composition was characterized using reversed-phase LC coupled with tandem MS. A mild epoxidation reaction with meta-chloroperoxybenzoic acid (m-CPBA) was performed to pinpoint double-bond positions in FAs. The dominant fatty acids were identified as C18:3, C18:2, C18:1, C18:0 (stearic acid), C16:0 (palmitic acid), and significant levels of C14:0 (myristic acid). Additionally, two isomers of FA 18:1 were distinguished: ∆9-cis (oleic acid) and ∆11-trans (vaccenic acid). These isomers were identified using diagnostic ion pairs, retention times, and accurate m/z values. This study provides an unprecedented level of detail on the lipid profile of kefir, shedding light on its complex composition and potential nutritional benefits. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

43 pages, 2356 KiB  
Article
Application of Supercritical CO2 Extraction and Identification of Polyphenolic Compounds in Three Species of Wild Rose from Kamchatka: Rosa acicularis, Rosa amblyotis, and Rosa rugosa
by Mayya P. Razgonova, Muhammad A. Nawaz, Elena A. Rusakova and Kirill S. Golokhvast
Plants 2025, 14(1), 59; https://doi.org/10.3390/plants14010059 - 27 Dec 2024
Viewed by 1336
Abstract
A comparative metabolomic study of three varieties of wild Rosa (Rosa acicularis, Rosa amblyotis, and Rosa rugosa) from a Kamchatka expedition (2024) was conducted via extraction with supercritical carbon dioxide modified with ethanol (EtOH), and detection of bioactive compounds [...] Read more.
A comparative metabolomic study of three varieties of wild Rosa (Rosa acicularis, Rosa amblyotis, and Rosa rugosa) from a Kamchatka expedition (2024) was conducted via extraction with supercritical carbon dioxide modified with ethanol (EtOH), and detection of bioactive compounds was realized via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range 50–350 bar, with the used volume of co-solvent ethanol in the amount of 2% in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are the following: pressure 200 Bar and temperature 55 °C for Rosa acicularis; pressure 250 Bar and temperature 60 °C for Rosa amblyotis; pressure 200 Bar and temperature 60 °C for Rosa rugosa. Three varieties of wild Rosa contain various phenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI–ion trap) was applied to detect the target analytes. A total of 283 bioactive compounds (two hundred seventeen compounds from the polyphenol group and sixty-six compounds from other chemical groups) were tentatively identified in extracts from berries of wild Rosa. For the first time, forty-eight chemical constituents from the polyphenol group (15 flavones, 14 flavonols, 4 flavan-3-ols, 3 flavanones, 1 phenylpropanoid, 2 gallotannins, 1 ellagitannin, 4 phenolic acids, 1 dihydrochalcone, and 3 coumarins) were identified in supercritical extracts of R. acicularis, R. amblyotis, and R. rugosa. Full article
(This article belongs to the Special Issue Phytochemical Analysis and Metabolic Profiling in Plants)
Show Figures

Figure 1

17 pages, 1571 KiB  
Article
Tandem Mass Spectrometry in Untargeted Lipidomics: A Case Study of Peripheral Blood Mononuclear Cells
by Giovanni Ventura, Mariachiara Bianco, Cosima Damiana Calvano, Ilario Losito and Tommaso R. I. Cataldi
Int. J. Mol. Sci. 2024, 25(22), 12077; https://doi.org/10.3390/ijms252212077 - 10 Nov 2024
Cited by 1 | Viewed by 1877
Abstract
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study [...] Read more.
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study presents a detailed analysis of GP and SP profiles in human PBMC samples using tandem mass spectrometry (MS/MS). Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled with linear ion-trap MS/MS were employed to investigate the diagnostic fragmentation patterns that aided in determining regiochemistry in complex lipid extracts. Specifically, the study explored the fragmentation patterns of various lipid species, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), their plasmalogen and lyso forms, phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), sphingomyelins (SMs), and dihexosylceramides (Hex2Cer). Our comprehensive analysis led to the characterization of over 200 distinct lipid species, significantly expanding our understanding of PBMC lipidome complexity. A freely available spreadsheet tool for simulating MS/MS spectra of GPs is provided, enhancing the accessibility and reproducibility of this research. This study advances our knowledge of PBMC lipidomes and establishes a robust analytical framework for future investigations in lipidomics. Full article
Show Figures

