Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Control of Plant Material
2.2. Phytochemical Screening
2.3. Contents of Polyphenols, Flavonoids, and Condensed Tannins
2.4. Chemical Composition of S. lavandulifolia Extract
2.5. Antioxidant Properties
2.5.1. Total Antioxidant Capacity
2.5.2. Free Radical Scavenging DPPH°
2.6. Antimicrobial Activity
2.7. Toxicity
2.8. Antihyperglycemic Effect
2.9. Pancreatic α-Amylase Inhibitory Effect
2.9.1. In Vitro Test
2.9.2. In Vivo Test
3. Material and Methods
3.1. Plant Material
3.2. Quality Control of Plant Material of S. Lavandulifolia
3.2.1. Humidity Level
3.2.2. pH Determination
3.2.3. Determination of Titratable Acidity
3.2.4. Ash Content
3.2.5. Dosage of Metallic Trace Elements (MTE) by ICP-AES
3.3. Preparation of the Aqueous Extract of Salvia lavandulifolia
3.4. Phytochemical Screening
3.5. Phenolic Compounds
3.5.1. Determination of Total Polyphenol Content
3.5.2. Determination of Flavonoid Content
3.5.3. Determination of Condensed Tannin Content
3.6. Identification of the Chemical Composition by HPLC-MS-ESI
3.7. Antioxidant Activity Test
3.7.1. Total Antioxidant Capacity
3.7.2. 2,2′-Diphenyl-1-Picryl Hydroxyl Test
3.8. Antimicrobial Activity
3.8.1. Preparation of Microbial Suspensions
3.8.2. Determination of MIC and MBC/MFC
3.9. Animals
3.10. Acute Toxicity
3.11. Antihyperglycemic Effect
3.12. Pancreatic α-Amylase Inhibitory Effect
3.12.1. In Vitro Test
3.12.2. In Vivo Test
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, I.-M.; Shehu, A.; Zezi, A.U.; Magaji, M.G.; Yaâ, J. Ethnobotanical Survey of Medicinal Plants Commonly Used in Snakebites in North Western Nigeria. J. Med. Plants Res. 2020, 14, 468–474. [Google Scholar]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Front. Pharmacol. 2020, 10, 1480. [Google Scholar] [CrossRef]
- Hussein, R.A.; El-Anssary, A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herb. Med. 2019, 1, 13. [Google Scholar]
- Wanjohi, B.K.; Sudoi, V.; Njenga, E.W.; Kipkore, W.K. An Ethnobotanical Study of Traditional Knowledge and Uses of Medicinal Wild Plants among the Marakwet Community in Kenya. Evid.-Based Complement. Altern. Med. 2020, 2020, 3208634. [Google Scholar] [CrossRef] [PubMed]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar]
- Ramamoorthy, T.P. Mexican Lamiaceae: Diversity, Distribution, Endemism, and Evolution; Oxford University Press: New York, NY, USA, 1993; pp. 513–539. [Google Scholar]
- Serrano-Vega, R.; Pérez-González, C.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Pérez-Gutiérrez, S. Anti-Inflammatory and Antinociceptive Activities of Salvia Keerlii. Pharmacogn. Mag. 2020, 16, 27. [Google Scholar]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.-M.; Stefanescu, R.; Bild, V.; Melnic, S. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res. Manag. 2018, 2018, 7801543. [Google Scholar] [CrossRef] [Green Version]
- Topçu, G. Bioactive Triterpenoids from Salvia Species. J. Nat. Prod. 2006, 69, 482–487. [Google Scholar] [CrossRef]
- Joran, M.J.; Martínez, C.; Moñino, M.I.; Lax, V.; Quílez, M.; Sotomayor, J.A. Chemical Characterization of Salvia Lavandulifolia Subsp. Vellerea in South-Eastern Spain. Acta Hortic. 2009, 826, 317–324. [Google Scholar] [CrossRef]
- Sáez, L.; Salvia, L. Verbenaceae-Labiatae-Callitrichaceae. In Flora Iberica; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2010; Volume XII, pp. 298–326. [Google Scholar]
