Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = EPR-imaging techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2337 KiB  
Review
Road Map for the Use of Electron Spin Resonance Spectroscopy in the Study of Functionalized Magnetic Nanoparticles
by Tomasz Kubiak and Bernadeta Dobosz
Materials 2025, 18(12), 2841; https://doi.org/10.3390/ma18122841 - 16 Jun 2025
Viewed by 524
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is gaining increasing recognition in research on various nanostructures. In the case of iron oxide nanoparticles, EPR measurements offer the possibility of determining the magnetic phase and the exact type (Fe3O4, γ-Fe2O [...] Read more.
Electron paramagnetic resonance (EPR) spectroscopy is gaining increasing recognition in research on various nanostructures. In the case of iron oxide nanoparticles, EPR measurements offer the possibility of determining the magnetic phase and the exact type (Fe3O4, γ-Fe2O3, α-Fe2O3, or a combination) of the core material. Furthermore, the EPR technique enables the study of relaxation processes, estimation of the effective and surface anisotropy constants, and assessment of the influence of sample aging on the magnetic properties of nanoparticles. The scope of the information obtained can be further expanded by utilizing spin labeling of polymer-coated nanoparticles. By analyzing the signals from the attached nitroxide, one can determine certain properties of the coating and its interactions with the environment (e.g., body fluids, cells, tissues) and also perform imaging of nanoparticles in various media. In some cases, EPR can help monitor the encapsulation of active substances and their release processes. Unfortunately, despite the enormous potential, not all of the possibilities offered by EPR are routinely used in nanoscience. Therefore, the present article aims not only to present the current applications and existing trends but also to indicate directions for future EPR research, constituting a road map. Full article
(This article belongs to the Special Issue Physico-Chemical Modification of Materials for Biomedical Application)
Show Figures

Graphical abstract

52 pages, 3834 KiB  
Review
Nitroxides: Chemistry, Antioxidant Properties, and Biomedical Applications
by Krzysztof Gwozdzinski, Anna Pieniazek and Lukasz Gwozdzinski
Molecules 2025, 30(10), 2159; https://doi.org/10.3390/molecules30102159 - 14 May 2025
Viewed by 918
Abstract
Nitroxides are stable organic free radicals with a wide range of applications. They have found applications in chemistry, biochemistry, biophysics, molecular biology, and biomedicine as EPR/NMR imaging techniques. As spin labels and probes, they are used in electron paramagnetic resonance (EPR) spectroscopy in [...] Read more.
Nitroxides are stable organic free radicals with a wide range of applications. They have found applications in chemistry, biochemistry, biophysics, molecular biology, and biomedicine as EPR/NMR imaging techniques. As spin labels and probes, they are used in electron paramagnetic resonance (EPR) spectroscopy in the study of proteins, lipids, nucleic acids, and enzymes, as well as for measuring oxygen concentration in cells and cellular organelles, as well as tissues and intracellular pH. Their unique redox properties have allowed them to be used as exogenous antioxidants. In this review, we have discussed the chemical properties of nitroxides and their antioxidant properties. Furthermore, we have considered their use as radioprotectors and protective agents in ischemia/reperfusion in vivo and in vitro. We also presented other applications of nitroxides in protecting cells and tissues from oxidative stress and in protein studies and discussed their use in EPR/MRI. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