Figure 1

18 pages, 3022 KiB  
Article
Neutrophil Depletion Changes the N-Glycosylation Pattern of IgG in Experimental Murine Sepsis
by Kursat O. Yaykasli, Karin A. van Schie, René E. M. Toes, Manfred Wuhrer, Carolien A. M. Koeleman, Galyna Bila, Nazar Negrych, Georg Schett, Jasmin Knopf, Martin Herrmann and Rostyslav Bilyy
Int. J. Mol. Sci. 2024, 25(12), 6478; https://doi.org/10.3390/ijms25126478 - 12 Jun 2024
Cited by 3 | Viewed by 2263
Abstract
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the [...] Read more.
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis. Full article
Show Figures

Graphical abstract

25 pages, 5299 KiB  
Article
Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry
by Mayya P. Razgonova, Muhammad Amjad Nawaz, Elena P. Ivanova, Elena I. Cherevach and Kirill S. Golokhvast
Processes 2024, 12(5), 1041; https://doi.org/10.3390/pr12051041 - 20 May 2024
Cited by 8 | Viewed by 2026
Abstract
A comparative metabolomic study of three varieties of alfalfa (Medicago varia Mart.) was performed via extraction with supercritical carbon dioxide modified with ethanol (EtOH) and the detection of bioactive compounds via tandem mass spectrometry. Several experimental conditions were investigated in the pressure [...] Read more.
A comparative metabolomic study of three varieties of alfalfa (Medicago varia Mart.) was performed via extraction with supercritical carbon dioxide modified with ethanol (EtOH) and the detection of bioactive compounds via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range of 50–250 bar, with ethanol used as a co-solvent in an amount of 1% of the total volume in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions were as follows: a pressure of 250 Bar and a temperature of 60 °C for M. varia. M. varia contains various phenolic compounds and sulfated polyphenols with valuable biological activity. Tandem mass spectrometry (HPLC-ESI–ion trap) was applied to detect the target analytes. A total of 103 bioactive compounds (59 polyphenols and 44 compounds belonging to other chemical groups) were tentatively identified in extracts from aerial parts of alfalfa. For the first time, twenty-one chemical constituents from the polyphenol group (flavones: Formononetin, Chrysoeriol, Cirsimaritin, Cirsiliol, Cirsilineol, tricin-O-hexoside, Apigenin C-glucose C-deoxyhexoside, Apigenin 7-O-diglucuronide, 2′-Hydroxygenistein 4′,7-O-diglucoside, etc.) and six from other chemical groups (saponins: Soyasaponin II, Soyasaponin gamma g, Soyasaponin I, Soyasaponin Bd, Soyaysaponin beta g, etc.) were identified in the aerial parts of M. varia. Full article
Show Figures

Figure 1

18 pages, 2922 KiB  
Article
Objective Quantification Technique and Widely Targeted Metabolomics-Based Analysis of the Effects of Different Saccharidation Processes on Preserved French Plums
by Shengkun Yan, Rong Dong, Jiapeng Yang and Guoqiang Wang
Molecules 2024, 29(9), 2011; https://doi.org/10.3390/molecules29092011 - 26 Apr 2024
Viewed by 1307
Abstract
Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive [...] Read more.
Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing. Full article
Show Figures

