Next Article in Journal
Design and Experiments of the Data Acquisition System for Bale Rolling Characteristic Parameters on a Large-Scale Round Bale Machine
Previous Article in Journal
Robust Forest Fire Detection Method for Surveillance Systems Based on You Only Look Once Version 8 and Transfer Learning Approaches
Previous Article in Special Issue
Investigating Salt Precipitation in Continuous Supercritical Water Gasification of Biomass
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry

by
Mayya P. Razgonova
1,2,*,
Muhammad Amjad Nawaz
3,*,
Elena P. Ivanova
4,
Elena I. Cherevach
2 and
Kirill S. Golokhvast
1,3,5
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
2
Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
3
Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk, Russia
4
Sakhalin Agriculture Scientific Research Institute, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 693022 Yuzhno-Sakhalinsk, Russia
5
Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, 633501 Krasnoobsk, Russia
*
Authors to whom correspondence should be addressed.
Processes 2024, 12(5), 1041; https://doi.org/10.3390/pr12051041
Submission received: 25 March 2024 / Revised: 10 May 2024 / Accepted: 14 May 2024 / Published: 20 May 2024

Abstract

:
A comparative metabolomic study of three varieties of alfalfa (Medicago varia Mart.) was performed via extraction with supercritical carbon dioxide modified with ethanol (EtOH) and the detection of bioactive compounds via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range of 50–250 bar, with ethanol used as a co-solvent in an amount of 1% of the total volume in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions were as follows: a pressure of 250 Bar and a temperature of 60 °C for M. varia. M. varia contains various phenolic compounds and sulfated polyphenols with valuable biological activity. Tandem mass spectrometry (HPLC-ESI–ion trap) was applied to detect the target analytes. A total of 103 bioactive compounds (59 polyphenols and 44 compounds belonging to other chemical groups) were tentatively identified in extracts from aerial parts of alfalfa. For the first time, twenty-one chemical constituents from the polyphenol group (flavones: Formononetin, Chrysoeriol, Cirsimaritin, Cirsiliol, Cirsilineol, tricin-O-hexoside, Apigenin C-glucose C-deoxyhexoside, Apigenin 7-O-diglucuronide, 2′-Hydroxygenistein 4′,7-O-diglucoside, etc.) and six from other chemical groups (saponins: Soyasaponin II, Soyasaponin gamma g, Soyasaponin I, Soyasaponin Bd, Soyaysaponin beta g, etc.) were identified in the aerial parts of M. varia.

1. Introduction

One of the most versatile and cost-effective crops is alfalfa (Medicago varia Mart., family Fabaceae Lindl.), which plays an important role not only in sustainable agriculture but also in expanding the raw material base of the food, cosmetic and pharmaceutical industries. For instance, studies have shown that Medicago varieties contain bioactive compounds, identified as phenolic compounds, in particular, flavonoids. The flavonoids found include flavones (luteolin and apigenin), isoflavones (genistein), flavanones (naringenin), flavanols (catechin and epicatechin) and anthocyanidins (cyanidin and delphinidin) [1,2]. The interest in flavonoid research increased because of the potential of these substances to prevent or treat factors related to metabolic disorders [3]. GC–MS analysis of M. sativa seeds revealed their enrichment in crude protein (33.79%), crude oil (8.11%), squalene, hexadecanoic acid methyl ester, n-hexadecanoic acid, 9,12-octadecadienoic acid methyl ester, 9-octadecenamide and vitamin E. Moreover, Medicago sativa seed inclusion in the diet is recommended to normalize serum cholesterol levels in type II hyperlipoproteinemia patients [4,5,6]. Additionally, there are several interesting scientific studies showing the presence of simple phenolic compounds in Medicago [7,8]. These compounds have a range of biological activities, including anti-inflammatory, antioxidant, phytoestrogenic and anticarcinogenic abilities, as well as their interactions with intracellular signaling pathways and regulation of cell survival. Extracts and balms of M. sativa have long been used as traditional herbal medicines in many countries, such as China, India and America [9,10]. Most varieties of alfalfa are autotetraploids (2n = 4x = 32), with the main number of chromosomes being eight [11,12]. Alfalfa is characterized by its exceptional ability to grow under a wide range of natural conditions, its stable global yield, and its longevity and reproduction of soil fertility through fixation of atmospheric nitrogen. This crop is used as fodder in its green form or for the preparation of fodder (hay, haylage and grass meal). Lucerne hay is a quality forage containing high levels of protein, phosphorus, calcium and essential amino acids [13]. Increased forage production is possible through the development of more productive and higher-quality lucerne varieties. Each soil–climatic zone requires a diverse set of complementary varieties adapted to different extreme growing conditions [14]. Therefore, the study of the genetic diversity of alfalfa source material is of great theoretical and practical importance. M. varia contains omega-3 fatty acids, which are necessary to improve milk quality and increase meat production in ruminants [15]. The plant complex of alfalfa, which contains substances necessary for humans (especially in unfavorable environmental conditions), is used in technology for the production of fermented milk products [16]. It is also worth noting the insecticidal and fungicidal potential of the use of saponins identified in Medicago. The combined deterrent and toxic effects on insects make Medicago saponins suitable for use against insect pests in agriculture and horticulture [17]. An effective way of using Medicago saponins against insect herbivores is to select varieties that accumulate high levels of saponins [17]. For example, the development, survival and reproduction of pea aphids fed on high-saponin alfalfa were reduced compared to those fed on low-saponin alfalfa. In addition, it has been shown that zanhic acid tridesmoside and medicagenic acid, which accumulate in a high-saponin cultivar, are the main compounds contributing to the resistance of alfalfa to pea aphids [18,19]. The nematocidal activity of saponins allows the use of Medicago biomass as a biological agent to control plant-parasitic nematodes, which are widespread in the soil. The antifungal activity of alfalfa saponins may also reduce the presence of phytopathogenic fungi in the soil. Total saponins and selected compounds from different Medicago species have been shown to prevent fusarium on tulip bulbs [20,21]. Saponins against phytopathogenic fungi and nematodes in plant material make Medicago biomass particularly useful as an agent against soil-borne plant pathogens and as a biological fertilizer. Supercritical fluid extraction with the use of pressured CO2 (SC-CO2) has been used over the last 50 years in analytical methodologies to investigate the composition of food products, for the removal of undesirable substances and for the isolation of valuable molecules. The goal of the present work was to identify and select bioactive compounds from M. varia via extraction with SC-CO2. Also, a tandem mass spectrometry protocol was used for the detailed screening of phytochemicals present in three varieties of M. varia.

2. Materials and Methods

2.1. Materials

The subject of the study was the green mass of M. varia varieties (Demetra, Nakhodka and Sarga) (Figure 1A–D) collected and grown at the Sakhalin Agricultural Scientific Research Institute—Branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources. Standard agronomic practices were used for growing the accessions/varieties in their respective locations. The aerial parts of M. varia were harvested at the end of July 2023. All plant tissues used in this work conformed to the standard established by the State Pharmacopoeia of the Russian Federation [22].

2.2. Chemicals and Reagents

All reagents used in the study were of analytical grade. HPLC-grade acetonitrile was purchased from Fisher Scientific (Kent, UK), and MS-grade formic acid and ethanol (EtOH) were purchased from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was obtained from Siemens (SIEMENS water technologies, Munich, Germany).

2.3. Extraction

SC-CO2 extraction was performed using the SFE-500 supercritical pressure extraction system (Thar SCF Waters, Milford, CT, USA). The system options include the following: a co-solvent pump (Thar Waters P-50 High Pressure Pump) for the extraction of polar samples; a CO2-flow meter (Siemens, Munich, Germany) to measure the amount of CO2 supplied to the system; and multiple extraction vessels to extract different sample sizes or to increase the throughput of the system. The flow rate was 10–25 mL/min for liquid CO2 and 1.00 mL/min for EtOH. Extraction samples of 200 g M. varia were used. The extraction time was counted after reaching working pressure and equilibrium flow and was 60–90 min for each sample. This method of SC-CO2 extraction of plant matrices was tested by the authors on numerous plant samples, including aboveground and underground parts of the plant [23,24,25].

2.4. Liquid Chromatography

High-performance liquid chromatography was carried out on a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) instrument equipped with a UV sensor and a C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 μm). Mobile-phase eluent A was deionized water containing 0.1% formic acid, and eluent B was acetonitrile containing 0.1% formic acid. The gradient elution was started at 0–2 min, 0% eluent B 2–50 min, 0–100% B; control washing: 50–60 min, 100% B. The mobile-phase flow rate and column temperature were maintained at 0.3 mL/min and 30 °C, respectively. A UV–vis detector, the SPD-20A (Shimadzu, Kyoto, Japan), was used for detection and compound identification at a wavelength of 230 nm. The injection volume was 10 µL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

2.5. Mass Spectrometry

MS analysis was performed on an ion trap, the amaZon SL (Bruker Daltoniks, Bremen, Germany), equipped with an ESI source in negative ion mode. MS analysis was carried out in electrospray ionization (ESI) mode using negative and positive polarity for all samples with data-independent MSE acquisition. The optimized parameters were obtained as reported earlier [23,24,25]. Similarly, the data collection and compound identification were carried out as per our previous reports [23,24,25].

2.6. Statistical Analysis

To more clearly present the similarities and differences of bioactive substances identified in different variants of M. varia, the team of authors used the Jaccard index. The Jaccard index, also known as the Jaccard similarity coefficient, is a statistical measure used to evaluate the similarity and diversity of sets of samples. Nine replicate samples were analyzed. Jaccard indices were calculated using a the “Compare Lists—Multiple List Comparator” hosted on molbiotools server (https://molbiotools.com/listcompare.php (accessed on 21 March 2024)).