12 pages, 3486 KiB  
Article
XPS Study of Grafting Paramagnetic Ions onto the Surface of Detonation Nanodiamonds
by Alexander Panich, Natalya Froumin, Aleksandr Aleksenskii and Anastasiya Chizhikova
Nanomaterials 2025, 15(4), 260; https://doi.org/10.3390/nano15040260 - 10 Feb 2025
Viewed by 918
Abstract
Grafting of paramagnetic transition and rare earth metal ions onto the surface of detonation nanodiamonds (DNDs) was successfully implemented in the recent decade and opened new opportunities in the biomedical application of these compounds, particularly as novel contrast agents for magnetic resonance imaging. [...] Read more.
Grafting of paramagnetic transition and rare earth metal ions onto the surface of detonation nanodiamonds (DNDs) was successfully implemented in the recent decade and opened new opportunities in the biomedical application of these compounds, particularly as novel contrast agents for magnetic resonance imaging. The grafting was studied mainly using EPR, NMR, and magnetic measurements. Such a highly surface-sensitive, quantitative, chemical analytic technique as X-ray photoelectron spectroscopy (XPS) was very rarely used. In this paper, we report the XPS study of grafting transition and rare-earth metal ions (Cu2+, Co2+, Mn2+, and Gd3+) onto the surface of DNDs. Binding energies for metal, carbon, oxygen, and nitrogen atoms were determined and attributed to the corresponding ion states and atomic groups. Comparing XPS and EPR findings, we showed that the developed synthesis route resulted in almost complete grafting of manganese and gadolinium atoms in the form of paramagnetic ions Mn2+ and Gd3+ to the diamond surface, while only 30% of the copper atoms on the surface are in the paramagnetic state Cu2+, and the rest 70% are in the non-magnetic Cu+ state. It was not possible to draw a similar conclusion regarding Co2+ ions due to the lack of data on the amount of these paramagnetic ions on the DND surface. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

40 pages, 23599 KiB  
Article
Bio-Inspired Watermarking Method for Authentication of Fundus Images in Computer-Aided Diagnosis of Retinopathy
by Ernesto Moya-Albor, Sandra L. Gomez-Coronel, Jorge Brieva and Alberto Lopez-Figueroa
Mathematics 2024, 12(5), 734; https://doi.org/10.3390/math12050734 - 29 Feb 2024
Cited by 5 | Viewed by 2035
Abstract
Nowadays, medical imaging has become an indispensable tool for the diagnosis of some pathologies and as a health prevention instrument. In addition, medical images are transmitted over all types of computer networks, many of them insecure or susceptible to intervention, making sensitive patient [...] Read more.
Nowadays, medical imaging has become an indispensable tool for the diagnosis of some pathologies and as a health prevention instrument. In addition, medical images are transmitted over all types of computer networks, many of them insecure or susceptible to intervention, making sensitive patient information vulnerable. Thus, image watermarking is a popular approach to embed copyright protection, Electronic Patient Information (EPR), institution information, or other digital image into medical images. However, in the medical field, the watermark must preserve the quality of the image for diagnosis purposes. In addition, the inserted watermark must be robust both to intentional and unintentional attacks, which try to delete or weaken it. This work presents a bio-inspired watermarking algorithm applied to retinal fundus images used in computer-aided retinopathy diagnosis. The proposed system uses the Steered Hermite Transform (SHT), an image model inspired by the Human Vision System (HVS), as a spread spectrum watermarking technique, by leveraging its bio-inspired nature to give imperceptibility to the watermark. In addition, the Singular Value Decomposition (SVD) is used to incorporate the robustness of the watermark against attacks. Moreover, the watermark is embedded into the RGB fundus images through the blood vessel patterns extracted by the SHT and using the luma band of Y’CbCr color model. Also, the watermark was encrypted using the Jigsaw Transform (JST) to incorporate an extra level of security. The proposed approach was tested using the image public dataset MESSIDOR-2, which contains 1748 8-bit color images of different sizes and presenting different Diabetic Retinopathy (DR). Thus, on the one hand, in the experiments we evaluate the proposed bio-inspired watermarking method over the entire MESSIDOR-2 dataset, showing that the embedding process does not affect the quality of the fundus images and the extracted watermark, by obtaining average Peak Signal-to-Noise Ratio (PSNR) values higher to 53 dB for the watermarked images and average PSNR values higher to 32 dB to the extracted watermark for the entire dataset. Also, we tested the method against image processing and geometric attacks successfully extracting the watermarking. A comparison of the proposed method against state-of-the-art was performed, obtaining competitive results. On the other hand, we classified the DR grade of the fundus image dataset using four trained deep learning models (VGG16, ResNet50, InceptionV3, and YOLOv8) to evaluate the inference results using the originals and marked images. Thus, the results show that DR grading remains both in the non-marked and marked images. Full article
(This article belongs to the Special Issue Data Hiding, Steganography and Its Application)
Show Figures