Figure 1

17 pages, 2262 KiB  
Article
Characterization of Base Oil and Additive Oxidation Products from Formulated Lubricant by Ultra-High Resolution Mass Spectrometry
by Oscar Lacroix-Andrivet, Marie Hubert-Roux, Corinne Loutelier Bourhis, Samira Moualdi, Anna Luiza Mendes Siqueira and Carlos Afonso
Lubricants 2023, 11(8), 345; https://doi.org/10.3390/lubricants11080345 - 12 Aug 2023
Cited by 4 | Viewed by 3097
Abstract
Automotive formulated lubricants are high value products composed of 80% base oil and 20% various additives. During their life service, lubricants are exposed to several factors that will cause degradation over time, such as high temperature, shear, and oxidation. Base oil is a [...] Read more.
Automotive formulated lubricants are high value products composed of 80% base oil and 20% various additives. During their life service, lubricants are exposed to several factors that will cause degradation over time, such as high temperature, shear, and oxidation. Base oil is a complex combination of hydrocarbons that are relatively sensitive to oxidation. During the initiation phase of oxidation, free radicals are formed, leading to the production of hydroperoxide ROOH and an alkyl radical R. These compounds will react with the base oil molecules to form aldehydes, ketones, and carboxylic acids in the termination phase. Owing to the molecular complexity of these mixtures, Fourier transform mass spectrometry seems to be the most appropriate tool to cover their wide range of compounds due to its ultra-high resolving power and mass accuracy. In this study, a native formulated lubricant and its different oxidized states at 140 °C under air flow (3, 5, 7, 8, and 9 days of oxidation) were analyzed by FTICR MS. The combination of atmospheric pressure chemical ionization (APCI) was used to achieve a non-selective ionization of molecules, including base oils, while Electrospray ionization (ESI) was used to selectively ionize acidic molecules. Apparent Kendrick mass defect (aKMD) plots were used to separate homologous series of molecules on different horizontal lines on the basis of the CH2 repetition unit. Aging of lubricants was mainly characterized by a rapid consumption of certain additive families, such as molybdenum dithiocarbamates (MoDTCs) and zinc dithiophosphate (ZnDTPs), but also by the emergence of many oxidation products. Thus, the presence of aldehydes, ketones, and acids was characterized in the early stage of aging while larger products from polymerization were observed in a more advanced stage of aging. Interaction products between peroxy radicals and hindered phenols/alkyl diphenylamines (ADPAs) antioxidations were elucidated toward the high m/z. The formation of such products can be explained by trapping mechanisms of these additives at high temperature (>120 °C). Other types of interaction products were observed with the formation of antioxidant complexes. Additive degradation products were also characterized. For instance, polyisobutenyl succinimide dispersant oxidation products were clearly evidenced on the aKMD plots due to the gaps of 56 Da between each point. Overall, this study demonstrated the efficiency of the aKMD approach, and the use of ESI/APCI to characterize base oil and additive oxidation products. Full article
(This article belongs to the Special Issue Science and Technology in Nanotribology)
Show Figures

Graphical abstract

18 pages, 4825 KiB  
Article
Luminescent Water-Dispersible Nanoparticles Engineered from Copper(I) Halide Cluster Core and P,N-Ligand with an Optimal Balance between Stability and ROS Generation
by Bulat A. Faizullin, Julia G. Elistratova, Igor D. Strelnik, Kamil D. Akhmadgaleev, Aidar T. Gubaidullin, Kirill V. Kholin, Irek R. Nizameev, Vasily M. Babaev, Syumbelya K. Amerhanova, Alexandra D. Voloshina, Tatiana P. Gerasimova, Andrey A. Karasik, Oleg G. Sinyashin and Asiya R. Mustafina
Inorganics 2023, 11(4), 141; https://doi.org/10.3390/inorganics11040141 - 26 Mar 2023
Cited by 5 | Viewed by 2028
Abstract
The present work introduces the solvent exchange procedure as a route for conversion of the Cu4I4L2 complex, where the Cu4I4 cluster core is coordinated with two P,N-ligands (L), into an aqueous colloid. The analysis of [...] Read more.
The present work introduces the solvent exchange procedure as a route for conversion of the Cu4I4L2 complex, where the Cu4I4 cluster core is coordinated with two P,N-ligands (L), into an aqueous colloid. The analysis of both colloidal and supernatant phases revealed some losses in CuI going from the initial Cu4I4L2 complex to Cu2I2L3-based nanoparticles. The comparative analysis of IR, 31P NMR spectroscopy, ESI mass-spectrometry and luminescence data argued for a contribution of the “butterfly”-like structures of the Cu2I2 cluster core to Cu2I2L3-based nanoparticles, although the amorphous nature of the latter restricted structure evaluation from the PXRD data. The green luminescence of the colloids revealed their chemical stability under pH variations in the solutions of some amino acids and peptides, and to specify the temperature and concentration conditions triggering the oxidative degradation of the nanoparticles. The spin trap-facilitated ESR study indicated that the oxidative transformations were followed by the generation of reactive oxygen species (ROS). The physiological temperature level (310 K) enhanced the ROS generation by nanoparticles, but the ROS level was suppressed in the solution of GSH at pH = 7.0. The cytotoxicity of nanoparticles was evaluated in the M-HeLa cell line and is discussed in correlation with their cell internalization and intracellular oxidative transformations. Full article
(This article belongs to the Special Issue Light Emitting Metal Complexes)
Show Figures