3. Results

3.1. SC-CO2 Extraction of Aerial Parts of M. varia

Three M. varia varieties, i.e., Sarga, Nakhodka and Demetra, were examined by SC-CO2 extraction under different extraction conditions. The supercritical pressures applied ranged from 50 to 250 bar, and the extraction temperature ranged from 31 to 70 °C. The co-solvent, EtOH, was used in an amount of 1% of the total solvent amount. The Table 1 shows the global yield of bioactive compounds (variety Sarga) by SC-CO2 extraction. Figure 1D shows a 3D plot of the global yield of bioactive compounds during SC-CO2 extraction of the aerial parts (variety Sarga).
The maximum global yield of bioactive substances from alfalfa aerial parts (variety Sarga) was observed under the following extraction conditions:
Pressure: 150 Bar, extraction temperature: 50 °C, extraction time: 1 h; the global yield of biologically active substances was 3.1 mg/100 mg of plant sample; the share of the EtOH modifier was 2%;
Pressure: 150 Bar, extraction temperature: 55 °C, extraction time: 1 h; the global yield of biologically active substances was 3.1 mg/100 mg of plant sample; the share of the EtOH modifier was 2%.
Table 2 showing the global yield of bioactive compounds (variety Nakhodka) by SC-CO2 extraction is presented below.
Figure 1E shows a 3D graph of the global yield of biologically active substances during SC-CO2 extraction of alfalfa aerial parts (variety Nakhodka). The maximum global yield of bioactive substances from alfalfa aerial parts (variety Nakhodka) was observed under the following extraction conditions:
Pressure: 150 Bar, extraction temperature: 50 °C, extraction time: 1 h; the global yield of biologically active substances was 2.7 mg/100 mg of plant sample; the share of the EtOH modifier was 2%;
Pressure: 150 Bar, extraction temperature: 55 °C, extraction time: 1 h; the global yield of biologically active substances was 2.8 mg/100 mg of plant sample; the share of the EtOH modifier was 2%.
Table 3 shows the global yield of bioactive compounds (variety Demetra) by SC-CO2 extraction.
Figure 1F shows a 3D graph of the global yield of biologically active substances during SC-CO2 extraction of alfalfa aerial parts (variety Demetra). The maximum global yield of bioactive substances from alfalfa aerial parts (variety Demetra) was observed under the following extraction conditions:
Pressure: 150 Bar, extraction temperature: 50 °C, extraction time: 1 h; the global yield of biologically active substances was 3.2 mg/100 mg of plant sample; the share of the EtOH modifier was 2%.

3.2. Global Metabolome Profile of M. varia

The structural identification of each compound was carried out on the basis of its accurate mass and MS/MS fragmentation by HPLC-ESI–ion trap–MS/MS. A total of 103 chemical compounds were identified from the extracts of the three M. varia varieties (Table 4). Fifty-nine and forty-four chemical compounds were classified as polyphenols and others, respectively (see the chemical structure of some of these compounds in Figure 2). The polyphenols detected in our study were categorized as flavones, flavonols, flavan-3-ols, anthocyanidins, phenolic acids, lignans, coumarins, stilbenes, etc. In total, the metabolites detected in our study belonged to 19 compound classes. The highest number of metabolites was recorded for flavones (24), followed by flavonols (20), anthocyanins (6) and flavan-3-ols (3). These numbers of compounds in respective groups indicate that M. varia extracts are rich in flavonoids. The highest numbers of chemical compounds from other groups were recorded for polysaccharides (8) and saponins (11).
Figure 3 shows the numbers of common and specific compounds. Nineteen compounds were commonly detected from the three M. varia varieties. These nineteen compounds belong to compound classes such as flavones, flavonols, anthocyanins and saponins, suggesting that flavonoids and saponins are major active compounds in M. varia leaves. The applied methods were able to detect 71 (Demetra), 63 (Nakhodka) and 38 (Sarga) compounds.
Moreover, to present the similarities and differences in bioactive substances in different variations of M. varia, we used the Jaccard index (Table 4). The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used to evaluate the similarity and diversity of sets of samples [26,27,28]. It showed that the highest degree of similarity existed between the varieties Demetra and Nakhodka—0.4409.

3.2.1. Flavones

Hydroxy(iso)flavones

7-hydroxyisoflavone formononetin (compound 1) and monohydroxy flavone apigenin-7,4′-dimethyl ether (compound 6) have already been reported in Astragali Radix [29], Huolisu oral liquid [30], Dracocephalum jacutense [31], Maackia amurense [32], the Chinese herbal formula for the Jian-Pi-Yi-Shen pill [33], Ocimum [34] and propolis [35]. Thus, our results indicate that both the flavones formononetin and apigenin-7,4′-dimethyl ether were tentatively identified components in the extracts from M. varia (varieties Demetra and Nakhodka) (Table 2). The CID (collision-induced spectrum) in positive ion mode of flavone formononetin from variety Demetra is shown in Figure 4A. [M + H]+ ions produced two fragment ions (FIs) with m/z 254.12 and m/z 213.20 (Figure 4A). The FI with m/z 254.12 produced one characteristic daughter ion with m/z 237.13.

Dihydroxyflavones

The flavones acacetin (compound 3), dihydroxy-methoxy(iso)flavone (compound 4), cirsimaritin (compound 9), dihydroxy-dimethoxy(iso)flavone (compound 10), nevadensin (compound 12), cirsilineol (compound 13) and 5,6-dihydroxy-7,8,3′,4′-tetramethoxyflavone (compound 15) (Table 2) have already been characterized as components of Mentha [36], Ocimum [34], Mexican lupine species [37], Wissadula periplocifolia [38], Artemisia annua [39], Rosmarinus officinalis [40], Astragali radix [29] and propolis [35]. We also tentatively identified these flavones in extracts from the three varieties of M. varia (Nakhodka, Sarga and Demetra). The CID in positive ion mode of cirsimaritin from extracts from M. varia (variety Nakhodka) is shown in Figure 4B. [M + H]+ ions produced four FIs with m/z 287.18, m/z 259.20, m/z 216.08 and m/z 167.17 (Figure 4B). The FI with m/z 259.20 produced two characteristic daughter ions with m/z 227.15 and m/z 171.18. The FI with m/z 227.15 generated an ion with m/z 198.18.

Trihydroxyflavones

The flavones apigenin (compound 2), trihydroxymethoxyflavone (compound 7), chrysoeriol [chrysoeriol] (compound 8), cirsiliol (compound 11), luteolin 7-O-glucoside [cynaroside] (compound 16), kaempferide [4′-O-methylkaempferol] (compound 26), rhamnocitrin (compound 27), kaempferol-3-O-α-L-rhamnoside (compound 33), astragalin [kaempferol 3-O-glucoside] (compound 34) and isorhamnetin 3-O-glucoside (compound 36) (Table 2) have been already characterized as a components of Inula gaveolens [41], Phlomis (Lamiaceae) [42], Lonicera henryi [43], Ribes meyeri [44], Lonicera japonica [45], Stevia rebaudiana [46], propolis [35] and Jatropha [47]. There trihydroxyflavones were tentatively identified in extracts from M. varia (varieties Nakhodka, Sarga and Demetra). The CID in negative ion mode of astragalin from extracts of M. varia is shown in Figure 4C. [M − H] ions produced four FIs with m/z 285.20, m/z 401.15, m/z 327.21 and m/z 255.18 (Figure 4C). The FI with m/z 285.20 produced one characteristic daughter ion with m/z 255.19, m/z 227.15 and m/z 151.250. The FI with m/z 255.19 produced one characteristic daughter ion with m/z 227.22. Astragalin has been reported in extracts from Juglans mandshurica [48], bee pollen [49], Lonicera japonica [45], Ribes meyeri [44] and potato [50].

3.2.2. Flavan-3-ols

Catechin (compound 45), (epi)-catechin (compound 46) and gallocatechin (compound 47) (Table 2) have already been characterized as components of Carpinus betulus [51], Solanaceae [52], Glottiphyllum linguiforme [53], Embelia [54], Inula viscosa [55], Juglans mandshurica [48], Ribes meyeri [44], Radix polygoni multiflori [56], Glycine soja [57,58] and Jatropha [47]. These flavan-3-ols were tentatively identified in extracts from M. varia (varieties Nakhodka, Sarga and Demetra). The CID in positive ion mode of Catechin from extracts from M. varia (variety Sarga) is shown in Figure 4D. [M − H] ions produced five FIs with m/z 273.18, m/z 245.17, m/z 229.23, m/z 188.17 and m/z 130.23 (Figure 4D). The FI with m/z 273.18 produced four characteristic daughter ions with m/z 245.16, m/z 227.21, m/z 184.17 and m/z 130.27. The FI with m/z 245.16 produced three characteristic daughter ions with m/z 227.20, m/z 201.19 and m/z 159.30.

3.2.3. Anthocyanins

Cyanidin-3-O-glucoside (compound 48), malvidin 3-O-glucoside (compound 49), cyanidin 3-(6″-malonylglucoside) (compound 50), cyanidin-3-O-dioxayl-glucoside (compound 51), peonidin 3-O-(6-O-p-coumaroyl) glucoside (compound 52) and malvidin 3-O-(6-O-p-caffeoyl) glucoside (compound 53) (Table 2) have been already characterized as components of Gaultheria mucronata, Gaultheria antarctica [59], Berberis microphylla [60], Bougainvillea [61], Grape [62], vines [63] and many other plant species whose organs (mainly fruits) accumulate pigments and exhibit a range of colors. These anthocyanins were tentatively identified in extracts from M. varia (varieties Nakhodka and Demetra). The CID in positive ion mode of malvidin 3-O-(6-O-p-caffeoyl) glucoside from extracts from M. varia (variety Nakhodka) is shown in Figure 4E. [M + H]+ ions produced two FIs with m/z 331.17 and m/z 257.05 (Figure 4E). The FI with m/z 331.11 produced three characteristic daughter ions with m/z 315.11, m/z 270.11 and m/z 153.11. The anthocyanin malvidin 3-O-(6-O-p-caffeoyl) glucoside was tentatively identified in results for extracts from Grape [62] and Bougainvillea [61]. The CID in positive ion mode of cyanidin-3-O-glucoside from extracts from M. varia (variety Demetra) is shown in Figure 4F. [M + H]+ ions produced one FI with m/z 287.13 (Figure 4F). The FI with m/z 287.13 produced two characteristic daughter ions with m/z 241.09 and m/z 165.10. The anthocyanin cyanidin-3-O-glucoside was tentatively identified in the results for extracts from several plant species, some of which were mentioned at the beginning of this paragraph, as well as others, such as Ribes magellanicum [64] and Rubus ulmifolius [65].