Figure 1

15 pages, 2703 KiB  
Article
Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes
by Songbai Zhang, Vega Lloveras, Yufei Wu, Juan Tolosa, Joaquín C. García-Martínez and José Vidal-Gancedo
Pharmaceutics 2023, 15(6), 1776; https://doi.org/10.3390/pharmaceutics15061776 - 20 Jun 2023
Cited by 11 | Viewed by 2117
Abstract
Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging [...] Read more.
Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging (OFI). Herein, we prepared metal-free organic species based on dendrimers with magnetic and fluorescent properties as proof-of-concept of bimodal probes for potential MRI and OFI applications. We used oligo(styryl)benzene (OSB) dendrimers core that are fluorescent on their own, and TEMPO organic radicals anchored on their surfaces, as the magnetic component. In this way, we synthesized six radical dendrimers and characterized them by FT-IR, 1H NMR, UV-Vis, MALDI-TOF, SEC, EPR, fluorimetry, and in vitro MRI. Importantly, it was demonstrated that the new dendrimers present two properties: on one hand, they are paramagnetic and show the ability to generate contrast by MRI in vitro, and, on the other hand, they also show fluoresce emission. This is a remarkable result since it is one of the very few cases of macromolecules with bimodal magnetic and fluorescent properties using organic radicals as the magnetic probe. Full article
(This article belongs to the Special Issue Fluorescent Organic Nanoparticles for Bioimaging and Theragnostics)
Show Figures

Figure 1

21 pages, 15896 KiB  
Article
Analysis of Multi-Temporal Shoreline Changes Due to a Harbor Using Remote Sensing Data and GIS Techniques
by Sanjana Zoysa, Vindhya Basnayake, Jayanga T. Samarasinghe, Miyuru B. Gunathilake, Komali Kantamaneni, Nitin Muttil, Uttam Pawar and Upaka Rathnayake
Sustainability 2023, 15(9), 7651; https://doi.org/10.3390/su15097651 - 6 May 2023
Cited by 17 | Viewed by 6292
Abstract
Coastal landforms are continuously shaped by natural and human-induced forces, exacerbating the associated coastal hazards and risks. Changes in the shoreline are a critical concern for sustainable coastal zone management. However, a limited amount of research has been carried out on the coastal [...] Read more.
Coastal landforms are continuously shaped by natural and human-induced forces, exacerbating the associated coastal hazards and risks. Changes in the shoreline are a critical concern for sustainable coastal zone management. However, a limited amount of research has been carried out on the coastal belt of Sri Lanka. Thus, this study investigates the spatiotemporal evolution of the shoreline dynamics on the Oluvil coastline in the Ampara district in Sri Lanka for a two-decade period from 1991 to 2021, where the economically significant Oluvil Harbor exists by utilizing remote sensing and geographic information system (GIS) techniques. Shorelines for each year were delineated using Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager images. The Normalized Difference Water Index (NDWI) was applied as a spectral value index approach to differentiate land masses from water bodies. Subsequently, the Digital Shoreline Analysis System (DSAS) tool was used to assess shoreline changes, including Shoreline Change Envelope (SCE), Net Shoreline Movement (NSM), End Point Rate (EPR), and Linear Regression Rate (LRR). The results reveal that the Oluvil coast has undergone both accretion and erosion over the years, primarily due to harbor construction. The highest SCE values were calculated within the Oluvil harbor region, reaching 523.8 m. The highest NSM ranges were recorded as −317.1 to −81.3 m in the Oluvil area and 156.3–317.5 m in the harbor and its closest point in the southern direction. The maximum rate of EPR was observed to range from 3 m/year to 10.7 m/year towards the south of the harbor, and from −10.7 m/year to −3.0 m/year towards the north of the harbor. The results of the LRR analysis revealed that the rates of erosion anomaly range from −3 m/year to −10 m/year towards the north of the harbor, while the beach advances at a rate of 3 m/year to 14.3 m/year towards the south of the harbor. The study area has undergone erosion of 40 ha and accretion of 84.44 ha. These findings can serve as valuable input data for sustainable coastal zone management along the Oluvil coast in Sri Lanka, safeguarding the coastal habitats by mitigating further anthropogenic vulnerabilities. Full article
Show Figures