- Zrira, S.; Menut, C.; Bessiere, J.M.; Elamrani, A.; Benjilali, B. A Study of the Essential Oil of Salvia Lavandulifolia Vahl from Morocco. J. Essent. Oil Bear. Plants 2004, 7, 232–238. [Google Scholar] [CrossRef]
- Zarzuelo, A.; Risco, S.; Gamez, M.J.; Jimenez, J.; Camara, M.; Martinez, M.A. Hypoglycemic Action of Salvia Lavandulifolia Vahl. SSP. Oxyodon: A Contribution to Studies of the Mechanism of Action. Life Sci. 1990, 47, 909–915. [Google Scholar] [CrossRef]
- Corbeil, C.; Mehran, A.R.; Mehran, D. Nature in Cosmetics and Skin Care: A Compendium of Ingredients Used in Cosmetic and Skin Care Chemistry; Allured: Carol Stream, IL, USA, 2000; ISBN 0931710790. [Google Scholar]
- Bellakhdar, J. La Pharmacopée Marocaine Traditionnelle: Médecine Arabe Ancienne et Savoirs Populaires; Ibis Press: Lake Worth, FL, USA, 1997; ISBN 978-2-910728-03-8. [Google Scholar]
- Katiri, A.; Barkaoui, M.; Msanda, F.; Boubaker, H. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes in the Tizi n’ Test Region (Taroudant Province, Morocco). J. Pharmacogn. Nat. Prod. 2017, 3, 2472-0992. [Google Scholar] [CrossRef] [Green Version]
- Boutahiri, S.; Eto, B.; Bouhrim, M.; Mechchate, H.; Saleh, A.; Al Kamaly, O.; Drioiche, A.; Remok, F.; Samaillie, J.; Neut, C.; et al. Lavandula Pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia Rosmarinus Spenn., Salvia Lavandulifolia Vahl and Origanum Compactum Benth. Life 2022, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Raccah, D. Épidémiologie et physiopathologie des complications dégénératives du diabète sucré. EMC—Endocrinologie 2004, 1, 29–42. [Google Scholar] [CrossRef]
- Claudet, E. Séchage Des Plantes Aromatiques et Médicinales. 2015. Available online: https://interbiocorse.org/wp-content/uploads/2019/12/FT-sechage-PPAM.pdf (accessed on 26 February 2023).
- Johnston, G.A.R.; Beart, P.M. Flavonoids: Some of the Wisdom of Sage?: Commentary. Br. J. Pharmacol. 2004, 142, 809–810. [Google Scholar] [CrossRef]
- Lu, Y.; Yeap Foo, L. Polyphenolics of Salvia—A Review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Zarzuelo, A.; Gámez, J.M.; Utrilla, P.; Jiménez, J.; Jiménez, I. Luteolin 5-Rutinoside from Salvia Lavandulifolia ssp. Oxyodon. Phytochemistry 1995, 40, 1321–1322. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Phillipson, J.D.; Greengrass, P.M.; Bowery, N.E.; Cai, Y. Plant Polyphenols: Biologically Active Compounds or Non-Selective Binders to Protein? Phytochemistry 1997, 44, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/Peptide Binding and Precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Patti, A.M.; Cicero, A.F.G.; Lippi, G.; Rizzo, M.; Toth, P.P.; Banach, M. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases. Curr. Pharm. Des. 2018, 24, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J. Polyphenols: A Potential New Strategy for the Prevention and Treatment of Anxiety and Depression. Curr. Nutr. Food Sci. 2010, 6, 13–18. [Google Scholar] [CrossRef]
- Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Mechchate, H.; Al-Salahi, R.; Nasr, F.A.; Bnouham, M. Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity In Vitro and In Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase. Pharmaceutics 2022, 14, 481. [Google Scholar] [CrossRef]
- Adejoh, I.P.; Agatemor, U.M. Anti-Radical and Inhibitory Effect of Some Common Nigerian Medicinal Plants on Alpha Glucosidase, Aldose Reductase and Angiotensin Converting Enzyme: Potential Protective Mechanisms against Diabetic Complications. Int. J. Adv. Res. Biol. Sci 2018, 5, 188–201. [Google Scholar]