3.3. Newly Detected Chemical Compounds in M. varia

Of the detected metabolites in the three M. varia varieties, twenty-one compounds from the polyphenol group and six compounds from other chemical groups were identified for the first time. The newly identified polyphenols include flavones (formononetin, chrysoeriol, cirsimaritin, cirsiliol, cirsilineol, tricin-O-hexoside, apigenin C-glucose C-deoxyhexoside, apigenin 7-O-diglucuronide and 2′-hydroxygenistein 4′,7-O-diglucoside malonylated), flavonols (ampelopsin, astragalin, kaempferol 3-(6″-malonylglucoside), rhamnosylhexosyl-methyl-quercetin, quercetin 3,4′-di-O-β-glucopyranoside, isorhamnetin-di-O-hexoside, quercetin-7-O-(acetyl-hexoside)-3-O-rhamnoside and isorhamnetin-3-O-6-O-acetyl-β-D-glucopyranosyl), the flavan-3-ol gallocatechin, vimalin (phenylpropanoid), syringaresinol (lignan), fraxetin (coumarin), etc. Interestingly, the other compound classes that we also detected in M. varia were saponins (soyasaponin II, soyasaponin gamma g, soyasaponin I, soyasaponin Bd and soyasaponin beta g), steroidal alkaloids (alpha-chaconine), etc. (Table 5).

4. Discussion

The biologically active compounds of aerial parts of plants are effectively extracted using organic solvents such as methanol and ethanol. But extraction products in the final phase require additional purification from trace amounts of used solvents. SC-CO2 extraction can be used as an alternative to traditional extraction methods: maceration or Soxhlet extraction [119,120]. SC-CO2 extraction has been used in the evaluation of food products, the isolation of bioactive substances, and the determination of lipid levels in foods and levels of toxic substances. With SC-CO2 extraction, the products do not contain organic solvent residues that occur with conventional extraction methods, and the solvents can be toxic, as in the case of methanol and n-hexane, for example. Easy solvent removal from the final product, high selectivity and moderate extraction temperatures are the main attractions of SC-CO2 technology, leading to a significant increase in research for applications in the food and pharmaceutical industries. When comparing possible supercritical solvents, carbon dioxide has the most attractive advantages, being a non-toxic, non-flammable, environmentally friendly and renewable resource [121]. Popova et al. investigated the influence of SC-CO2 extraction parameters and the quality of Ledum palustre feedstock on the global yields of chlorophylls and carotenoids. The data obtained were significant for the pharmaceutical, food, and perfume and cosmetic industries, which require natural dyes and antioxidants [122]. Baananou et al. reported the anti-inflammatory activity of two extracts from the aerial parts of Rhododendron [123]. Aliev et al., in their research, have shown that SC-CO2 extraction is an effective method for extracting a wide range of lipophilic fractions from plant materials in one experimental procedure, which provides additional opportunities for research [124].
Thus, the use of SC-CO2 extraction is an effective approach for the extraction of bioactive compounds. Our results are consistent with these reports that SC-CO2 extraction is a useful approach to extract and study bioactive compounds.
The extracts obtained showed both a high content of polyphenolic compounds and a high content of saponin group compounds. Earlier studies revealed the presence and detection of polyphenols in legume species. Chiriac et al. [125] used UHPLC-Q exactive hybrid quadrupole orbitrap high-resolution mass spectrometry and identified 29 compounds from the sprouts of Medicago sativa and Trifolium pratense, based on their mass, FIs, retention time and data in the literature. However, using SC-CO2 extraction, the number of polyphenol compounds was higher in our results. This difference could be due to the extraction method or the different tissues under study. Other than Medicago, polyphenols are also abundant in other legume species, such as Phaseolus vulgaris [126], soybean [127], chickpea, grass pea, lentils [128], peanut [129], etc. These polyphenols act as dietary antioxidants in humans and impart protective effects against certain diseases [130].
Apart from polyphenols, the presence of saponins in Medicago varieties is a useful observation. These observations are consistent with earlier studies which reported the presence of saponins in Medicago truncatula [100,107,118]. Saponins are active compounds present in edible legumes and impart health benefits [131,132]. Bioinformatic analyses in legumes have revealed the presence of the triterpene biosynthesis pathway and conserved genes [133,134]. Thus, the detection of eleven compounds classified as saponins and two triterpenoid acids (ursolic acid and oleanolic acid) in the leaves of M. varia is consistent with the above-cited studies. Though several studies on soybean and other legumes have highlighted that seeds and roots [135] are the major sinks for saponins, their presence in leaves and stems has also been reported in, e.g., Jatropha curcas [136], Acanthopanax sieboldianus [137], Quillaja lancifolia [138], etc. The detection of saponins in the leaves of M. varia together with a range of polyphenols suggests this plant as a potential raw material for use in traditional medicine as well as modern pharmacology.
It is well recognized that using some fungicides can be harmful to both the environment and human health. As a result, during the past twenty years, an increasing amount of research has been carried out on the potential use of plant-based substances that would be less harmful than chemicals produced in factories. The increasing prospect of employing saponins as natural fungicides is highlighted in a large number of international articles [139].
Research on 29 Medicago species has shown reliable results, including the identification of several species as having a high concentration of fungicidal saponins [140]. The saponins of some species, including M. sativa [141,142], M. arabica [143], M. arborea [144] and M. hybrida [145], have fungicidal actions.
Fourteen triterpene saponins from the roots of Medicago hybrida have been identified and their structures have been established [145]. Six fungi were tested in vitro to determine the antifungal activity of the roots’ saponins, and eight main saponin glycosides were tested against Botrytis tulipae, one of the most sensitive fungi [20].
It should be noted that different concentrations of saponins equally inhibited the mycelial growth of Botrytis cinerea and B. tulipae. However, the higher concentrations inhibited the mycelial growth of B. cinerea somewhat less. It is assumed that lower concentrations of saponins are sufficient to block all active sites in the mycelial hyphae. It has also recently been shown that M. hybrida saponins have insecticidal activities as high as those of M. arabica and Medicago murex [146]. On the other hand, it is known that M. arabica and M. murex saponins are also rich in highly fungicidal saponins [147]. In conclusion, Medicago saponins have significant antifungal activity, and the roots of this plant can be a rich source of natural fungicides. Therefore, their detection in the aerial parts of M. varia has added to the existing list of beneficial compounds.

5. Conclusions

M. varia species contain many polyphenolic components and components of other chemical groups that have valuable biological activities. SC-CO2 extraction of M. varia (three varieties) was successfully carried out by the team of authors. Certain extraction conditions were selected, and the extracts obtained showed both a high content of polyphenolic compounds and a high content of saponin group compounds. Tandem mass spectrometry (HPLC-ESI–ion trap) was used to detect target analytes. Mass spectrometric data were recorded on an ion trap equipped with an ESI source in negative and positive ion modes. A four-stage ion separation mode was implemented. One hundred and three different biologically active compounds were found in M. varia extracts. Twenty-seven phenolic compounds were tentatively identified for the first time. Also, for the first time, the following saponins were identified with reliable accuracy in M. varia: soyasaponin II, soyasaponin gamma g, soyasaponin I, soyasaponin Bd, soyasaponin beta g, steroidal alkaloids (alpha-chaconine), etc. Although our study aimed only to study the aerial parts of Medicago varia, which belongs to the legume family (Fabaceae), the same approach can be applied in the future to study factors influencing the metabolite profiles of legume seeds, including seasonal variations, cultivation and storage conditions. In addition, our study may provide new interesting details for future taxonomic studies, especially if they target larger genotypes.

Author Contributions

Conceptualization, E.P.I. and M.P.R.; methodology, M.P.R., M.A.N. and E.I.C.; software, M.P.R.; validation, M.P.R., E.I.C. and K.S.G.; formal analysis, M.P.R. and E.I.C.; investigation, K.S.G. and M.P.R.; resources, K.S.G. and M.P.R.; data curation, E.P.I.; writing—original draft preparation—M.A.N. and M.P.R.; writing—review and editing M.A.N. and M.P.R.; visualization, M.P.R. and M.A.N.; supervision, M.A.N.; project administration, K.S.G. and M.P.R. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported financially by the Ministry of Science and Higher Education as part of achieving the results of the federal project “Advanced Engineering Schools”, agreement no. 075-15-2022-1143, dated 7 July 2022.