Figure 1

26 pages, 4440 KiB  
Article
Evaluation of River Water Quality Index Using Remote Sensing and Artificial Intelligence Models
by Mohammad Najafzadeh and Sajad Basirian
Remote Sens. 2023, 15(9), 2359; https://doi.org/10.3390/rs15092359 - 29 Apr 2023
Cited by 61 | Viewed by 8372
Abstract
To restrict the entry of polluting components into water bodies, particularly rivers, it is critical to undertake timely monitoring and make rapid choices. Traditional techniques of assessing water quality are typically costly and time-consuming. With the advent of remote sensing technologies and the [...] Read more.
To restrict the entry of polluting components into water bodies, particularly rivers, it is critical to undertake timely monitoring and make rapid choices. Traditional techniques of assessing water quality are typically costly and time-consuming. With the advent of remote sensing technologies and the availability of high-resolution satellite images in recent years, a significant opportunity for water quality monitoring has arisen. In this study, the water quality index (WQI) for the Hudson River has been estimated using Landsat 8 OLI-TIRS images and four Artificial Intelligence (AI) models, such as M5 Model Tree (MT), Multivariate Adaptive Regression Spline (MARS), Gene Expression Programming (GEP), and Evolutionary Polynomial Regression (EPR). In this way, 13 water quality parameters (WQPs) (i.e., Turbidity, Sulfate, Sodium, Potassium, Hardness, Fluoride, Dissolved Oxygen, Chloride, Arsenic, Alkalinity, pH, Nitrate, and Magnesium) were measured between 14 March 2021 and 16 June 2021 at a site near Poughkeepsie, New York. First, Multiple Linear Regression (MLR) models were created between these WQPs parameters and the spectral indices of Landsat 8 OLI-TIRS images, and then, the most correlated spectral indices were selected as input variables of AI models. With reference to the measured values of WQPs, the WQI was determined according to the Canadian Council of Ministers of the Environment (CCME) guidelines. After that, AI models were developed through the training and testing stages, and then estimated values of WQI were compared to the actual values. The results of the AI models’ performance showed that the MARS model had the best performance among the other AI models for monitoring WQI. The results demonstrated the high effectiveness and power of estimating WQI utilizing a combination of satellite images and artificial intelligence models. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 11608 KiB  
Article
Assessment and Forecast of Shoreline Change Using Geo-Spatial Techniques in the Gulf of California
by Yedid Guadalupe Zambrano-Medina, Wenseslao Plata-Rocha, Sergio Alberto Monjardin-Armenta and Cuauhtémoc Franco-Ochoa
Land 2023, 12(4), 782; https://doi.org/10.3390/land12040782 - 30 Mar 2023
Cited by 21 | Viewed by 5304
Abstract
In coastal regions, the combined effects of natural processes, human activity, and climate change have caused shoreline changes that may increase in the future. The assessment of these changes is essential for forecasting their future position for proper management. In this context, shoreline [...] Read more.
In coastal regions, the combined effects of natural processes, human activity, and climate change have caused shoreline changes that may increase in the future. The assessment of these changes is essential for forecasting their future position for proper management. In this context, shoreline changes in the Gulf of California (GC), Mexico, have received little attention and no previous studies have addressed future forecasting. In this study, the researchers assessed the historical shoreline changes to forecast the long-term shoreline positions. To address this, shoreline data were obtained from Landsat satellite images for the years 1981, 1993, 2004, 2010, and 2020. The Net Shoreline Movement (NSM), Linear Regression Rate (LRR), End Point Rate (EPR), and Weighted Linear Regression (WLR) geo-spatial techniques were applied to estimate the shoreline change rate by using a Digital Shoreline Analysis System (DSAS) in the GIS environment. A Kalman filter model was used to forecast the position of the shoreline for the years 2030 and 2050. The results show that approximately 72% of the GC shoreline is undergoing steady erosion, and this trend is continuing in the future. This study has provided valuable and comprehensive baseline information on the state of the shoreline in the GC that can guide coastal engineers, coastal managers, and policymakers in Mexico to manage the risk. It also provides both long-term and large-scale continuous datasets that are essential for future studies focused on improving the shoreline forecast models. Full article
Show Figures