- Lavid, N.; Schwartz, A.; Yarden, O.; Tel-Or, E. The Involvement of Polyphenols and Peroxidase Activities in Heavy-Metal Accumulation by Epidermal Glands of the Waterlily (Nymphaeaceae). Planta 2001, 212, 323–331. [Google Scholar] [CrossRef]
- Lutgen, P. Tannins in Artemisia: The Hidden Treasure of Prophylaxis. Pharm. Pharmacol. Int. J. 2018, 6, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Dhull, S.B.; Kaur, P.; Purewal, S.S. Phytochemical Analysis, Phenolic Compounds, Condensed Tannin Content and Antioxidant Potential in Marwa (Origanum Majorana) Seed Extracts. Resour.-Effic. Technol. 2016, 2, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Relevance of Carnosic Acid, Carnosol, and Rosmarinic Acid Concentrations in the In Vitro Antioxidant and Antimicrobial Activities of Rosmarinus Officinalis (L.) Methanolic Extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, Y.; Ikeda, S.; Uwai, K.; Taguchi, R.; Chayama, K.; Sakaguchi, T.; Narita, R.; Yao, W.-L.; Takeuchi, F.; Otakaki, Y.; et al. Rosmarinic Acid Is a Novel Inhibitor for Hepatitis B Virus Replication Targeting Viral Epsilon RNA-Polymerase Interaction. PLoS ONE 2018, 13, e0197664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, K.; Ma, X.; Guo, S.; Zhang, T.; Zhao, G.; Wu, H.; Wang, X.; Deng, G. Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice. Inflammation 2018, 41, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Radziejewska, I.; Supruniuk, K.; Bielawska, A. Anti-Cancer Effect of Combined Action of Anti-MUC1 and Rosmarinic Acid in AGS Gastric Cancer Cells. Eur. J. Pharmacol. 2021, 902, 174119. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic Acid: Modes of Action, Medicinal Values and Health Benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Aldoghachi, F.E.H.; Noor Al-Mousawi, U.M.; Shari, F.H. Antioxidant Activity of Rosmarinic Acid Extracted and Purified from Mentha Piperita. Arch. Razi Inst. 2021, 76, 1279–1287. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kwon, C.-S.; Son, K.H. Inhibition of Alpha-Glucosidase and Amylase by Luteolin, a Flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Djeddi, S.; Yannakopoulou, E.; Papadopoulos, K. Activités anti-radicalaires de l’huile essentielle et des extraits bruts de Thymus numidicus Poiret., Algérie. Afr. J. Online 2015, 11, 58–65. [Google Scholar]
- O’Neill, E.J.; Den Hartogh, D.J.; Azizi, K.; Tsiani, E. Anticancer Properties of Carnosol: A Summary of In Vitro and In Vivo Evidence. Antioxidants 2020, 9, 961. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [Green Version]
- Cafligueral, S.; Iglesias’, J.; Hamburger, M.; Hostettmann, K. Phenolic Constituents of Salvia Lavanduljfolia ssp. Lavandulifolia. Planta Med. 1989, 55, 92. [Google Scholar] [CrossRef]
- Phatak, R.S.; Hendre, A.S. Total Antioxidant Capacity (TAC) of Fresh Leaves of Kalanchoe Pinnata. J. Pharmacogn. Phytochem. 2014, 2, 32–35. [Google Scholar]