Data Availability Statement

All the datasets described are included within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
  2. Spencer, J.P.E.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol. Asp. Med. 2012, 33, 83–97. [Google Scholar] [CrossRef] [PubMed]
  3. Gholami, A.; De Geyter, N.; Pollier, J.; Goormachtig, S.; Goossens, A. Natural product biosynthesis in Medicago species. Food Funct. 2010, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
  4. Bora, K.S.; Sharma, A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
  5. Tepe, H.D. Qualitative analysis of alfalfa seed methanol extract by GC–MS and determination of antioxidant properties. Celal Bayar Univ. J. Sci. 2019, 15, 175–180. [Google Scholar]
  6. Molgaard, J.; Von Schenck, H.; Olsson, A.G. Alfalfa seeds lower low density lipoprotein cholesterol and apolipoprotein B concentrations in patients with type II hyperlipoproteinemia. Atherosclerosis 1987, 65, 173–179. [Google Scholar] [CrossRef] [PubMed]
  7. Fahmy, H.A.; El-Shamy, S.; Farag, M.A. Comparative GC–MS based nutrients profiling of less explored legume seeds of Melilotus, Medicago, Trifolium, and Ononis analysed using chemometric tools. Sci. Rep. 2023, 13, 18221. [Google Scholar] [CrossRef]
  8. Echeverria, A.; Larrainzar, E.; Li, W.; Watanabe, Y.; Sato, M.; Tran, C.D.; Moler, J.A.; Hirai, M.Y.; Sawada, Y.; Phan Tran, L.-S.; et al. Medicago sativa and Medicago truncatula Show Contrasting Root Metabolic Responses to Drought. Front. Plant Sci. 2021, 12, 652143. [Google Scholar] [CrossRef] [PubMed]
  9. Mielmann, A. The utilization of lucerne (Medicago sativa): A review. Br. Food J. 2013, 115, 590–600. [Google Scholar] [CrossRef]
  10. Barna, D.; Alshaal, T.; Toth, I.O.; Cziaky, Z.; Fari, M.G.; Domokos-Szabolcsy, E.; Bakonyi, N. Bioactive metabolite profile and antioxidant properties of brown juice, a processed alfalfa (Medicago sativa) by-product. Heliyon 2022, 8, e11655. [Google Scholar] [CrossRef]
  11. Wang, Z.; Yan, H.; Fu, X.; Li, X.; Gao, H. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.). Mol. Biol. Rep. 2013, 40, 3291–3298. [Google Scholar] [CrossRef] [PubMed]
  12. Gainullina, K.P.; Nizaeva, A.A.; Kuluev, B.R. Assessment of genetic diversity of Medicago varia Mart. populations selected for breeding in the conditions of the Republic of Bashkortostan using SSR-analysis. Biomics 2023, 5, 159–166. [Google Scholar] [CrossRef]
  13. Hou, W.; Liu, C.; Xia, J.; Niu, H.; Li, S. Rapid screening and purification of potential inhibitors from Medicago sativa by ultrafiltration-liquid chromatography combined with stepwise flow rate counter-current chromatography. Phytochem. Anal. 2021, 32, 382–394. [Google Scholar] [CrossRef] [PubMed]
  14. Leoni, F.; Hazrati, H.; Fomsgaard, I.S.; Moonen, A.C.; Kudsk, P. Determination of the Effect of Co-cultivation on the Production and Root Exudation of Flavonoids in Four Legume Species Using LC-MS/MS Analysis. J. Agric. Food Chem. 2021, 69, 9208–9219. [Google Scholar] [CrossRef] [PubMed]
  15. Song, T.; Xu, H.; Sun, N.; Jiang, L.; Tian, P.; Yong, Y.; Yang, W.; Cai, H.; Cui, G. Metabolomic Analysis of Alfalfa (Medicago sativa L.) Root-Symbiotic Rhizobia Responses under Alkali Stress. Front. Plant Sci. 2017, 8, 1208. [Google Scholar] [CrossRef] [PubMed]
  16. Glagoleva, L.E.; Zatsepilina, N.P.; Nesterenko, I.P.; Pevneva, D.M. About the use of plant-based complex of alfalfa in production of dairy products. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Volgograd, Russia, 17–18 June 2021; Volume 848, p. 012049. [Google Scholar] [CrossRef]
  17. De Geyter, E.; Swevers, L.; Soin, T.; Geelen, D.; Smagghe, G. Saponins do not affect the ecdysteroid receptor complex but cause membrane permeation in insect culture cell lines. J. Insect Physiol. 2012, 58, 18–23. [Google Scholar] [CrossRef] [PubMed]
  18. Golawska, S. Deterrence and Toxicity of Plant Saponins for the Pea Aphid Acyrthosiphon pisum Harris. J. Chem. Ecol. 2007, 33, 1598–1606. [Google Scholar] [CrossRef]
  19. Golawska, S.; Lukasik, I.; Leszczynski, B. Effect of alfalfa saponins and flavonoids on pea aphid. Entomol. Exp. Appl. 2008, 128, 147–153. [Google Scholar] [CrossRef]
  20. Saniewska, A.; Jarecka, A.; Bialy, Z.; Jurzysta, M. Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens. Acta Agrobot. 2006, 59, 51–58. [Google Scholar] [CrossRef]
  21. Jarecka, A.; Saniewska, A.; Bialy, Z.; Jurzysta, M. The effect of Medicago arabica, M. hybrida and M. sativa saponins on the grown and development of Fusarium oxysporum Schlecht f. sp. tulipae apt. Acta Agrobot. 2008, 61, 147–155. [Google Scholar] [CrossRef]
  22. Pharmacopoeia of the Eurasian Economic Union. Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated 11 August 2020. Available online: https://eec.eaeunion.org/upload/medialibrary/37c/PHARMACOPOEIA-of-the-Eurasian-Economic-Union.pdf (accessed on 1 January 2021).
  23. Razgonova, M.; Zakharenko, A.; Kalenik, T.; Nosyrev, A.; Stratidakis, A.; Mezhuev, Y.; Burykina, T.; Nicolae, A.; Arsene, A.; Tsatsakis, A.; et al. Supercritical fluid technology and supercritical fluid chromatography for application in ginseng extracts. Farmacia 2019, 67, 2. [Google Scholar] [CrossRef]
  24. Razgonova, M.; Zakharenko, A.; Ercisli, S.; Grudev, V.; Golokhvast, K. Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Molecules 2020, 25, 3774. [Google Scholar] [CrossRef] [PubMed]
  25. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  26. Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 2019, 20, 644. [Google Scholar] [CrossRef] [PubMed]
  27. Lipkus, A.H. A proof of the triangle inequality for the Tanimoto distance. J. Math. Chem. 1999, 26, 263–265. [Google Scholar] [CrossRef]
  28. Levandowsky, M.; Winter, D. Distance between sets. Nature 1971, 234, 34–35. [Google Scholar] [CrossRef]
  29. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qiu, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef]
  30. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
  31. Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. [Google Scholar] [CrossRef]
  32. Razgonova, M.P.; Cherevach, E.I.; Tekutyeva, L.A.; Fedoreev, S.A.; Mishchenko, N.P.; Tarbeeva, D.V.; Demidova, E.N.; Kirilenko, N.S.; Golokhvast, K.S. Maackia amurensis Rupr. et Maxim.: Supercritical CO2-extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023, 28, 2026. [Google Scholar] [CrossRef]
  33. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef] [PubMed]
  34. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  35. Belmehdi, O.; Bouyahya, A.; Jeko, J.; Cziaky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Skali-Senhaji, N.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  36. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [PubMed]
  37. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochem. 2013, 92, 71–86. [Google Scholar] [CrossRef] [PubMed]
  38. Teles, Y.C.E.; Rebello Horta, C.C.; de Fatima Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules 2015, 20, 20161–20172. [Google Scholar] [CrossRef] [PubMed]
  39. Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Wozniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
  40. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef] [PubMed]
  41. Silinsin, M.; Bursal, E. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Nat. Prod. Res. 2018, 31, 1467–1471. [Google Scholar] [CrossRef]
  42. Aghakhani, F.; Kharazin, N.; Gooini, Z.L. Flavonoid Constituents of Phlomis (Lamiaceae) Species Using Liquid Chromatography Mass Spectrometry. Phytochem. Anal. 2018, 29, 180–195. [Google Scholar] [CrossRef]
  43. Jaiswal, R.; Muller, H.; Muller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef] [PubMed]
  44. Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef] [PubMed]
  45. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  46. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Anal. 2021, 33, 249–261. [Google Scholar] [CrossRef]
  47. Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef]
  48. Huo, J.-H.; Du, X.-W.; Sun, G.-D.; Dong, W.-T.; Wang, W.-M. Identification and characterization of major constituents in Juglans mandshurica using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Med. 2018, 16, 0525–0545. [Google Scholar] [CrossRef] [PubMed]
  49. Mosic, M.; Trifkovic, J.; Vovk, I.; Gasic, U.; Tesic, Z.; Sikoparija, B.; Milojkovic-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
  50. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
  51. Felegyi-Toth, C.A.; Garadi, Z.; Darcsi, A.; Csernak, O.; Boldizsar, I.; Beni, S.; Alberti, A. Isolation and quantification of diarylheptanoids from European hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS characterization of its antioxidative phenolics. J. Pharm. Biomed. Anal. 2022, 210, 114554. [Google Scholar] [CrossRef]
  52. Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef]
  53. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef] [PubMed]