Figure 1

12 pages, 6068 KiB  
Article
A New Application of Spin and Fluorescence Double-Sensor Molecules
by Flórián Bencze, Balázs Bognár, Tamás Kálai, László Kollár, Zoltán Nagymihály and Sandor Kunsági-Máté
Molecules 2023, 28(7), 2978; https://doi.org/10.3390/molecules28072978 - 27 Mar 2023
Cited by 1 | Viewed by 1801
Abstract
EPR imaging techniques are known to be successful tools for mapping living bodies, especially because of the high transparency of tissues in the microwave range. This technique assumes the presence of radicals whose in vivo transport is also controlled by serum albumins. Accordingly, [...] Read more.
EPR imaging techniques are known to be successful tools for mapping living bodies, especially because of the high transparency of tissues in the microwave range. This technique assumes the presence of radicals whose in vivo transport is also controlled by serum albumins. Accordingly, in this study, the interactions between 3-hydroxymethyl-1-oxyl-4-(pyren-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole radical and the human serum albumin molecules were investigated. To clarify the adsorption processes of this radical onto the surface of human serum albumin (HSA), the interaction of the OMe derivative of the radical was also examined parallel with the studies on the radical—HSA interactions. Considering the solubility issues and also to modulate the transport, inclusion complexes of the radical with a cavitand derivative were also studied. The latter interactions were observed through fluorescence spectroscopy, fluorescence polarization, and by EPR spectroscopy. As a double-sensor molecule, we found that the fluorophore nitroxide is a good candidate as it gave further information about host-guest interactions (fluorescence, fluorescence polarization, and EPR). We also found that in the presence of a cavitand, a complex with greater stability was formed between the sensor molecule and the human serum albumin. Based on these observations, we can conclude that applying this double-sensor (spin, fluorescent) molecule is useful in cases when different interactions can affect the EPR measurements. Full article
Show Figures

Figure 1

30 pages, 5826 KiB  
Article
Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening
by Milica Milutinović, Đura Nakarada, Jelena Božunović, Miloš Todorović, Uroš Gašić, Suzana Živković, Marijana Skorić, Đurđa Ivković, Jelena Savić, Nina Devrnja, Neda Aničić, Tijana Banjanac, Miloš Mojović and Danijela Mišić
Antioxidants 2023, 12(2), 346; https://doi.org/10.3390/antiox12020346 - 1 Feb 2023
Cited by 9 | Viewed by 2915
Abstract
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed [...] Read more.
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated. Full article
Show Figures

Graphical abstract

24 pages, 5134 KiB  
Review
EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research
by Yoichi Takakusagi, Ryoma Kobayashi, Keita Saito, Shun Kishimoto, Murali C. Krishna, Ramachandran Murugesan and Ken-ichiro Matsumoto
Metabolites 2023, 13(1), 69; https://doi.org/10.3390/metabo13010069 - 1 Jan 2023
Cited by 10 | Viewed by 4004
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI [...] Read more.
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them. Full article
Show Figures