- Al-Qudah, M.A.; Al-Jaber, H.I.; Abu Zarga, M.H.; Abu Orabi, S.T. Flavonoid and Phenolic Compounds from Salvia Palaestina L. Growing Wild in Jordan and Their Antioxidant Activities. Phytochemistry 2014, 99, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.V.; Tofană, M.; Socaci, S.A.; Pop, C.; Rotar, A.M.; Nagy, M.; Salanţă, L. Determination of Antioxidant Capacity and Antimicrobial Activity of Selected Salvia Species. Bull. UASVM Food Sci. Technol. 2016, 73, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.A.; El-Nour, M.E.M.; Yagi, S.M. Total Phenolic and Flavonoid Contents and Antioxidant Activity of Ginger (Zingiber Officinale Rosc.) Rhizome, Callus and Callus Treated with Some Elicitors. J. Genet. Eng. Biotechnol. 2018, 16, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B. Antioxidant Potentials and Rosmarinic Acid Levels of the Methanolic Extracts of Salvia Virgata (Jacq), Salvia Staminea (Montbret & Aucher Ex Bentham) and Salvia Verbenaca (L.) from Turkey. Bioresour. Technol. 2007, 99, 1584–1588. [Google Scholar] [CrossRef]
- Giner, M.J.; Vegara, S.; Funes, L.; Martí, N.; Saura, D.; Micol, V.; Valero, M. Antimicrobial Activity of Food-Compatible Plant Extracts and Chitosan against Naturally Occurring Micro-Organisms in Tomato Juice. J. Sci. Food Agric. 2012, 92, 1917–1923. [Google Scholar] [CrossRef]
- Perry, N.S.L.; Houghton, P.J.; Sampson, J.; Theobald, A.E.; Hart, S.; Lis-Balchin, M.; Hoult, J.R.S.; Evans, P.; Jenner, P.; Milligan, S. In-Vitro Activity of S. Lavandulaefolia (Spanish Sage) Relevant to Treatment of Alzheimer’s Disease. J. Pharm. Pharmacol. 2001, 53, 1347–1356. [Google Scholar] [CrossRef]
- Jimenez, J.; Risco, S.; Ruiz, T.; Zarzuelo, A. Hypoglycemic Activity of Salvia Lavandulifolia. Planta Med. 1986, 52, 260–262. [Google Scholar] [CrossRef]
- Mahdizadeh, R.; Moein, S.; Soltani, N.; Malekzadeh, K.; Mahmoodreza, M. Study the Molecular Mechanism of Salvia Species in Prevention of Diabetes. Int. J. Pharm. Sci. Res. 2018, 9, 4512–4521. [Google Scholar] [CrossRef]
- Bnouham, M.; Ziyyat, A.; Mekhfi, H.; Tahri, A.; Legssyer, A. Medicinal Plants with Potential Antidiabetic Activity-A Review of Ten Years of Herbal Medicine Research (1990–2000). Int. J. Diabetes Metab. 2006, 14, 1–25. [Google Scholar] [CrossRef]
- Benayad, O.; Bouhrim, M.; Tiji, S.; Kharchoufa, L.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bendaha, H.; Bnouham, M. Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules 2021, 11, 1555. [Google Scholar] [CrossRef]
- Ouassou, H.; Bouhrim, M.; Bencheikh, N.; Addi, M.; Hano, C.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. In Vitro Antioxidant Properties, Glucose-Diffusion Effects, α-Amylase Inhibitory Activity, and Antidiabetogenic Effects of C. Europaea Extracts in Experimental Animals. Antioxidants 2021, 10, 1747. [Google Scholar] [CrossRef] [PubMed]
- Hano, C.; Renouard, S.; Molinié, R.; Corbin, C.; Barakzoy, E.; Doussot, J.; Lamblin, F.; Lainé, E. Flaxseed (Linum Usitatissimum L.) Extract as Well as (+)-Secoisolariciresinol Diglucoside and Its Mammalian Derivatives Are Potent Inhibitors of α-Amylase Activity. Bioorganic Med. Chem. Lett. 2013, 23, 3007–3012. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.T.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A. Evaluation of a Flavonoids Library for Inhibition of Pancreatic α-Amylase towards a Structure–Activity Relationship. J. Enzym. Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Li, X.; Sun, W.; Xing, Y.; Xiu, Z.; Zhuang, C.; Dong, Y. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef] [PubMed]
- Afnor. NF V03-402. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-v03402/epices-et-aromates-determination-de-la-teneur-en-eau-methode-par-entraineme/fa032462/325 (accessed on 15 September 2022).
- World Health Organization. Quality Control Methods for Medicinal Plant Materials; World Health Organization: Geneva, Switzerland, 1998; ISBN 978-92-4-154510-5.