Graphical abstract

21 pages, 3626 KiB  
Article
In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (Mentha × piperita L.) and Its Polyphenols
by Izabela Fecka, Katarzyna Bednarska and Adam Kowalczyk
Molecules 2023, 28(6), 2865; https://doi.org/10.3390/molecules28062865 - 22 Mar 2023
Cited by 9 | Viewed by 3675
Abstract
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to [...] Read more.
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3–77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 μM/mL of polyphenols, including ~1.4 μM/mL of flavonoids and ~0.4 μM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-β-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control. Full article
Show Figures

Graphical abstract

14 pages, 2108 KiB  
Article
Examining Interactions of Uranyl(VI) Ions with Amino Acids in the Gas Phase
by Ana F. Lucena, Leonor Maria, John K. Gibson and Joaquim Marçalo
Appl. Sci. 2023, 13(6), 3834; https://doi.org/10.3390/app13063834 - 17 Mar 2023
Cited by 1 | Viewed by 1875
Abstract
Gas-phase experiments, using electrospray ionization quadrupole ion trap mass spectrometry (ESI-QIT/MS), were conducted to probe basic interactions of the uranyl(VI) ion, UO22+, with selected natural amino acids, namely, L-cysteine (Cys), L-histidine (His), and L-aspartic acid (Asp), which strongly bind to [...] Read more.
Gas-phase experiments, using electrospray ionization quadrupole ion trap mass spectrometry (ESI-QIT/MS), were conducted to probe basic interactions of the uranyl(VI) ion, UO22+, with selected natural amino acids, namely, L-cysteine (Cys), L-histidine (His), and L-aspartic acid (Asp), which strongly bind to metal ions. The simplest amino acid, glycine (Gly), was also studied for comparison. Cys, His, and Asp have additional potentially coordinating groups beyond the amino and carboxylic acid functional groups, specifically thiol in Cys, imidazole in His, and a second carboxylate in Asp. Gas-phase experiments comprised collision-induced dissociation (CID) of uranyl–amino acid complexes and competitive CID to assess the relative binding strength of different amino acids in the same uranyl complex. Reactivity of selected uranyl–amino acid complexes with water provided further insights into relative stabilities. In positive ion mode, CID and ensuing reactions with water suggested that uranyl–neutral AA binding strength decreased in the order His > Asp > Cys > Gly, which is similar to amino acid proton affinities. In negative ion mode, CID revealed a decreasing dissociation tendency in the order Gly >> His ≈ Cys > Asp, presumably reflecting a reverse enhanced binding to uranyl of the doubly deprotonated amino acids formed in CID. Full article
(This article belongs to the Special Issue Application of Gas Phase Ion Chemistry)
Show Figures