Figure 1

13 pages, 1590 KiB  
Article
Study of Tricalcium Phosphate Ceramics Doped with Gadolinium Ions with Various EPR Techniques
by Margarita A. Sadovnikova, Fadis F. Murzakhanov, Inna V. Fadeeva, Anna A. Forysenkova, Dina V. Deyneko, Georgy V. Mamin and Marat R. Gafurov
Ceramics 2022, 5(4), 1154-1166; https://doi.org/10.3390/ceramics5040081 - 1 Dec 2022
Cited by 5 | Viewed by 2838
Abstract
Tricalcium phosphate (TCP)-based materials, such as β-Ca3(PO4)2 doped with rare earth ions (RE), have shown applications as biomaterials, lighting emitting materials, scintillating materials, in vivo imaging probes, and thermoluminescent dosimeters. Their properties are found to be dependent on [...] Read more.
Tricalcium phosphate (TCP)-based materials, such as β-Ca3(PO4)2 doped with rare earth ions (RE), have shown applications as biomaterials, lighting emitting materials, scintillating materials, in vivo imaging probes, and thermoluminescent dosimeters. Their properties are found to be dependent on the distribution of RE3+ on Ca2+ sites that can be controlled by pulsed electron paramagnetic resonance (EPR) and electron spin echo envelop modulation (ESEEM) experiments. The main spectroscopic parameters (spin Hamiltonian values) of Gd3+ and nitrogen impurity centers are quantitatively determined (g-factor, the fine structure parameters D and E, the hyperfine constants A) as well as dynamic characteristics: spin–lattice T1 and spin–spin T2 relaxation times. Based on the analysis of the EPR datasets, the interatomic distance between Gd3+ and 31P was estimated in the dipole–dipole approximation. Two structurally nonequivalent Gd3+ positions in the β-TCP structure have been identified. The obtained valuable results demonstrate applicability of modern EPR techniques to characterize Gd-TCP systems despite the powder structure of the material and high electron spin S = 7/2 of Gd3+ ions. Full article
(This article belongs to the Special Issue Ceramic Processing and Sintering)
Show Figures

Figure 1

22 pages, 6995 KiB  
Article
Estimating Quantitative Morphometric Parameters and Spatiotemporal Evolution of the Prokopos Lagoon Using Remote Sensing Techniques
by Dionysios N. Apostolopoulos, Pavlos Avramidis and Konstantinos G. Nikolakopoulos
J. Mar. Sci. Eng. 2022, 10(7), 931; https://doi.org/10.3390/jmse10070931 - 6 Jul 2022
Cited by 21 | Viewed by 2971
Abstract
The Prokopos Lagoon is part of the Kotychi Strofilias National Wetlands Park, which is supervised by the Ministry of Environment, Energy and Climate Change of Greece. The lagoon is situated at the northwestern coast of the Peloponnese and is protected by the Ramsar [...] Read more.
The Prokopos Lagoon is part of the Kotychi Strofilias National Wetlands Park, which is supervised by the Ministry of Environment, Energy and Climate Change of Greece. The lagoon is situated at the northwestern coast of the Peloponnese and is protected by the Ramsar Convention. It is an important ecosystem with ecological services providing habitats for many plants and animals and essential goods and services for humans as well. No previous relevant studies for the wider wetland area are available, and given that lagoons are important ecosystems, their diachronic evolution should be under constant monitoring. Using remote sensing techniques in Geographic Information System (GIS) environment, alterations in critical parameters could be measured and applied for the protection of the area. The present study examines the spatiotemporal changes of the water extent of the Prokopos Lagoon, estimating landscape metrics and several morphometric parameters and indices related to the geomorphological features of the lagoon for the 1945–2021 period. Moreover, the adjacent shoreline was studied for each past decade evolution from 1945 to present, and it is discussed to whether there is a relationship between shoreline changes and the lagoon. High resolution satellite images and air photos at scale 1:30,000 were used to digitize the shorelines and the polygons of the lagoon’s surface. Linear Regression Rates (LRR), Net Shoreline Movement (NSM), End Point Rate (EPR) and Shoreline Change Envelope (SCE) provided by the Digital Shoreline Analysis System (DSAS) were used to determine the changes. Finally, future shoreline positions for 2021 and 2031 are estimated, while based on statistic models, we found that in the coastal area, the erosion–accretion cycle is predicted to be completed in 2031, after almost 86 years since 1945. Full article
(This article belongs to the Special Issue Changes of the Coastal Zones Due to Climate Change)
Show Figures

Figure 1

21 pages, 9716 KiB  
Article
Vertical Ground Displacements and Its Impact on Erosion along the Karachi Coastline, Pakistan
by Shamsa Kanwal, Xiaoli Ding, Songbo Wu and Muhammad Sajjad
Remote Sens. 2022, 14(9), 2054; https://doi.org/10.3390/rs14092054 - 25 Apr 2022
Cited by 13 | Viewed by 6144
Abstract
This study employed remote sensing (optical and synthetic aperture radar) and data analysis techniques to quantify vertical ground displacements and assess their contribution to coastline erosion. To provide evidence from Pakistan, we selected the coast of Karachi—a mega-city located along the dynamic coastline [...] Read more.
This study employed remote sensing (optical and synthetic aperture radar) and data analysis techniques to quantify vertical ground displacements and assess their contribution to coastline erosion. To provide evidence from Pakistan, we selected the coast of Karachi—a mega-city located along the dynamic coastline of the Indus River Delta—which has been experiencing severe coastal erosion during the last few decades. Observations from the C-band Envisat/ASAR and Sentinel-1A sensors over the 2004–2010 and 2014–2016 periods, respectively, enabled us to study vertical ground displacements in the study area, providing a long-term assessment during 2004–2016. Results suggest that some areas along the Karachi coastline are subsiding at comparable rates to or even much higher than the relative sea-level rise (SLR, ~1.9 mm/yr), which may amplify the rates of relative SLR in coming years, along with accelerating coastal erosion. Various parts of the study area along the coast are unstable and undergoing displacement. Landsat images from 1989 to 2018 (10-year temporal resolution) were further used to examine the state of coastline erosion using three statistical approaches (i.e., End Point Rate (EPR), Linear Regression Rate (LRR), and Least Median of Squares (LMS)). While the erosion underlaid the majority of the eastern sections of the study area, the ground displacements were spatially heterogeneous across the study area and along the coastline. Erosion rates of ~2.4 m/yr spatially corresponded with ground displacement rates of up to ~−1.4 cm/yr, but not all the coastline segments with high annual mean erosion rates were associated with local mean subsidence. The causes of ground displacements and coastline erosion were analyzed, and results were interpreted by integrating spatial ancillary information. Results indicate that rapid urbanization, construction on reclaimed land, coastline erosion favoring seawater intrusion, failed drainage/sewerage networks, and soil liquefaction are contributing to the site-specific variations in the land displacement in Karachi. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones)
Show Figures

Figure 1

12 pages, 7577 KiB  
Article
Study on Micro-Structure and Tensile Mechanical Properties of Dissimilar Metal Weld Joint Connecting Steam Generator Nozzle and Safe-End
by Shuang Qi, Wenxin Xiang, Lixun Cai, Xiaokun Liu, Yonggang Wang, Fangmao Ning, Lei Qi, Weiwei Yu and Jinhua Shi
Crystals 2021, 11(12), 1470; https://doi.org/10.3390/cryst11121470 - 26 Nov 2021
Cited by 6 | Viewed by 2168
Abstract
The safe-end of a steam generator (SG) nozzle dissimilar metal weld (DMW) for pressurized water reactors (PWRs) is the weakest point of failure which is crucial for the safe operation of a nuclear power station. Related to materials micro-structures, a uniaxial stress–strain relationship [...] Read more.
The safe-end of a steam generator (SG) nozzle dissimilar metal weld (DMW) for pressurized water reactors (PWRs) is the weakest point of failure which is crucial for the safe operation of a nuclear power station. Related to materials micro-structures, a uniaxial stress–strain relationship is the basic input parameter for nuclear power plant design, safety evaluation, and life management. In this paper, the micro-structure and tensile mechanical properties of a DMW of a European pressurized water reactor (EPR) were studied. Vickers hardness tester, optical microscope, and electron back scatter diffraction were used to analyze the micro-structure of the DMW joint. In addition, the residual strain of the DMW joint base material, heat-affected zone, weld metal, and fusion boundary region were studied. Based on digital image correlation (DIC) technology, tensile mechanical properties of the DMW joint were obtained. The results show that an accurate tensile stress–strain relationship of dissimilar metal welded joints can be obtained by using the DIC technique, the weld is the relatively weak link, and the residual strain is concentrated in the heat-affected zone. This study provides valuable engineering information regarding nuclear power plant design, in-service performance testing, and structural analysis and evaluation of welds containing defects. Full article
(This article belongs to the Special Issue Investigation on the Formation and Properties of Steels)
Show Figures

Figure 1

Back to TopTop