- Centre d’Expertise en Analyse Environnementale du Québec Méthode d’Analyse. Détermination Du PH: Méthode Électrométrique; Centre d’Expertise en Analyse Environnementale du Québec Méthode d’Analyse: Québec City, QC, Canada, 2014. [Google Scholar]
- Bergeron, L. Effet de la Teneur en Eau du Sol Sur le Rendement et la Qualité Des Fruits du Bleuet Nain; Université du Québec à Chicoutimi: Chicoutimi, QC, Canada, 1995; ISBN 978-1-4123-0614-0. [Google Scholar]
- Afnor. Norme NF V05-113. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-v05113/fruits-legumes-et-produits-derives-mineralisation-des-matieres-organiques-m/fa009207/13929 (accessed on 15 September 2022).
- Skujins, S. Handbook for ICP-AES (Varian-Vista): A Short Guide to Vista Series ICP-AES Operation; Varian Medical Systems International AG: Steinhausen, Switzerland, 1998. [Google Scholar]
- Chaouche, T.; Haddouchi, F.; Bekkara, F.A. Phytochemical Study of Roots and Leaves of the Plant Echium Pycnanthum Pomel. Der Pharm. Lett. 2011, 3, 1–4. [Google Scholar]
- Haddouchi, F.; Chaouche, T.M.; Halla, N. Screening phytochimique, activités antioxydantes et pouvoir hémolytique de quatre plantes sahariennes d’Algérie. Phytothérapie 2018, 16, S254–S262. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicryl- Hydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Kroyer, G.T. Red Clover Extract as Antioxidant Active and Functional Food Ingredient. Innov. Food Sci. Emerg. Technol. 2004, 5, 101–105. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Prasannabalaji, N.; Muralitharan, G.; Sivanandan, R.; Kumaran, S.; Pugazhvendan, S. Antibacterial Activities of Some Indian Traditional Plant Extracts. Asian Pac. J. Trop. Dis. 2012, 2, S291–S295. [Google Scholar] [CrossRef]
- Bissel, S.J.; Winkler, C.C.; DelTondo, J.; Wang, G.; Williams, K.; Wiley, C.A. Coxsackievirus B4 Myocarditis and Meningoencephalitis in Newborn Twins. Neuropathology 2014, 34, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchoumtchoua, J.; Mouchili, O.R.; Ateba, S.B.; Zingue, S.; Halabalaki, M.; Mbanya, J.C.; Skaltsounis, A.-L.; Njamen, D. Safety Assessment of the Methanol Extract of the Stem Bark of Amphimas Pterocarpoides Harms: Acute and Subchronic Oral Toxicity Studies in Wistar Rats. Toxicol. Rep. 2014, 1, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory Effect of Roasted/Unroasted Argania Spinosa Seeds Oil on α-Glucosidase, α-Amylase and Intestinal Glucose Absorption Activities. S. Afr. J. Bot. 2020, 135, 413–420. [Google Scholar] [CrossRef]
- Thalapaneni, N.R.; Chidambaram, K.A.; Ellappan, T.; Sabapathi, M.L.; Mandal, S.C. Inhibition of Carbohydrate Digestive Enzymes by Talinum Portulacifolium (Forssk) Leaf Extract. J. Complement. Integr. Med. 2008, 5. [Google Scholar] [CrossRef]
S. L | Humidity Level | pH | Titratable Acidity | Mineral Matter | ||||
10.47 ± 0.05 | 5.26 | 0.61 ± 0.00 | 5.47 ± 0.60 | |||||
Concentration of some MTE (mg/g) | ||||||||