  54. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  55. Kheyar-Kraouche, N.; Bento da Silva, A.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by liquid chromatography-mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
  56. Liu, Z.; Liu, Y.; Wang, C.; Guo, N.; Song, Z.; Wang, C.; Xia, L.; Lu, A. Comparative Analyses of Chromatographic Fingerprints of the Roots of Polygonum multiflorum Thunb. and Their Processed Products Using RRLC/DAD/ESI-MSn. Planta Med. 2011, 77, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
  57. Xu, J.L.; Shin, J.-S.; Park, S.-K.; Kang, S.; Jeong, S.-C.; Moon, J.-K.; Choi, Y. Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. Food Res. Int. 2017, 100, 166–174. [Google Scholar] [CrossRef]
  58. Li, X.; Li, S.; Wang, J.; Chen, G.; Tao, X.; Xu, S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants 2023, 12, 912. [Google Scholar] [CrossRef]
  59. Ruiz, A.; Hermosin-Gutierrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfild, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  60. Ruiz, A.; Hermosin-Gutierrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. Agric. Food Chem. 2010, 51, 706–713. [Google Scholar] [CrossRef] [PubMed]
  61. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  62. Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols; Hindawi Publishing Corp.: New York, NY, USA, 2013; p. 813563. [Google Scholar]
  63. Fermo, P.; Comite, V.; Sredojevic, M.; Ciric, I.; Gasic, U.; Mutic, J.; Baosic, R.; Tesic, Z. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef]
  64. Burgos-Edwards, A.; Jimenez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes. Food Chem. 2018, 258, 144–155. [Google Scholar] [CrossRef] [PubMed]
  65. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef]
  66. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
  67. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
  68. Hassan, W.; Abdelaziz, S.; Yousef, H. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
  69. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2013, 28, 224–230. [Google Scholar] [CrossRef] [PubMed]
  70. Fantoukh, O.I.; Wang, Y.-H.; Parveen, A.; Hawwal, M.F.; Ali, Z.; Al-Hamoud, G.A.; Chittiboyina, A.G.; Joubert, E.; Viljoen, A.; Khan, I.A. Chemical Fingerprinting Profile and Targeted Quantitative Analysis of Phenolic Compounds from Rooibos Tea (Aspalathus linearis) and Dietary Supplements Using UHPLC-PDA-MS. Separations 2022, 9, 159. [Google Scholar] [CrossRef]
  71. Lv, Z.; Dong, J.; Zhang, B. Rapid identification and detection of flavonoid compounds from Bamboo leaves by Lc-(ESI)-IT-TOF/FM. BioResources 2011, 7, 1405–1418. [Google Scholar]
  72. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef]
  73. Wang, S.; Yang, C.; Tu, H.; Zhou, J.; Liu, X.; Cheng, Y.; Luo, J.; Deng, X.; Zhang, H.; Xu, J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Sci. Rep. 2017, 7, 10549. [Google Scholar] [CrossRef]
  74. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  75. Yamazaki, M.; Nakajima, J.-I.; Yamanashi, M.; Sugiyama, M.; Makita, Y.; Springob, K.; Awazuhara, M.; Saito, K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry 2003, 62, 987–995. [Google Scholar] [CrossRef] [PubMed]
  76. Stallmann, J.; Schweiger, R.; Pons, C.A.; Müller, C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci. Rep. 2020, 10, 10112. [Google Scholar] [CrossRef] [PubMed]
  77. Zhang, W.-X.; Chao, I.-C.; Hu, D.-J.; Shakerian, F. Comparison of Antioxidant Activity and Main Active Compounds Among Different Parts of Alpinia officinarum Hance Using High-Performance Thin Layer Chromatography-Bioautography. J. AOAC Int. 2019, 102, 726–733. [Google Scholar] [CrossRef] [PubMed]
  78. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef] [PubMed]
  79. Razgonova, M.P.; Navaz, M.A.; Sabitov, A.S.; Zinchenko, Y.N.; Rusakova, E.A.; Petrusha, E.N.; Golokhvast, K.S.; Tikhonova, N.G. The Global metabolome profiles of four varieties of Lonicera caerulea, established via tandem mass spectrometry. Horticulturae 2023, 9, 1188. [Google Scholar] [CrossRef]
  80. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef] [PubMed]
  81. Said, R.B.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
  82. Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
  83. Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
  84. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
  85. Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitisidaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef] [PubMed]
  86. Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef] [PubMed]
  87. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
  88. Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
  89. Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018, 23, 2497. [Google Scholar] [CrossRef]
  90. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef]
  91. Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
  92. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef]
  93. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  94. Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2012, 13, 260–285. [Google Scholar] [CrossRef] [PubMed]
  95. Yang, Y.; Zhang, J.-L.; Zhou, Q.; Wang, L.; Huang, W.; Wang, R.-D. Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. J. Sci. Food Agric. 2019, 99, 5350–5357. [Google Scholar] [CrossRef] [PubMed]
  96. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous Determination of 78 Compounds of Rhodiola rosea Extract by Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Hindawi Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef] [PubMed]
  97. Okhlopkova, Z.M.; Ercisli, S.; Razgonova, M.P.; Ivanova, N.S.; Antonova, E.E.; Egorov, Y.A.; Kucharova, E.V.; Golokhvast, K.S. Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae 2023, 9, 1329. [Google Scholar] [CrossRef]
  98. Cukelj, N.; Jakasa, I.; Sarajlija, H.; Novotni, D.; Curic, D. Identification and quantification of lignans in wheat bran by gas chromatography-electron capture detection. Talanta 2011, 84, 127–132. [Google Scholar] [CrossRef] [PubMed]
  99. Liaw, C.-C.; Chang, F.-R.; Chen, S.-L.; Wu, C.-C.; Lee, K.-H.; Wu, Y.-C. Novel cytotoxic monotetrahydrofuranic Annonaceous acetogenins from Annona montana. Bioorg. Med. Chem. 2005, 13, 4767–4776. [Google Scholar] [CrossRef] [PubMed]
  100. Dokwal, D.; Cocuron, J.-C.; Alonso, A.P.; Dickstein, R. Metabolite shift in Medicago truncatula occurs in phosphorus deprivation. J. Exp. Bot. 2022, 73, 2093–2111. [Google Scholar] [CrossRef] [PubMed]
  101. Liu, Y.; Li, M.; Xu, J.; Liu, X.; Wang, S.; Shi, L. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biol. 2019, 19, 589. [Google Scholar] [CrossRef] [PubMed]
  102. Razgonova, M.P.; Boiko, A.P.; Zinchenko, Y.; Tikhonova, N.G.; Sabitov, A.S.; Zakharenko, A.; Golokhvast, K.S. Actinidia deliciosa: A high-resolution mass spectrometric approach for the comprehensive characterization of bioactive compounds. Turk. J. Agric. For. 2023, 47, 155–169. [Google Scholar] [CrossRef]
  103. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
  104. Okhlopkova, Z.M.; Razgonova, M.P.; Kucharova, E.V.; Egorova, P.S.; Golokhvast, K.S. Rare Plant of Central Yakutia Polygala sibirica L.: Phytochemical Profile and In Vitro Morphogenic Culture. Russ. J. Plant Physiol. 2023, 70, 176. [Google Scholar] [CrossRef]
  105. Razgonova, M.P.; Bazhenova, B.B.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  106. Razgonova, M.P.; Zakharenko, A.M.; Golokhvast, K.S. Investigation of the Supercritical CO2 Extracts of Wild Ledum palustre, L. (Rhododendron tomentosum Harmaja) and Identification of Its Metabolites by Tandem Mass Spectrometry. Russ. J. Bioorg. Chem. 2023, 49, 1645–1657. [Google Scholar] [CrossRef]
  107. Lei, Z.; Watson, B.S.; Huhman, D.; Yang, D.S.; Sumner, L.W. Large-Scale Profiling of Saponins in Different Ecotypes of Medicago truncatula. Front. Plant Sci. 2019, 10, 850. [Google Scholar] [CrossRef]
  108. Lei, Z.-H.; Zhu, H.; Cai, X.-P.; He, D.-D.; Hua, J.-L.; Ju, J.-M.; Lv, H.; Li, W.-L. Simultaneous determination of five triterpene acids in rat plasma by liquid chromatography–mass spectrometry and its application in pharmacokinetic study after oral administration of Folium Eriobotryae effective fraction. Biomed. Chromatogr. 2015, 29, 1791–1797. [Google Scholar] [CrossRef]
  109. Van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
  110. Milenkovic, S.M.; Zvezdanovic, J.B.; Andelkovic, T.D.; Markovic, D.Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, Visible and spectroscopy studies. Adv. Technol. 2012, 1, 16–24. [Google Scholar]
  111. Ha, T.J.; Lee, B.W.; Park, K.H.; Jeong, S.H.; Kim, H.-T.; Ko, J.-M.; Baek, I.-Y.; Lee, J.H. Rapid characterisation and comparison of saponin profiles in the seeds of Korean Leguminous species using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC–PDA–ESI/MS) analysis. Food Chem. 2014, 146, 270–277. [Google Scholar] [CrossRef]
  112. Kinjo, J.; Hatakeyama, M.; Udayama, M.; Tsutanaga, Y.; Yamashita, M.; Nohara, T.; Yoshiki, Y.; Okubo, K. HPLC Profile Analysis of Oleane-Glucuronides in Several Edible Beans. Biosci. Biotechnol. Biochem. 1998, 62, 429–433. [Google Scholar] [CrossRef]