Figure 1

20 pages, 2354 KiB  
Article
Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl
by Firdaous Remok, Soukaina Saidi, Aman Allah Gourich, Khalid Zibouh, Mohamed Maouloua, Fadwa El Makhoukhi, Naoual El Menyiy, Hanane Touijer, Mohamed Bouhrim, Sevser Sahpaz, Ahmad Mohammad Salamatullah, Mohammed Bourhia and Touriya Zair
Pharmaceuticals 2023, 16(3), 395; https://doi.org/10.3390/ph16030395 - 6 Mar 2023
Cited by 22 | Viewed by 3796
Abstract
Salvia lavandulifolia Vahl essential oil is becoming more popular as a cognitive enhancer and treatment for memory loss. It is high in natural antioxidants and has spasmolytic, antiseptic, analgesic, sedative, and anti-inflammatory properties. Its aqueous extract has hypoglycemic activity and is used to [...] Read more.
Salvia lavandulifolia Vahl essential oil is becoming more popular as a cognitive enhancer and treatment for memory loss. It is high in natural antioxidants and has spasmolytic, antiseptic, analgesic, sedative, and anti-inflammatory properties. Its aqueous extract has hypoglycemic activity and is used to treat diabetic hyperglycemia, but few studies have focused on it. The objective of this work is to evaluate the various biological and pharmacological powers of Salvia lavandulifolia Vahl leaf aqueous extract. Quality control of the plant material was first carried out. Followed by a phytochemical study on the aqueous extract of S. lavandulifolia leaves, namely phytochemical screening and determination of total polyphenols, flavonoids, and condensed tannins contents. Then, the biological activities were undertaken, in particular the antioxidant activity (total antioxidant activity and trapping of the DPPH° radical) and the antimicrobial activity. The chemical composition of this extract was also determined by HPLC-MS-ESI. Finally, the inhibitory effect of the α-amylase enzyme as well as the antihyperglycaemic effect was evaluated in vivo in normal rats overloaded with starch or D-glucose. The aqueous extract obtained by use of the decoction of leaves of S. lavandulifolia contains 246.51 ± 1.69 mg EQ of gallic acid/g DE, 23.80 ± 0.12 mg EQ quercetin/g DE, and 2.46 ± 0.08 mg EQ catechin /g DE. Its total antioxidant capacity is around 527.03 ± 5.95 mg EQ of ascorbic acid/g DE. At a concentration of 5.81 ± 0.23 µg/mL, our extract was able to inhibit 50% of DPPH° radicals. Moreover, it showed bactericidal effect against Proteus mirabilis, fungicidal against Aspergillus niger, Candida albicans, Candida tropicalis, and Saccharomyces cerevisiae, and fungistatic against Candida krusei. A marked antihyperglycemic activity (AUC = 54.84 ± 4.88 g/L/h), as well as a significant inhibitory effect of α-amylase in vitro (IC50 = 0.99 ± 0.00 mg/mL) and in vivo (AUC = 51.94 ± 1.29 g/L/h), is recorded in our extract. Furthermore, its chemical composition reveals the presence of 37.03% rosmarinic acid, 7.84% quercetin rhamnose, 5.57% diosmetin-rutinoside, 5.51% catechin dimer, and 4.57% gallocatechin as major compounds. The antihyperglycemic and α-amylase inhibitory activities, associated with the antioxidant properties of S. lavandulifolia, justify its use in the treatment of diabetes in traditional medicine and highlight its potential introduction into antidiabetic drugs. Full article
(This article belongs to the Topic Natural Compounds in Plants)
Show Figures

Figure 1

20 pages, 1486 KiB  
Article
Maackia amurensis Rupr. et Maxim.: Supercritical CO2 Extraction and Mass Spectrometric Characterization of Chemical Constituents
by Mayya P. Razgonova, Elena I. Cherevach, Lyudmila A. Tekutyeva, Sergey A. Fedoreyev, Natalia P. Mishchenko, Darya V. Tarbeeva, Ekaterina N. Demidova, Nikita S. Kirilenko and Kirill Golokhvast
Molecules 2023, 28(5), 2026; https://doi.org/10.3390/molecules28052026 - 21 Feb 2023
Cited by 16 | Viewed by 2346
Abstract
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving [...] Read more.
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50–400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI—ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia. Full article
(This article belongs to the Special Issue Processing of Materials by Supercritical Fluids—Part II)
Show Figures