As | Cr | Sb | Pb | Cd | Fe | Cu | Ti | |
0.0055 | 0.0012 | 0.0010 | Undetectable | 0.0001 | 0.5099 | 0.0040 | 0.0049 | |
LV (mg/L) | 0.05 | 0.05 | 0.005 | 0.05 | 0.005 | 20 | 1 | – |
Chemical Group | S. lavandulifolia | ||
---|---|---|---|
Secondary Metabolites | Tannins | + | |
Catechic tannins | + | ||
Gallic tannins | + | ||
Flavonoids | + | ||
Cyanidin reaction | Flavones | ||
Leucoanthocyanins | + | ||
Saponosides | + | ||
Alkaloids | - | ||
Reducing Compounds | + | ||
Monosaccharides and holosides | + | ||
Mucilages | + | ||
Sterols and triterpenes | + | ||
Primary metabolites | Polysaccharide | glycogen | |
Reducing sugar (glycose, fructose) | + | ||
Protein | Biuret reaction | + | |
Xanthoprotein reaction | + | ||
Lipids (Lieberman Burchard reaction) | + |
N° | RT (min) | Area (%) | (m/z) [M − H]+ | MW | Identified Compound | Molecular Formula |
---|---|---|---|---|---|---|
1 | 11.58 | 0.65 | 197/391 | 198 | Syringic acid | C9H10O5 |
2 | 12.03 | 1.07 | 447 | 448 | Quercetin 3-O-rhamnoside | C21H20O11 |
3 | 13.7 | 1.33 | 293 | 294 | Cynamil p-methoxy cinnamate | C19H18O3 |
4 | 14.28 | 1.39 | 431 | 432 | Apigenin 7-O-glucoside | C21H20O10 |
5 | 14.67 | 1.18 | 503 | 504 | 6-caffeoylsucrose | C21H28O14 |
6 | 14.97 | 1.48 | 387 | 194 | Ferulic acid | C10H10O4 |
7 | 15.14 | 0.92 | 463 | 464 | Qercetin-3-O-β-D-glucoside | C21H20O12 |
8 | 15.46 | 1.46 | 167/335 | 168 | Vanillic acid | C8H8O4 |
9 | 15.69 | 1.05 | 341 | 342 | 1-caffeoyl-beta-D-glucose | C15H18O9 |
10 | 16.09 | 0.54 | 181 | 180 | Trans-Caffeic acid | C9H8O4 |
11 | 16.55 | 0.54 | 325 | 326 | Trans-p-coumaric acid-4-O-β-D-glucopyranoside | C15H18O8 |
12 | 17.45 | 4.12 | 387 | 388 | Luteolin | C15H10O6 |
13 | 18.46 | 4.02 | 179 | 180 | Caffeic acid | C9H8O4 |
14 | 18.79 | 0.66 | 355 | 354 | Chlorogenic acid | C16H18O9 |
15 | 18.99 | 0.72 | 539 | 540 | Yunnaneic acid D | C27H24O12 |
16 | 19.27 | 1.84 | 315 | 316 | Rhamnetin | C16H12O7 |
17 | 19.84 | 1.61 | 375 | 188/375 | Azelaic acid | C9H16O4 |
18 | 20.93 | 5.51 | 575 | 576 | Catechin dimer | C30H24O12 |
19 | 21.63 | 7.84 | 447 | 448 | Quercetin rhamnose | C21H20O11 |
20 | 22.31 | 1.38 | 417 | 418 | Luteolin pentose | C20H18O10 |
21 | 22.47 | 1.78 | 611 | 610 | Rutin | C27H30O16 |
22 | 23.02 | 4.57 | 307 | 306 | Gallocatechin | C15H14O7 |
23 | 24.16 | 37.03 | 359 | 360 | Rosmarinic acid | C18H16O8 |
24 | 24.5 | 0.68 | 473 | 474 | Dicaffeoyl tartrate | C22H18O12 |
25 | 24.8 | 2.62 | 291 | 290 | Catechin | C15H14O6 |
26 | 25.16 | 0.99 | 183 | 184 | Methylgallate | C8H8O5 |
27 | 25.25 | 1.15 | 345 | 346 | Rosmanol | C20H26O5 |
28 | 25.49 | 5.57 | 607 | 608 | Diosmetin-rutinoside | C28H32O15 |
29 | 25.65 | 3.97 | 329 | 330 | Carnosol | C20H26O4 |
30 | 26.39 | 0.66 | 285 | 286 | Kaempferol | C15H10O6 |
31 | 27.12 | 0.49 | 313 | 314 | Cirsimaritine | C17H14O6 |
32 | 27.9 | 0.73 | 345 | 346 | Metoxy-carnosic acid | C21H30O4 |
33 | 28.39 | 0.45 | 191 | 192 | Quinic acid | C7H12O6 |
Total | 100% |
TAC (mg EAA/g Es) | DPPH° | |||
---|---|---|---|---|
IC50 (µg/mL) | EC50 | ARP | ||
Aqueous Extract of S. l. | 527.03 ± 5.95 | 5.81 ± 0.23 | 0.24 ± 0.01 | 413.43 ± 16.45 |
Strains | MIC (mg/mL) | MBC/MFC (mg/mL) | Report |
---|---|---|---|
Enterobacter cloacae | 37.5 | >75 | - |
Escherichia coli BLSE | 75 | >75 | - |
Escherichia coli sauvage | 18.75 | >75 | - |
Klebsiella pneumoniae | 37.5 | >75 | - |
Proteus mirabilis | 75 | 75 | 1 |
Pseudomonas aeruginosa | 18.75 | >75 | - |
Staphylococcus aureus BLACT | 2.34 | >75 | - |
Staphylococcus epidermidis | 37.5 | >75 | - |
Streptococcus agalactiae (B) | 75 | >75 | - |
Aspergillus niger | 75 | 75 | 1 |
Candida albicans | 37.5 | 75 | 2 |
Candida dubliniensis | 75 | >75 | - |
Candida kyfer | >75 | >75 | - |
Candida krusei | 18.75 | 75 | 4 |
Candida parapsilosis | 75 | >75 | - |
Candida tropicalis | 37.5 | 75 | 2 |
Saccharomyces cerevisiae | 37.5 | 75 | 2 |
Plant Species | Family | Voucher Number | Used Organ | Harvest Region | Geographical Coordinates | Harvest Date |
---|---|---|---|---|---|---|
S. lavandulifolia | Lamiaceae | RAB111857 | Leaves | Ouled Ali | 33°28′41″ N 3°59′35″ O | May 2020 |
Bacterial Strains | Code | Fungal Strains | Code |
---|---|---|---|
Enterobacter cloacae | 02EV317 | Aspergillus niger | AspN |
Escherichia coli BLSE | 2DT2057 | Candida albicans | Ca |
Escherichia coli sauvage | 3DT1938 | Candida dubliniensis | Cd |
Klebsiella pneumoniae | 3DT1823 | Candida kyfer | Cky |
Proteus mirabilis | 2DS5461 | Candida krusei | Ckr |
Pseudomonas aeruginosa | 2DT2138 | Candida parapsilosis | Cpa |
Staphylococcus aureus BLACT | 4IH2510 | Candida tropicalis | Ct |
Staphylococcus epidermidis | 5994 | Saccharomyces cerevisiae | Sacc |
Streptococcus agalactiae (B) | 7DT1887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remok, F.; Saidi, S.; Gourich, A.A.; Zibouh, K.; Maouloua, M.; Makhoukhi, F.E.; Menyiy, N.E.; Touijer, H.; Bouhrim, M.; Sahpaz, S.; et al. Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl. Pharmaceuticals 2023, 16, 395. https://doi.org/10.3390/ph16030395
Remok F, Saidi S, Gourich AA, Zibouh K, Maouloua M, Makhoukhi FE, Menyiy NE, Touijer H, Bouhrim M, Sahpaz S, et al. Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl. Pharmaceuticals. 2023; 16(3):395. https://doi.org/10.3390/ph16030395
Chicago/Turabian StyleRemok, Firdaous, Soukaina Saidi, Aman Allah Gourich, Khalid Zibouh, Mohamed Maouloua, Fadwa El Makhoukhi, Naoual El Menyiy, Hanane Touijer, Mohamed Bouhrim, Sevser Sahpaz, and et al. 2023. "Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl" Pharmaceuticals 16, no. 3: 395. https://doi.org/10.3390/ph16030395
APA StyleRemok, F., Saidi, S., Gourich, A. A., Zibouh, K., Maouloua, M., Makhoukhi, F. E., Menyiy, N. E., Touijer, H., Bouhrim, M., Sahpaz, S., Salamatullah, A. M., Bourhia, M., & Zair, T. (2023). Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl. Pharmaceuticals, 16(3), 395. https://doi.org/10.3390/ph16030395