  113. Shakya, R.; Navarre, D.A. LC-MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (Solanum tuberosum). J. Agric. Food Chem. 2008, 56, 6949–6958. [Google Scholar] [CrossRef]
  114. Huang, W.; Serra, O.; Dastmalchi, K.; Jin, L.; Yang, L.; Stark, R.E. Comprehensive MS and Solid-state NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017, 65, 2258–2274. [Google Scholar] [CrossRef]
  115. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef]
  116. Penagos-Calvete, D.; Guauque-Medina, J.; Villegas-Torres, M.F.; Montoya, G. Analysis of triacylglycerides, carotenoids and capsaicinoids as disposable molecules from Capsicum agroindustry. Hortic. Environ. Biotechnol. 2019, 60, 227–238. [Google Scholar] [CrossRef]
  117. Decroos, K.; Vincken, J.-P.; Heng, L.; Bakker, R.; Gruppen, H.; Verstraete, W. Simultaneous quantification of differently glycosylated, acetylated, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one-conjugated soyasaponins using reversed-phase high-performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. A 2005, 1072, 185–193. [Google Scholar] [CrossRef]
  118. Pollier, J.; Morreel, K.; Geelen, D.; Goossens, A. Metabolite Profiling of Triterpene Saponins in Medicago truncatula Hairy Roots by Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Nat. Prod. 2011, 74, 1462–1476. [Google Scholar] [CrossRef]
  119. da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
  120. Kupnik, K.; Leitgeb, M.; Primozic, M.; Postruznik, V.; Kotnik, P.; Kucuk, N.; Knez, Z.; Marevci, M.K. Supercritical Fluid and Conventional Extractions of High Value-Added Compounds from Pomegranate Peels Waste: Production, Quantification and Antimicrobial Activity of Bioactive Constituents. Plants 2022, 11, 928. [Google Scholar] [CrossRef]
  121. Baldino, L.; Reverchon, E. Challenges in the production of pharmaceutical and food related compounds by SC-CO2 processing of vegetable matter. J. Supercrit. Fluids 2018, 134, 269–273. [Google Scholar] [CrossRef]
  122. Popova, A.S.; Ivahnov, A.D.; Skrebets, T.E.; Bogolitsyn, K.G. Supercritical fluid extraction of carotenoids and chlorophyll from Ledum palustre. Chem. Plant Mater. 2018, 1, 61–66. [Google Scholar] [CrossRef]
  123. Baananou, S.; Bagdonaite, E.; Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Boughattas, N.A. Supercritical CO2 extract and essential oil of aerial part of Ledum palustre L.—Chemical composition and anti-inflammatory activity. Nat. Prod. Res. 2015, 29, 999–1005. [Google Scholar] [CrossRef]
  124. Aliev, A.M.; Radzhabov, G.K.; Vagabova, F.A.; Islamova, F.I.; Goriainov, S.V.; Hajjar, F.; Hammami, S. Relationship of the Component Composition of Supercritical CO2 Extracts of Wild Carrots with Growing Conditions. Russ. J. Phys. Chem. 2023, 17, 1619–1627. [Google Scholar] [CrossRef]
  125. Chiriac, E.R.; Chitescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geana, E.-I.; Blaga, G.-V.; Boscencu, R. Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef]
  126. Yang, Q.-Q.; Gan, R.-Y.; Ge, Y.-Y.; Zhang, D.; Corke, H. Polyphenols in Common Beans (Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1518–1539. [Google Scholar] [CrossRef] [PubMed]
  127. Malencic, D.; Cvejic, J.; Miladinovic, J. Polyphenol Content and Antioxidant Properties of Colored Soybean Seeds from Central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef] [PubMed]
  128. Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppola, R. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
  129. Rossi, Y.E.; Luciana, P.B.; Vanden Braber, N.L.; Ballatore, M.B.; Escobar, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection and interaction with ROS. J. Funct. Foods 2020, 67, 103862. [Google Scholar] [CrossRef]
  130. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
  131. Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from Edible Legumes: Chemistry, Processing, and Health Benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
  132. Sharma, K.; Kaur, R.; Kumar, S.; Kumar Saini, R.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Advances 2023, 2, 100191. [Google Scholar] [CrossRef]
  133. Krishnamurthy, P.; Tsukamoto, C.; Ishimoto, M. Reconstruction of the Evolutionary Histories of UGT Gene Superfamily in Legumes Clarifies the Functional Divergence of Duplicates in Specialized Metabolism. Int. J. Mol. Sci. 2020, 21, 1855. [Google Scholar] [CrossRef]
  134. Hou, B.; Yuan, X.; Li, S.; Li, Y.; Li, Z.; Li, J. Genome-Wide Identification of CYP72A Gene Family and Expression Patterns Related to Jasmonic Acid Treatment and Steroidal Saponin Accumulation in Dioscorea zingiberensis. Int. J. Mol. Sci. 2021, 22, 10953. [Google Scholar] [CrossRef] [PubMed]
  135. Sundaramoorthy, J.; Park, G.T.; Komagamine, K.; Tsukamoto, C.; Chang, J.H.; Lee, J.-D.; Kim, J.H.; Seo, H.S.; Song, J.T. Biosynthesis of DDMP saponins in soybean is regulated by a distinct UDP-glycosyltransferase. New Phytol. 2019, 222, 261–274. [Google Scholar] [CrossRef] [PubMed]
  136. Rai, S.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Characterization of saponins from the leaves and stem bark of Jatropha curcas L. for surface-active properties. Heliyon 2023, 9, e15807. [Google Scholar] [CrossRef] [PubMed]
  137. Sawada, H.; Miyakoshi, M.; Isoda, S.; Ida, Y.; Shoji, J. Saponins from leaves of Acanthopanax sieboldianus. Phytochemistry 1993, 34, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
  138. Marques, M.E.M.; de Carvalho, A.C.; Yendo, A.C.A.; Magedans, Y.V.S.; Zachert, E.; Fett-Neto, A.G. Phytotoxicity of Quillaja lancifolia Leaf Saponins and Their Bioherbicide Potential. Plants 2023, 12, 663. [Google Scholar] [CrossRef] [PubMed]
  139. Oleszek, W. Alfalfa saponins: Structure, biological activity and chemotaxonomy. In Saponins Used in Food and Agriculture; Waller, G.R., Yamasaki, K., Eds.; Plenum Press: New York, NY, USA, 1996; pp. 155–170. [Google Scholar]
  140. Jurzysta, M.; Bialy, Z. Antifungal and hemolytic activity of roots of alfalfa (Medicago app.) in relation to saponin composition. In Modern Fungicides and Antifungal Compounds II; Lyr, H., Russell, P.E., Dehne, H.W., Sisler, H.D., Eds.; Intercept: Andover, UK, 1999; pp. 445–451. [Google Scholar]
  141. Martyniuk, S.; Wroblewska, B.; Jurzysta, M.; Bialy, Z. Saponins as inhibitors of cereal pathogens: Gaeumannomyces graminis v. tritici and Cephalosporium grami nem. In Modern Fungicides and Antifungal Compounds; Lyr, H., Russel, P.E., Sisler, H.D., Eds.; Intercept: Andover, UK, 1996; pp. 193–197. [Google Scholar]
  142. Saniewska, A.; Bialy, Z.; Jurzysta, M. The effect of alfalfa (Medicago sativa) saponins on Botrytis tulipae and Phoma narcissi growth. Phytopathol. Pol. 2003, 27, 15–27. [Google Scholar]
  143. Saniewska, A.; Jarecka, A.; Bialy, Z.; Jurzysta, M. Antifungal activity of saponins from Medicago arabica L. shoots against some pathogens. Allelopath. J. 2005, 16, 105–112. [Google Scholar]
  144. Tava, A.; Mella, M.; Avato, P.; Argentieri, M.P.; Bialy, Z.; Jurzysta, M. Triterpenoid glycosides from leaves of Medicago arborea L. J. Agric. Food Chem. 2005, 53, 9954–9965. [Google Scholar] [CrossRef] [PubMed]
  145. Bialy, Z.; Jurzysta, M.; Mella, M.; Tava, A. Triterpene saponins from the roots of Medicago hybrida. J. Agric. Food Chem. 2006, 54, 2520–2526. [Google Scholar] [CrossRef]
  146. Szczepanik, M.; Bialy, Z.; Jurzysta, M. The insecticidal activity of saponins from various Medicago spp. against Colorado potato beetle, Leptinotarsa decemlineata Say. Allelopath. J. 2004, 14, 177–186. [Google Scholar]
  147. Martyniuk, S.; Bialy, Z.; Jurzysta, M. Inhibitory effect of Medicago arabica and Medicago murex constituents on the growth and pathogenicity of Gaeumannomyces graminis var. tritici. In Modern Fungicides and Antifungal Compounds; Dehne, H.W., Gisi, U., Kuck, K.H., Russell, P.E., Lyr, H., Eds.; Agro Concept GmbH: Bonn, Germany, 2002; pp. 395–400. [Google Scholar]
Figure 1. M. varia varieties: (A) Sarga; (B) Nakhodka; (C) Demetra. (Photos by E. Ivanova.) (D) Three-dimensional graph of the global yield of biologically active substances during SC-CO2 extraction of the M. varia varieties Sarga, (E) Nakhodka and (F) Demetra.
Figure 1. M. varia varieties: (A) Sarga; (B) Nakhodka; (C) Demetra. (Photos by E. Ivanova.) (D) Three-dimensional graph of the global yield of biologically active substances during SC-CO2 extraction of the M. varia varieties Sarga, (E) Nakhodka and (F) Demetra.
Processes 12 01041 g001
Figure 2. Chemical structures of some phenolic compounds identified in M. varia.
Figure 2. Chemical structures of some phenolic compounds identified in M. varia.
Processes 12 01041 g002
Figure 3. Venn diagram showing numbers of common and specific compounds in M. varia varieties.
Figure 3. Venn diagram showing numbers of common and specific compounds in M. varia varieties.
Processes 12 01041 g003
