A New Application of Spin and Fluorescence Double-Sensor Molecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Studies
The Synthesis of the Methyl Derivative of Compound 1 (6)
2.2. Measuring the Complex Stabilities by Fluorescence Polarization
2.3. EPR Measurements
3. Materials and Methods
3.1. Materials
Synthesis Route of the Methyl Derivative of the Fluorophore
3.2. Methods
Data Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruemmer, K.J.; Brewer, T.F.; Chang, C.J. Fluorescent Probes for Imaging Formaldehyde in Biological Systems. Curr. Opin. Chem. Biol. 2017, 39, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martynov, V.I.; Pakhomov, A.A.; Popova, N.V.; Deyev, I.E.; Petrenko, A.G. Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Nat. 2016, 8, 33–46. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; (corr. at 4. print.); Springer: New York, NY, USA, 2010; ISBN 978-0-387-31278-1. [Google Scholar]
- Kálai, T.; Hideg, É.; Vass, I.; Hideg, K. Double (Fluorescent and Spin) Sensors for Detection of Reactive Oxygen Species in the Thylakoid Membrane. Free Radic. Biol. Med. 1998, 24, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gutierrez, P.L.; Amstad, P.; Blough, N.V. Hydroxyl Radical Production by Mouse Epidermal Cell Lines in the Presence of Quinone Anti-Cancer Compounds. Chem. Res. Toxicol. 1999, 12, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Bilski, P.; Hideg, K.; Kálai, T.; Bilska, M.A.; Chignell, C.F. Interaction of Singlet Molecular Oxygen with Double Fluorescent and Spin Sensors. Free Radic. Biol. Med. 2003, 34, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Blough, N.V.; Simpson, D.J. Chemically Mediated Fluorescence Yield Switching in Nitroxide-Fluorophore Adducts: Optical Sensors of Radical/Redox Reactions. J. Am. Chem. Soc. 1988, 110, 1915–1917. [Google Scholar] [CrossRef]
- Vogel, V.R.; Rubtsova, E.T.; Likhtenshtein, G.I.; Hideg, K. Factors Affecting Photoinduced Electron Transfer in a Donor—Acceptor Pair (D-A) Incorporated into Bovine Serum Albumin. J. Photochem. Photobiol. A Chem. 1994, 83, 229–236. [Google Scholar] [CrossRef]
- Miao, L.; Liu, W.; Qiao, Q.; Li, X.; Xu, Z. Fluorescent Antibiotics for Real-Time Tracking of Pathogenic Bacteria. J. Pharm. Anal. 2020, 10, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, N.; Vanitha, G.; Ananth, D.A.; Rameshkumar, A.; Sivasudha, T.; Renganathan, R. Bioimaging, Antibacterial and Antifungal Properties of Imidazole-Pyridine Fluorophores: Synthesis, Characterization and Solvatochromism. J. Photochem. Photobiol. B Biol. 2013, 127, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Preisz, Z.; Nagymihály, Z.; Lemli, B.; Kollár, L.; Kunsági-Máté, S. Weak Interaction of the Antimetabolite Drug Methotrexate with a Cavitand Derivative. Int. J. Mol. Sci. 2020, 21, 4345. [Google Scholar] [CrossRef] [PubMed]
- Bognár, B.; Ősz, E.; Hideg, K.; Kálai, T. Synthesis of New Double (Spin and Fluorescence) Sensor Reagents and Labels. J. Heterocycl. Chem. 2006, 43, 81–86. [Google Scholar] [CrossRef]
- Nagymihály, Z.; Lemli, B.; Kollár, L.; Kunsági-Máté, S. Solvent Switched Weak Interaction of a 4-Quinazolinone with a Cavitand Derivative. Molecules 2020, 25, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashbaugh, H.S.; Gibb, B.C.; Suating, P. Cavitand Complexes in Aqueous Solution: Collaborative Experimental and Computational Studies of the Wetting, Assembly, and Function of Nanoscopic Bowls in Water. J. Phys. Chem. B 2021, 125, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Bognár, B.; Jekő, J.; Kálai, T.; Hideg, K. Synthesis of Redox Sensitive Dyes Based on a Combination of Long Wavelength Emitting Fluorophores and Nitroxides. Dyes Pigm. 2010, 87, 218–224. [Google Scholar] [CrossRef]
- Hauenschild, T.; Reichenwallner, J.; Enkelmann, V.; Hinderberger, D. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy. Chem. Eur. J. 2016, 22, 12825–12838. [Google Scholar] [CrossRef] [PubMed]
- Chudinov, A.V.; Rozantsev, E.G. Halogen-containing nitroxyl radicals. 3. Synthesis of nitroxyl radical based on 3-bromo-4-carboxy-2,2,5,5-tetramethyl-Δ3-pyrroline-1-oxyl. Izves. Akad. Nauk SSSR Seriya Khim. 1983, 98, 179180. [Google Scholar]
- Otri, I.; Medaglia, S.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules 2022, 27, 1133. [Google Scholar] [CrossRef] [PubMed]
- Bon, S.A.F.; Chambard, G.; German, A.L. Nitroxide-Mediated Living Radical Polymerization: Determination of the Rate Coefficient for Alkoxyamine C−O Bond Homolysis by Quantitative ESR. Macromolecules 1999, 32, 8269–8276. [Google Scholar] [CrossRef]
- Poór, M.; Kunsági-Máté, S.; Bencsik, T.; Petrik, J.; Vladimir-Knežević, S.; Kőszegi, T. Flavonoid Aglycones Can Compete with Ochratoxin A for Human Serum Albumin: A New Possible Mode of Action. Int. J. Biol. Macromol. 2012, 51, 279–283. [Google Scholar] [CrossRef] [PubMed]
Method Applied | logK (1—HSA, Absence of 2) | logK (1—HSA, Presence of 2) |
---|---|---|
Fluorescence | 3.63 | 5.99 |
Polarization | 5.85 | 7.66 |
In case of OMe | logK (6—HSA, absence of 2) | logK (6—HSA, presence of 2) |
Fluorescence | 4.74 | 5.03 |
Polarization | 6.48 | 6.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencze, F.; Bognár, B.; Kálai, T.; Kollár, L.; Nagymihály, Z.; Kunsági-Máté, S. A New Application of Spin and Fluorescence Double-Sensor Molecules. Molecules 2023, 28, 2978. https://doi.org/10.3390/molecules28072978
Bencze F, Bognár B, Kálai T, Kollár L, Nagymihály Z, Kunsági-Máté S. A New Application of Spin and Fluorescence Double-Sensor Molecules. Molecules. 2023; 28(7):2978. https://doi.org/10.3390/molecules28072978
Chicago/Turabian StyleBencze, Flórián, Balázs Bognár, Tamás Kálai, László Kollár, Zoltán Nagymihály, and Sandor Kunsági-Máté. 2023. "A New Application of Spin and Fluorescence Double-Sensor Molecules" Molecules 28, no. 7: 2978. https://doi.org/10.3390/molecules28072978
APA StyleBencze, F., Bognár, B., Kálai, T., Kollár, L., Nagymihály, Z., & Kunsági-Máté, S. (2023). A New Application of Spin and Fluorescence Double-Sensor Molecules. Molecules, 28(7), 2978. https://doi.org/10.3390/molecules28072978