Figure 1

11 pages, 2504 KiB  
Article
Differential Urinary Proteomic Analysis of High-Risk Cervical Intraepithelial Neoplasia
by Peter Bober, Soňa Tkáčiková, Ivan Talian, Peter Urdzík, Silvia Toporcerová and Ján Sabo
Int. J. Mol. Sci. 2023, 24(3), 2531; https://doi.org/10.3390/ijms24032531 - 28 Jan 2023
Cited by 2 | Viewed by 3094
Abstract
Human papillomavirus (HPV)-associated lesions and malignancies exhibit alterations in the composition and functionality of the extracellular matrix (ECM) that represent the complex molecular pathways present between infection and disease. A total of 20 urine samples were used, including from 10 patients with cervical [...] Read more.
Human papillomavirus (HPV)-associated lesions and malignancies exhibit alterations in the composition and functionality of the extracellular matrix (ECM) that represent the complex molecular pathways present between infection and disease. A total of 20 urine samples were used, including from 10 patients with cervical intraepithelial neoplasia grade 3 (CIN3) and 10 healthy controls to perform the label-free quantitative analysis using the nano-HPLC and ESI-MS ion trap mass analyzer and matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF/MS) fast screening. Among 476 identified/quantified proteins, 48 were significantly changed (log2-fold change ≥1.0 or ≤−1.0, −log10 (bbinominal, p-value ≥ 1.3), of which were 40 proteins (down-regulated) and 8 proteins (up-regulated) in CIN3, in comparison to healthy controls. The biological function and key pathway enrichment of the gene set using gen set enrichment analysis (GSEA) were analyzed. The ECM-receptor interaction pathway (NES = −1.64, p = 0.026) was down-regulated by 13 proteins (HSPG2, COL6A1, COL6A3, SPP1, THBS1, TNC, DAG1, FN1, COMP, GP6, VTN, SDC1, and CD44; log2 FC range from −0.03 to −1.48) for the CIN3 group in the KEGG database. The MALDI-TOF/MS screening showed the difference of protein profiles between the control and CIN3 groups, i.e., using the scatter plot with a well-separated shape, as well as effectively distinguishing both groups (control and CIN3) using genetic algorithms (GA) with cross-validation (51.56%) and recognition capability (95.0%). Decreased levels of ECM-receptor interaction proteins may cause disturbances in the interactions of cells with the ECM and play an important role in the development and progression of cervical cancer. Full article
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Valorization of Rice Husk (Oryza sativa L.) as a Source of In Vitro Antiglycative and Antioxidant Agents
by Ilaria Frosi, Daniela Vallelonga, Raffaella Colombo, Chiara Milanese and Adele Papetti
Foods 2023, 12(3), 529; https://doi.org/10.3390/foods12030529 - 25 Jan 2023
Cited by 9 | Viewed by 3955
Abstract
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the [...] Read more.
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the protein glycation at different stages of the reaction, correlating this activity with the antiradical properties. A microwave-assisted extraction using hydro-alcoholic solvents was applied to recover husk polyphenols. Extraction parameters were optimized by the design of the experiment. The extract with the highest polyphenolic recovery was obtained at 500 W and 90 °C, using 1:35 g of dry material/mL solvent, 80% ethanol, and a 5 min extraction time. Results highlight the ability of RHE to inhibit the formation of fructosamine in the early stage of glycation with a dose-dependent activity. Furthermore, in the middle stage of the reaction, the highest RHE tested concentration (2.5 mg/mL) almost completely inhibit the monitored advanced glycation end products (AGEs), as well as showing a good trapping ability against α-dicarbonyl intermediates. A strong positive correlation with antioxidant activity is also found. The obtained results are supported by the presence of ten polyphenols detected by RP-HPLC-DAD-ESI-MSn, mainly hydroxycinnamic acids and flavonoids, already reported in the literature as antiglycative and antioxidant agents. Full article
Show Figures

Figure 1

Back to TopTop