Figure 4. (A) Collision-induced spectrum of Formononetin from M. varia (variety Demetra), m/z 269.18. (B) CID of Cirsimaritin from M. varia (variety Nakhodka), m/z 315.27. (C) CID of Astragalin from M. varia (variety Sarga), m/z 447.40. (D) CID of Catechin from M. varia (variety Sarga), m/z 291.17. (E) CID of Malvidin 3-O-(6-O-p-caffeoyl) glucoside from berries of M. varia (variety Nakhodka), m/z 655.49. (F) CID of Cyanidin-3-O-glucoside from berries of M. varia (variety Demetra), m/z 449.17.
Figure 4. (A) Collision-induced spectrum of Formononetin from M. varia (variety Demetra), m/z 269.18. (B) CID of Cirsimaritin from M. varia (variety Nakhodka), m/z 315.27. (C) CID of Astragalin from M. varia (variety Sarga), m/z 447.40. (D) CID of Catechin from M. varia (variety Sarga), m/z 291.17. (E) CID of Malvidin 3-O-(6-O-p-caffeoyl) glucoside from berries of M. varia (variety Nakhodka), m/z 655.49. (F) CID of Cyanidin-3-O-glucoside from berries of M. varia (variety Demetra), m/z 449.17.
Processes 12 01041 g004
Table 1. The global yield of extract (mg/100 mg) after SC-CO2 extraction of M. varia, variety Sarga.
Table 1. The global yield of extract (mg/100 mg) after SC-CO2 extraction of M. varia, variety Sarga.
Temperature (°C)Pressure (Bar)
50 Bar100 Bar150 Bar200 Bar250 Bar
31 °C0.41.21.91.81.8
40 °C0.71.92.11.91.9
45 °C1.22.7222.1
50 °C1.32.53.12.52.2
55 °C1.423.12.62.1
60 °C2.52.92.52.42.1
70 °C2.32.92.22.21.9
Table 2. The global yield of bioactive compounds (variety Nakhodka) by SC-CO2 extraction.
Table 2. The global yield of bioactive compounds (variety Nakhodka) by SC-CO2 extraction.
Pressure50 Bar100 Bar150 Bar200 Bar250 Bar
31 °C0.41.21.61.71.7
40 °C0.71.92.31.91.9
45 °C1.22.7222.1
50 °C1.32.52.72.22.2
55 °C1.422.82.42.1
60 °C2.522.52.42.1
70 °C2.32.42.22.21.9
Table 3. The global yield of bioactive compounds (variety Demetra) by SC-CO2 extraction.
Table 3. The global yield of bioactive compounds (variety Demetra) by SC-CO2 extraction.
Pressure50 Bar100 Bar150 Bar200 Bar250 Bar
31 °C0.41.21.61.71.7
40 °C0.71.92.31.91.9
45 °C1.22.7222.1
50 °C1.32.52.72.22.2
55 °C1.423.22.42.1
60 °C2.522.52.42.1
70 °C2.32.42.22.21.9
Table 4. Jaccard indices for three varieties of M. varia.
Table 4. Jaccard indices for three varieties of M. varia.
Variety Demetra (71)Variety Nakhodka (63)Variety Sarga (38)
Variety Demetra (71)--41
0.4409
25
0.2976
Variety Nakhodka (63)41
0.4409
--22
0.2785
Variety Sarga (38)25
0.2976
22
0.2785
--
Table 5. Chemical compounds identified from the SC-CO2-extracts of M. varia in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Table 5. Chemical compounds identified from the SC-CO2-extracts of M. varia in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Class of CompoundIdentificationFormulaCalculated MassObserved Mass [M − H]Observed Mass [M + H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
Phenolic compounds
17-HydroxyisoflavoneFormononetin [Biochanin B; Formononetol] *C16H12O4268.2641 269254; 213237237Astragali Radix [29]; Huolisu oral liquid [30]; Dracocephalum jacutense [31]; Maackia amurense [32]; Chinese herbal formula, Jian-Pi-Yi-Shen pill [33]
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O5270.2369 271271; 153 Propolis [35]; Inula gaveolens [41]; Phlomis (Lamiaceae) [42]; Lonicera henryi [43]; Ribes meyeri [44]; Lonicera japonica [45]; Stevia rebaudiana [46]; Jatropha [47]
3FlavoneAcacetin [Linarigenin; Buddleoflavonol]C16H12O5284.2635 285270269; 242213; 185Propolis [35]; Mentha [36]; Mexican lupine species [37]; Wissadula periplocifolia [38]
4FlavoneDihydroxy-methoxy(iso)flavoneC16H12O5284.2635 285270269227Propolis [35]
5FlavoneLuteolinC15H10O6286.2363 287213; 165157 Propolis [35]; Artemisia absinthium [39]; Inula gaveolens [41]; Lonicera henryl [43]; Ribes meyeri [44]; Lonicera japonica [45]; Jatropha [47]; potato [50]
6FlavoneApigenin-7, 4′-dimethyl etherC17H14O5298.2901 299284256; 169255; 132Ocimum [34]; propolis [35]
7FlavoneTrihydroxymethoxyflavoneC16H12O6300.2629 301286258 Artemisia absinthium [39]
8FlavoneChrysoeriol [Chryseriol] *C16H12O6300.2629 301286258 Propolis [35]; Mentha [36]; Mexican lupine species [37]; Rhus coriaria [66]
9FlavoneCirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone] *C17H14O6314.2895 315287; 259; 216227; 171198Ocimum [34]; Artemisia annua [39]; Rosmarinus officinalis [40]
10FlavoneDihydroxy-dimethoxy(iso)flavoneC17H14O6314.2895 315287; 259; 216227; 171198Astragali radix [29]; propolis [35]; Rosmarinus officinalis [50]
11FlavoneCirsiliol *C17H14O7330.2889 332315; 271 Ocimum [34]; Juglans mandshurica [48]; Inula viscosa [55]
12FlavoneNevadensinC18H16O7344.3154 345312; 222; 181284; 256283; 269; 255Ocimum [34]; Mentha [36]
13FlavoneCirsilineol [Eupatrin; Fastigenin] *C18H16O7344.3154 345312; 222; 181284; 256283; 269; 255Ocimum [34]
14FlavoneTetrahydroxy-dimethoxyflavoneC17H14O8346.2883345 330315287Artemisia absinthium [39]
15Flavone5,6-Dihydroxy-7,8,3’,4’-tetramethoxyflavoneC19H18O8374.3414 375368; 348; 325; 304358; 301; 226 Mentha [36]
16FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside]C21H20O11448.3769 449287241; 165213; 147Mexican lupine species [37]; Lonicera henryi [43]; Lonicera japonica [45]
17FlavoneLuteolin 8-C-Glucoside [Orientin; Orientin (Flavone); Lutexin]C21H20O11448.3769 449430; 373; 328; 285; 215 Lemon, passion fruit [67]; P. aculeata [68]; Phyllostachys nigra [69]; Aspalathus linearis [70]; bamboo [71]
18FlavoneTricin O-hexoside *C23H24O12492.4295 493331315 Triticum aestivum L. [72]; bamboo [71]
19FlavoneDihydroxy-trimethoxyflavone-O-hexosideC23H22O14506.414 507331315; 270270Citrus species [73]
20FlavoneApigenin O-pentosyl hexosideC26H28O14564.4921 565433; 288415; 334; 271; 163127F. glaucescens [53]
21FlavoneApigenin C-glucose C-deoxyhexoside *C27H30O14578.5187 579547; 488; 403; 365 Passiflora incarnata [74]
22FlavoneApigenin 7-O-diglucuronide *C27H26O17622.4851 623447271153Perilla frutescens [75]
23FlavoneTricin di-O,O-hexosideC29H34O17654.5701 655331; 493315; 270; 153270Triticum aestivum L. [72,76]
24Flavone2′-Hydroxygenistein 4′, 7-O-diglucoside malonylated *C30H32O19696.5637 697287241; 165; 121185Mexican lupine species [37]
25FlavonolKaempferolC15H10O6286.2363 287241165 Ribes meyeri [44]; Lonicera japonicum [45]; Juglans mandshurica [48]; Rhus coriaria [66]
26FlavonolKaempferide [4′-O-Methylkaempferol]C16H12O6300.2629 301286258 Ribes meyeri [44]; Alpinia officinarum [77]; Brazilian propolis [78]
27FlavonolRhamnocitrinC16H12O6300.2629 301273; 163243227Astragali radix [29]; Lonicera caerulea [79]
28FlavonolQuercetinC15H10O7302.2357 303285; 167257; 197257Inula gaveolens [41]; Juglans mandshurica [48]; Inula viscosa [55]; Black soja [57]
29FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O7304.2516 305285; 211; 175268; 185; 124168Juglans mandshurica [48]; Glycine soja [58]; Camellia kucha [80]
30FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin]C16H12O7316.2623 317302274; 153229; 153Propolis [35]; Rosmarinus officinalis [40]; Stevia rebaudiana [46]; Inula viscosa [55]; Lonicera caerulea [79]; Phoenix dactylifera [81]
31FlavonolMyricetinC15H10O8318.2351317 273; 295260238Juglans mandshurica [48]; F. glaucescens [53]; Taraxacum officinale [82]
32FlavonolAmpelopsin [Dihydromyricetin; Ampeloptin] *C15H12O8320.251 321301; 201267; 201 Juglans mandshurica [48]; Rnus coriaria [66]; Impatients glandulifera Royle [83]
33FlavonolKaempferol-3-O-α-L-rhamnosideC21H20O10432.3775 433427; 340; 287 Carpinus betulus [51]; C. edulis; F. glaucescens [53]; Taraxacum officinale [82]; Cassia abbreviata [84]
34FlavonolAstragalin [Kaempferol 3-O-glucoside] *C21H20O11448.3769447 285; 255255; 227; 151227Juglans mandshurica [48]; bee pollen [49]; Lonicera japonica [45]; Ribes meyeri [44]; potato [50]
35FlavonolQuercetin 3-O-glucoside [Isoquercetin; Isoquercitrin; Hirsutrin; Quercetin-3-O-Glucopyranoside]C21H20O12464.3763 465303; 258; 164243; 179 Juglans mandshurica [48]; Black soja [57]; Ribes meyeri [44]; Lonicera henryi [43]; Lonicera japonica [45]; Vaccinium myrtillus [85]; Solanaceae [52]; Rhus coriaria [66]; Embelia [54]
36FlavonolIsorhamnetin 3-O-glucosideC22H22O12478.4029 479317301; 257; 177274; 218Artemisia annua [86]; Eucalyptus [87]; Capsicum annuum [88]; Senecio clivicolus [89]
37FlavonolIsorhamnetin 3-O-glucoronideC22H20O13492.3864 493317302274Anethum graveolens [90]; Strawberry [91];
38FlavonolKaempferol 3-(6″-malonylglucoside) *C24H22O14534.4231 535287241; 165213A. cordifolia [53]; Strawberry [91]
39FlavonolRhamnosylhexosyl-methyl-quercetin *C26H28O17612.4903 613595; 540; 489521; 337; 241503; 349; 239Phoenix dactylifera [81]
40FlavonolQuercetin 3,4’-di-O-beta-glucopyranoside [Quercetin diglucoside] *C27H30O17626.5169 627465; 393; 303303257; 165Potato leaves [92]; potato [50]; rapeseed petals [93]
41FlavonolQuercetin-O-dihexosideC27H30O17626.5169 627465; 393; 303303257; 165Inula viscosa [55]; Artemisia absinthium [39]; Chilean currants [64]; Phoenix dactylifera [81]; Taraxacum formosanum [94]
42FlavonolIsorhamnetin-di-O-hexoside [Methyl quercetin-O-dihexoside] *C28H32O17640.5435 641317302285; 228; 169Artemisia absinthium [39]; passion fruit [67]; Phoenix dactylifera [81]
43FlavonolQuercetin-7-O-(acetyl-hexoside)-3-O-rhamnoside *C29H32O17652.5542 653301286; 153258Capsicum annuum [88]
44FlavonolIsorhamnetin-3-O-6-O-acetyl-beta-D-glucopyranosyl *C30H34O18682.5802 683331315; 270 Rosa rugosa [95]
45Flavan-3-olCatechinC15H14O6290.2681 291273; 188245227; 201Inula viscosa [55]; Juglans mandshurica [48]; Black soja [57]; Glycine soja [58]
46Flavan-3-ol(epi)-CatechinC15H14O6290.2681 291261; 173173 Black soja [57]; Glycine soja [58]; Jatropha [47]
47Flavan-3-olGallocatechin [+(-)Gallocatechin] *C15H14O7306.2675 307289260; 175244; 171Carpinus betulus [51]; Solanaceae [52]; G. linguiforme [53]; Ribes meyeri [44]; Embelia [54]
48AnthocyaninCyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; Kuromarin]C21H21O11+449.3848 449287241; 165213; 147Black soybean [57]; Glycine soja [58]; Ribes magellanicum [64]; Rubus ulmifolius [65]; B. ilicifolia; B. empetrifolia; R. maellanicum; R. cucullatum; M. nummalaria; G. mucronata; G. antarctica; Fuchsia magellanica [59]; B. microphylla [60]
49AnthocyaninMalvidin 3-O-glucoside [Oenin]C23H25O12493.4374 493331315; 270315; 270G. mucronata; G. antarctica [59]; Berberis microphylla [60]
50AnthocyaninCyanidin 3-(6″-malonylglucoside)C24H23O14535.4310 535287241; 165213Strawberry [91]; Zostera marina [25]
51AnthocyaninCyanidin-3-O-dioxayl-glucosideC31H28O12592.5468 592287241227; 209; 144Rubus ulmifolius [65]
52AnthocyaninPeonidin 3-O-(6-O-p-coumaroyl) glucosideC31H29O13609.554 609303257; 153229Grape [62]; vines [63]
53AnthocyaninMalvidin 3-O-(6-O-p-caffeoyl) glucosideC32H31O15655.5795 655331; 493315; 270; 153270Grape [62]; Bougainvillea [61]
54Phenolic acidConiferyl aldehyde [4-Hydroxy-3-methoxycinnamaldehyde; Coniferaldehyde; Ferulaldehyde]C10H10O3178.1846 179161; 133; 119119 Juglans mandshurica [48]; potato [50]; A. cordifolia [53]
55Phenolic acidCaffeic acid derivativeC16H18O9Na377.2985377 341215 Bougainvillea [61]; Embelia [54]
56Hydroxybenzoic acid (Phenolic acid)Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]C14H6O8302.1926 303257; 229; 165229; 201201Juglans mandshurica [48]; Rhus coriaria [66]; Eucalyptus [87]
57Phenylpropanoid (cinnamic alcohol glycoside)Vimalin *C16H22O7326.3417 327309; 195241; 195 Rhodiola rosea [96]
58CoumarinFraxetin *C10H8O5208.1675 209167 Embelia [54]; Jatropha [47]; Artemisia martjanovii [97]
59LignanSyringaresinol *C22H26O8418.4436 419326; 253; 184298; 254; 174252; 226; 182Wheat [98]; Annona montana [99]; Lonicera caerulea [79]
Others
60 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one [DDMP]C6H8O4144.1253 145127 Radix polygoni multiflori [56]
61Aliphatic amino acidL-Glutamic acid [L-Glutamate]C5H7NO4145.1134 146144; 118 Medicago truncatula [100]; soybean leaves [101]; Lonicera japonica [45]
62Amino acidL-HistidineC6H9N3O2155.1546 156110 Medicago truncatula [100]; Lonicera japonica [45]; Camellia kucha [80]; Actinidia deliciosa [102]; Lonicera caerulea [79]
63Amino acidPhenylalanine [L-Phenylalanine]C9H11NO2165.1891 166120 Medicago truncatula [100]; Juglans mandshurica [48]; soybean [58]; soybean leaves [101]; Lonicera japonica [45]; potato leaves [92]; Camellia kucha [80]
64Cyclohexenecarboxylic acidShikimic acid [L-Schikimic acid]C7H10O5174.1513 175157 Medicago truncatula [100]; soybean [58]; Camellia kucha [80]; Ribes meyeri [44]
65Tricarboxylic acidcis-Aconitic acidC6H6O6174.1082 175157 Medicago truncatula [100]
66Tricarboxylic acidTrans-Aconitic acid [trans-Aconitate]C6H6O6174.1082 175157 Medicago truncatula [100]; Inula graveolens [41]
67Amino acidL-theanine [Theanine; Theanin; N-Ethyl-L-glutamine]C7H14N2O3174.1977 175157 Camellia kucha [80]
68Aromatic amino acidTyrosine [(2S)-2-Amino-3-(4-Hydroxyphnyl)Propanoic acid]C9H11NO3181.1885 182177; 165123 Medicago truncatula [100]; soybean leaves [101]; Hylocereus polyrhizus [103]; Polygala sibirica [104]
69Essential amino acidL-Tryptophan [Tryptophan; (S)-Tryptophan]C11H12N2O2204.2252 205187121 Camellia kucha [80]; Rosa acicularis [105]
70Carboxylic acidMyristoleic acid [Cis-9-Tetradecanoic acid]C14H26O2226.3550 227209; 165121 F. glaucescens [53]; Maackia amurensis [32];
71Ribonucleoside composite of adenine (purine)AdenosineC10H13N5O4267.2413 268136121 Lonicera japonica [45]; Huolisu oral liquid [30]; L. palustre [106]; Rosa acicularis [105]
72Ribonucleoside composite of adenine (purine)InosineC10H12N4O5268.2261 269136 Lonicera japonica [45]
73Monosaccharides6-Phosphogluconic acidC6H13O10P276.1352 277259; 205; 188; 130 Medicago truncatula [100]
74Omega-3 fatty acidLinolenic acid (Alpha-Linolenic acid; Linolenate)C18H30O2278.4296 279219; 154159 Soybean [58]; soybean leaves [101]; Maackia amurense [32]; Polygala sibirica [104]
75Polyunsaturated long-chain fatty acidHydroxy eicosatetraenoic acidC20H32O3320.4663 321312; 256; 228; 193224; 176; 143 F. glaucescens; F herrerae [53]
76PolysaccharidesAdenosine 5′-monophosphate [5′-adenylic acid]C10H14N5O7P347.2212 348341; 273; 233205 Medicago truncatula [100]
77PhytosterolErgosterol [Provitamin D2; Ergosterin]C28H44O396.6484 397392; 311; 183; 129361; 311; 226; 183; 130 F. glaucescens [53]
78Pentacyclic triterpenoidSophoradiolC30H50O2442.7168 443425; 175175115Medicago truncatula [107]
79PolysaccharidesGuanosine 5′-diphosphateC10H15N5O11P2443.2005 444359; 323; 297; 274189; 154172Medicago truncatula [100]
80Anabolic steroidVebonolC30H44O3452.6686 453435; 336; 209336; 226209Rhus coriaria [66]; Hylosereus polyrhizus [103]
81Triterpenic acidUrsolic acidC30H48O3456.7003 457411; 203393; 283; 201201Juglans mandshurica [48]; Ocimum [34]; Mentha [36]
82Triterpenic acidOleanolic acidC30H48O3456.7004 457411; 263; 203393; 309; 177375; 203; 145Medicago truncatula [107]; C. edulis [53]; Folium Eriobotryae [108]
83SaponinSoyasapogenol B [24-Hydroxysophoradiol; Soyasapogenin B]C30H50O3458.7162 459452; 317; 279; 212445; 298; 216 Medicago truncatula [107]
84SaponinSoyasapogenol AC30H50O4474.5434 475437; 343; 249168; 127 Medicago truncatula [107]
85PolysaccharidesUTP [Uridine 5′-triphosphate]C9H15N2O15P3484.1411 485478; 365; 321; 261 Medicago truncatula [100]
86PolysaccharidesGuanosine-5′-triphosphate [GTP]C10H16N5O14P3523.1804 524494; 386; 303; 165 Medicago truncatula [100]
87PolysaccharidesUDP-arabinose [Uridine 5′-diphosphate arabinose]C14H20N2O16P2534.2599 535275; 217; 159220 Medicago truncatula [100]
88PolysaccharidesUridine diphosphate-xylose [UDP-xylose]C14H22N2O16P2536.2758 537277; 187249; 136 Medicago truncatula [100]
89PolysaccharidesUDP-glucose [Uridine diphosphate glucose]C15H24N2O17P2566.3018 567423; 385; 324; 283405; 367; 297; 241 Medicago truncatula [100]
90Product of chlorophyll degradationChlorophyllide aC35H34MgN4O5614.9733 615583565; 458; 269520; 441[109,110]
91 Medicagenic acid -3-O-beta-D-glucopyranosideC36H56O11664.8232 665635; 510; 452; 401337319Pubchem
92SaponinAzukisaponin IIC42H68O14796.9809 797519429; 357; 243 Leguminosae [111]; Glycine max [112]
93SaponinSoyasaponin Bb’ [Soyasaponin III] *C42H68O14796.9809 797519429; 357; 243 Black soja [57]
94Product of chlorophyll degradationPyropheophytin aC53H72N4O3813.1638 813535435; 329 [110]
95Steroidal alkaloidAlpha-chaconine *C45H73NO14852.0594 852706; 560; 398560398Potato [113,114]
96Product of chlorophyll degradationPheophytin AC55H74N4O5871.1999 871533461 Physalis peruviana [115]; Capsicum [116]; [109, 110]
97SaponinSoyasaponin II [Soyasaponin II (SH); Soyasaponin Bc] *C47H76O17913.0961912 501483; 425425Black soja [57]; Leguminosae [111]; soya [117]
98SaponinSoyasaponin gamma g *C48H74O17923.0910 924581; 423; 321213 Black soja [57]; Leguminosae [111]; soya [117]
99Saponin3-Rhamnose-galactose-glucuronic acid-soyasapogenol BC48H78O18943.1221 944598; 423; 295581; 419; 215572Medicago truncatula [100]; Rhus coriaria [66]
100SaponinSoyasaponin I [Soyasaponin Bb] *C48H78O18943.1221 944598; 423; 365; 281205 Leguminosae [111]; soya [117]; Black soja [57];
101SaponinSoyasaponin Bd *C48H76O19957.1056 958456; 595; 718; 812409; 247271Black soja [57]; Leguminosae [111]; soya [117]
102Saponin6-deoxyhexose-hexoside-uronic acid-aglycone DC48H78O20975.1209 975799; 715; 529; 477301286; 259; 201Medicago truncatula [118]
103SaponinSoyasaponin beta g *C54H84O211069.23221068 967; 879; 741; 584659; 483 Black soja [57]; Leguminosae [111]; soya [117]
* Compounds identified for the first time in M. varia.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Nawaz, M.A.; Ivanova, E.P.; Cherevach, E.I.; Golokhvast, K.S. Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry. Processes 2024, 12, 1041. https://doi.org/10.3390/pr12051041

AMA Style

Razgonova MP, Nawaz MA, Ivanova EP, Cherevach EI, Golokhvast KS. Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry. Processes. 2024; 12(5):1041. https://doi.org/10.3390/pr12051041

Chicago/Turabian Style

Razgonova, Mayya P., Muhammad Amjad Nawaz, Elena P. Ivanova, Elena I. Cherevach, and Kirill S. Golokhvast. 2024. "Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry" Processes 12, no. 5: 1041. https://doi.org/10.3390/pr12051041

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop