Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = ENSO diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 322
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

20 pages, 14382 KiB  
Article
Exploring the Causes of Multicentury Hydroclimate Anomalies in the South American Altiplano with an Idealized Climate Modeling Experiment
by Ignacio Alonso Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodríguez, Nicolás Lampe-Huenul and Antonio Maldonado
Atmosphere 2025, 16(7), 751; https://doi.org/10.3390/atmos16070751 - 20 Jun 2025
Viewed by 347
Abstract
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric [...] Read more.
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric mechanisms conducive to long-term precipitation variability in the southern Altiplano (18–25° S; 70–65 W; >3500 masl). We performed a series of 100-year-long idealized simulations using the Weather Research and Forecasting (WRF) model, configured to repeat annually the oceanic and atmospheric forcing leading to the exceptionally humid austral summers of 1983/1984 and 2011/2012. The aim of these cyclical experiments was to evaluate if these specific conditions can sustain a century-long pluvial event in the Altiplano. Unlike the annual forcing, long-term negative precipitation trends are observed in the simulations, suggesting that the drivers of 1983/1984 and 2011/2012 wet summers are unable to generate a century-scale pluvial event. Our results show that an intensification of the anticyclonic circulation along with cold surface air anomalies in the southwestern Atlantic progressively reinforce the lower and upper troposphere features that prevent moisture transport towards the Altiplano. Prolonged drying is also observed under persistent La Niña conditions, which contradicts the well-known relationship between precipitation and ENSO at interannual timescales. Contrasting the hydroclimate responses between the Altiplano and the tropical Andes result from a sustained northward migration of the Atlantic trade winds, providing a useful analog for explaining the divergences in the Holocene records. This experiment suggests that the drivers of century-scale hydroclimate events in the Altiplano were more diverse than previously thought and shows how climate modeling can be used to test paleoclimate hypotheses, emphasizing the necessity of combining proxy data and numerical models to improve our understanding of past climates. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

17 pages, 4204 KiB  
Article
Decadal Modulation of Summertime Northwestern Pacific Subtropical High Linked to Indian Ocean Basin Warming
by Takashi Mochizuki and Yuta Ando
Climate 2025, 13(6), 106; https://doi.org/10.3390/cli13060106 - 24 May 2025
Viewed by 716
Abstract
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in [...] Read more.
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in recent years, we conducted sensitivity experiments using an atmospheric general circulation model. We particularly focused on decadal-scale differences between the periods of 1982–2001 and 2002–2021, with the contribution of the climatological sea surface temperature (SST) as the background, in combination with the tropical Pacific SST anomaly in relation to the rapid or slow decay of the El Niño Southern Oscillation (ENSO). The results indicate that the IOBW-related SST anomalies in the Indian and tropical Pacific Oceans—which, overall, represent the well-known characteristics of the so-called Indo-western Pacific Ocean Capacitor effects—cooperatively enhanced the NPSH in the earlier period (1982–2001). On the other hand, the suppressed and westward-shifted SST anomalies in the tropical Pacific Ocean and the resultant changes in the diabatic heating of cumulus convection suppressed the NPSH enhancement in recent years (2002–2021). These results indicate that the modulation in the NPSH responses linked to the IOBW is primarily due to the so-called ENSO diversity rather than climatology. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

31 pages, 6399 KiB  
Article
Hydrological Modelling and Multisite Calibration of the Okavango River Basin: Addressing Catchment Heterogeneity and Climate Variability
by Milkessa Gebeyehu Homa, Gizaw Mengistu Tsidu and Esther Nelly Lofton
Water 2025, 17(10), 1442; https://doi.org/10.3390/w17101442 - 10 May 2025
Viewed by 784
Abstract
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused [...] Read more.
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused on the Delta, the river’s catchment area in the Angolan highlands—its main water source and critical for downstream flow—has been largely overlooked. The basin is under pressure from development, water abstraction, and population growth in the surrounding areas, which negatively affect the environment. These challenges are intensified by climate change, leading to increased water scarcity that necessitates improved management strategies. Currently, there is a lack of published research on the basin’s hydrology, leaving many hydrological parameters related to streamflow in the catchments inadequately understood. Most existing studies have employed single-site calibration methods, which fail to capture the diverse characteristics of the basin’s catchments. To address this, a SWAT model has been developed to simulate the hydrologic behaviour of the basin using sequential multisite calibration with data from five gauging stations, including the main river systems: Cubango and Cuito. The SUFI2 program was used for sensitivity analysis, calibration, and validation. The initial sensitivity analysis identified several key parameters: the Soil Evaporation Compensation Factor (ESCO), the SCS curve number under moisture condition II (CN2), Saturated Hydraulic Conductivity (SOL_K), and Moist Bulk Density (SOL_BD) as the most influential. The calibration and validation results were generally satisfactory, with a coefficient of determination ranging from 0.47 to 0.72. Analysis of the water balance and parameter sensitivities revealed the varied hydrologic responses of different sub-watersheds with distinct soil profiles. Average annual precipitation varies from 1116 mm upstream to 369 mm downstream, with an evapotranspiration-to-precipitation ratio ranging from 0.47 to 0.95 and a water yield ratio between 0.51 and 0.03, thereby revealing their spatial gradients, notably increasing evapotranspiration and decreasing water yield downstream. The SWAT model’s water balance components provided promising results, with soil moisture data aligned with the TerraClimate dataset, achieving a coefficient of determination of 0.63. Additionally, the model captured the influence of the El Niño–Southern Oscillation (ENSO) on local hydrology. However, limitations were noted in simulating peak and low flows due to sparse gauge coverage, data gaps (e.g., groundwater abstraction, point sources), and the use of coarse-resolution climate inputs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

13 pages, 485 KiB  
Article
Climate’s Currency: How ENSO Events Shape Maize Pricing Structures Between the United States and South Africa
by Mariëtte Geyser and Anmar Pretorius
J. Risk Financial Manag. 2025, 18(4), 181; https://doi.org/10.3390/jrfm18040181 - 28 Mar 2025
Viewed by 635
Abstract
Climate change manifests itself in rising temperatures across the continent and affects the El Niño–Southern Oscillation (ENSO) by changing sea surface temperatures and atmospheric circulation. This affects precipitation and temperature patterns, with South Africa normally experiencing drier conditions during El Niño events. These [...] Read more.
Climate change manifests itself in rising temperatures across the continent and affects the El Niño–Southern Oscillation (ENSO) by changing sea surface temperatures and atmospheric circulation. This affects precipitation and temperature patterns, with South Africa normally experiencing drier conditions during El Niño events. These weather anomalies influence crop yields and food prices. Spatial price transmission indicates the extent to which prices of agricultural goods are linked across different geographical areas and how quickly price signals from one area are passed on to another. Although numerous studies explore spatial price transmission between various countries, there is a gap in the literature on price transmission between the US and South African maize markets during ENSO events. Therefore, we investigate how ENSO-related events impacted maize price transmission between the Chicago Mercantile Exchange and the Johannesburg Stock Exchange from 1997 to 2024. The empirical analysis starts with a correlation analysis, followed by tests for cointegration and error correction models. The results confirm the dominating impact of US maize prices on South African prices, but also how this relationship changes based on the nature of the ENSO event. There is some indication of lower levels of integration and higher levels of price diversion during El Niño periods. Full article
(This article belongs to the Special Issue Econometrics of Financial Models and Market Microstructure)
Show Figures

Figure 1

23 pages, 3920 KiB  
Article
Influence of Climate and Solar Variability on Growth Rings of Araucaria angustifolia in Três Barras National Forest (Brazil)
by Daniela Oliveira Silva Muraja, Virginia Klausner, Alan Prestes, Aline Conceição da Silva and Cecília Leite Lemes
Atmosphere 2025, 16(3), 287; https://doi.org/10.3390/atmos16030287 - 27 Feb 2025
Viewed by 640
Abstract
This research applies continuous wavelet analysis and seasonal correlation analysis to tree-ring data from Três Barras National Forest (FLONA Três Barras), revealing diverse influences on growth, including climate, solar activity, and external factors. The methodology involved tree-ring collection and subsequent wavelet and seasonal [...] Read more.
This research applies continuous wavelet analysis and seasonal correlation analysis to tree-ring data from Três Barras National Forest (FLONA Três Barras), revealing diverse influences on growth, including climate, solar activity, and external factors. The methodology involved tree-ring collection and subsequent wavelet and seasonal analyses to unveil the non-stationary characteristics of and multifaceted influences on growth. Key findings include the subtle effects of El Niño events on tree-ring development, the sensitivity of Araucaria angustifolia to temperature changes, the significant influence of precipitation during drought periods, and the intricate relationship between tree growth and solar cycles. The El Niño–Southern Oscillation (ENSO) emerges as a primary climatic driver during specific intervals, with external factors (precipitation, temperature, and solar cycle–solar irradiance) influencing tree response between 1936 and 1989. Additionally, the seasonal correlation analysis highlighted the importance of sub-annual climate variability, capturing specific intervals, such as a 3-month season ending in March of the previous year, that significantly impacted tree-ring growth. The study underscores the importance of protecting the endangered Araucaria angustifolia for climatic studies and local communities. Historically, in Brazil, Araucaria angustifolia seeds played a vital role in sustaining indigenous populations, which in turn helped to disperse and propagate forests, creating anthropogenic landscapes that highlight the interconnected relationship between humans and the preservation of these forests. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 2922 KiB  
Article
Simulation of the Potential Effect of Meteorological Condition Variations on Forage Production in Native Pastures in the Warm Climate of Colombia
by Eliecer David Díaz-Almanza, José Alejandro Cleves-Leguizamo and Rodrigo Daniel Salgado-Ordosgoitia
Land 2025, 14(2), 397; https://doi.org/10.3390/land14020397 - 14 Feb 2025
Viewed by 725
Abstract
The increasing variability of climatic conditions poses significant challenges for agricultural and livestock systems worldwide. In regions with warm climates, such as northern Colombia, the effects of changing temperature, precipitation, and evapotranspiration are particularly pronounced, influencing the productivity and sustainability of native pastures. [...] Read more.
The increasing variability of climatic conditions poses significant challenges for agricultural and livestock systems worldwide. In regions with warm climates, such as northern Colombia, the effects of changing temperature, precipitation, and evapotranspiration are particularly pronounced, influencing the productivity and sustainability of native pastures. To address these challenges, modeling tools provide a valuable means of understanding and predicting forage production dynamics under diverse climatic scenarios, enabling farmers to make informed decisions that enhance resilience and sustainability. This research was conducted in Córdoba, Colombia, with the objective of evaluating the impact of climatic variations in temperature, precipitation, and evapotranspiration on forage production in native pastures in hot climates in northern Colombia. Modeling tools were used to assess the potential yield of pastures based on climate conditions, enabling the understanding and addressing of challenges associated with climatic fluctuations in estimated production. To plan animal grazing, climate variability from 2018 to 2021, a period influenced by the El Niño–Southern Oscillation (ENSO) phenomenon, was analyzed. This type of integrated analysis, which combines meteorological data, soil, crops, and evaluation of animal load per unit area, is an ideal and practical approach to addressing productivity challenges associated with climatic variability in livestock production in the warm climate of Colombia. The results confirmed the significant impact of climatic conditions on forage production, leading to the conclusion that simulation tools for water use in Bothriochloa “Colosuana” pastures are relevant for efficient water resource management, particularly during the dry season and drought events. This allows for anticipating the impacts of climate change on agriculture and livestock, facilitating timely and sustainable decision-making by farmers. Full article
Show Figures

Figure 1

20 pages, 2133 KiB  
Review
Effects of Climate Change on Malaria Risk to Human Health: A Review
by Dereba Muleta Megersa and Xiao-San Luo
Atmosphere 2025, 16(1), 71; https://doi.org/10.3390/atmos16010071 - 9 Jan 2025
Cited by 3 | Viewed by 6760
Abstract
Malaria, a severe vector-borne disease, affects billions of people globally and claims over half a million lives annually. Climate change can impact lifespan and the development of vectors. There is a gap in organized, multidisciplined research on climate change’s impact on malaria incidence [...] Read more.
Malaria, a severe vector-borne disease, affects billions of people globally and claims over half a million lives annually. Climate change can impact lifespan and the development of vectors. There is a gap in organized, multidisciplined research on climate change’s impact on malaria incidence and transmission. This review assesses and summarizes research on the effects of change in climate on human health, specifically on malaria. Results suggest that higher temperatures accelerate larval development, promote reproduction, enhance blood feed frequency, increase digestion, shorten vector life cycles, and lower mortality rates. Rainfall provides aquatic stages, extends mosquitoes’ lifespans, and increases cases. Mosquito activity increases with high humidity, which facilitates malaria transmission. Flooding can lead to increased inhabitation development, vector population growth, and habitat diversion, increasing breeding sites and the number of cases. Droughts can increase vector range by creating new breeding grounds. Strong storms wash Anopheles’ eggs and reproduction habitat. It limits reproduction and affects disease outbreaks. The Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) indirectly alter malaria transmission. The study recommends strengthening collaboration between policymakers, researchers, and stakeholders to reduce malaria risks. It also suggests strengthening control mechanisms and improved early warnings. Full article
Show Figures

Graphical abstract

22 pages, 8627 KiB  
Article
Space-Time Variability of Maximum Daily Rainfall in Piura River Basin in Peru Related to El Niño Occurrence
by Marina Farias de Reyes, Eduardo Chávarri-Velarde, Valeria Cotrina, Pierina Aguilar and Laura Vegas
Water 2024, 16(23), 3452; https://doi.org/10.3390/w16233452 - 30 Nov 2024
Cited by 1 | Viewed by 1964
Abstract
This study analyzes hydrometeorological data (1950–2023) to examine the signatures of El Niño and La Niña events and assess their impact on rainfall distribution in the Piura Region, Peru. Using data from 23 stations, high-resolution gridded rainfall datasets (PISCO), and oceanic–atmospheric indices we [...] Read more.
This study analyzes hydrometeorological data (1950–2023) to examine the signatures of El Niño and La Niña events and assess their impact on rainfall distribution in the Piura Region, Peru. Using data from 23 stations, high-resolution gridded rainfall datasets (PISCO), and oceanic–atmospheric indices we investigated the frequency, intensity, and spatial variability of these events in the Piura River Basin (PRB). Return periods for very strong El Niño and La Niña events are 25 and 19 years, respectively, compared to 2 years for neutral conditions. Over the past 30 years, the recurrence of Coastal El Niño has significantly increased. This increased frequency contributes to the global rise in El Niño events, reducing the return period for very strong events from 5.2 to 3.4 years. This rise correlates with an increase in maximum daily precipitation across the basin centered in the middle PRB during El Niño years. Future rainfall projections, based on 20 CMIP6 GCMs under SSP2-4.5 and SSP5-8.5 scenarios, suggest continued intensification of rainfall events. These findings highlight the necessity of incorporating El Niño variability into infrastructure design, water resource management, and climate adaptation strategies to mitigate the impacts of these increasingly frequent and severe events in the PRB. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

31 pages, 5470 KiB  
Article
Impacts of El Niño–Southern Oscillation (ENSO) Events on Trophodynamic Structure and Function in Taiwan Bank Marine Ecosystem
by Po-Yuan Hsiao, Kuo-Wei Lan, Wen-Hao Lee, Ting-Yu Liang, Cheng-Hsin Liao and Nan-Jay Su
Diversity 2024, 16(9), 572; https://doi.org/10.3390/d16090572 - 12 Sep 2024
Cited by 4 | Viewed by 3181
Abstract
Taiwan Bank (TB) is located in the southern Taiwan Strait (TS). The uplifted continental slope and bottom currents in this area result in the formation of upwelling areas, which serve as crucial fishing grounds. Climate-induced fluctuations in fish populations occur in the TS. [...] Read more.
Taiwan Bank (TB) is located in the southern Taiwan Strait (TS). The uplifted continental slope and bottom currents in this area result in the formation of upwelling areas, which serve as crucial fishing grounds. Climate-induced fluctuations in fish populations occur in the TS. However, how predation and competition affect the interspecies relationships in the TB ecosystem warrants clarification. In this study, we collected high-grid-resolution data on fishery activity (2013–2019) and constructed ecosystem models using Ecopath with Ecosim (EwE). Three mass-balanced models for determining the influence of El Niño–Southern Oscillation (ENSO) events on the TB ecosystem were constructed using EwE. A range of groups, including representative pelagic, benthic, and reef species, were collected for analyzing the relationship between migratory and sedentary species in terms of ecosystem structure variation due to climate change. The results demonstrated that the total system throughput (TST) was 10,556–11,122 t km−2 year−1, with an average transfer efficiency of 12.26%. According to the keystoneness index, calculated through mixed trophic impact analysis, Polydactylus sextarius and Scomber japonicus were the key species with top–down control and relatively high impact on the ecosystem in normal years. The keystone species also shifted to the predator fish Thunnus albacares and Katsuwonus pelamis during El Niño and La Niña events, respectively. Moreover, total biomass, TST, consumption, and respiration were noted to increase during ENSO events. However, during La Niña events, the diversity and connectance indexes were relatively low but pelagic species’ biomass was relatively high, whereas the biomass of most benthic and reef species was relatively high during El Niño events. Full article
Show Figures

Figure 1

20 pages, 10187 KiB  
Article
Significant Increase in Global Steric Sea Level Variations over the Past 40 Years
by Jinpeng Xie, Zhangli Sun, Shuaibo Zhou, Yulong Zhong, Peijun Sun, Yi Xiong and Lin Tu
Remote Sens. 2024, 16(13), 2466; https://doi.org/10.3390/rs16132466 - 5 Jul 2024
Cited by 1 | Viewed by 1853
Abstract
Understanding global sea level variations and exploring their causes hold significant importance for future climate change predictions and the sustainable development of mankind, with the steric sea level (SSL) variations being one of the primary contributors to these changes. Here, we utilize four [...] Read more.
Understanding global sea level variations and exploring their causes hold significant importance for future climate change predictions and the sustainable development of mankind, with the steric sea level (SSL) variations being one of the primary contributors to these changes. Here, we utilize four types of temperature and salinity products (i.e., EN4, IAP, SODA, and GDCSM) to investigate the spatiotemporal characteristics of global SSL changes from 1980 to 2020. We also explore the relationship between SSL changes and the El Niño-Southern Oscillation (ENSO) phenomenon. The findings reveal a rising trend of 0.64–0.97 mm/a in global SSL over the past 40 years, and the annual amplitudes of SSL time series are within the range of 0–50 mm. The SSL trend at a depth of 0–100 m exerts the greatest influence on the overall trend. The ENSO phenomenon has an obvious influence on sea level changes both in the equatorial Pacific region and global scale. The changes in the global sea level (GSL) associated with ENSO are primarily caused by changes in SSL. This study benefits the understanding of SSL changes and their connection to climate change, serves as a reference for comprehensively assessing sea level change mechanisms using diverse datasets and remote sensing technology, and further provides a scientific basis for the sustainable development of mankind in coastal areas. Full article
Show Figures

Figure 1

15 pages, 3075 KiB  
Article
Decadal Changes in Benthic Community Structure and Function in a Coral Community in the Northeastern Tropical Pacific
by Cassandra de Alba-Guzmán, Rafael Andrés Cabral-Tena, Fabián Alejandro Rodríguez-Zaragoza, José de Jesús Adolfo Tortolero-Langarica, Amílcar Leví Cupul-Magaña and Alma Paola Rodríguez-Troncoso
Diversity 2024, 16(7), 372; https://doi.org/10.3390/d16070372 - 27 Jun 2024
Viewed by 2498
Abstract
The high diversity and biomass of organisms associated with coral communities depend directly on the maintenance or changes in the benthic composition. Over a decade, we evaluated the spatiotemporal variation in the benthic structure and composition of an insular coral community in the [...] Read more.
The high diversity and biomass of organisms associated with coral communities depend directly on the maintenance or changes in the benthic composition. Over a decade, we evaluated the spatiotemporal variation in the benthic structure and composition of an insular coral community in the Northeastern Tropical Pacific. Our results show that local conditions drive spatiotemporal differences, and benthic organisms such as sponges, crustose coralline algae, octocorals, and hydrocorals all increased in abundance (cover) in response to negative thermal anomalies caused by the 2010–2011 La Niña event. In contrast, abnormally high temperatures, such as those recorded during the 2015–2016 El Niño Southern Oscillation (ENSO) event, explain the loss of scleractinian corals and crustose coralline algae coverage, which reduced the benthic groups’ richness (BGR), diversity (H’BG), and evenness (J’BG), with evidence of a consequent decrease in ecosystem function recorded the following year. Our analysis also showed that sites with high habitat heterogeneity harbored higher average BRG and H’BG values and were less affected by environmental fluctuations than sites with high live scleractinian coral cover and lower BRG and H’BG values. Therefore, the benthic structure was impacted differently by the same perturbation, and changes in the benthic community composition affected the groups associated with the community and ecological functions. More importantly, regional stressors such as the ENSO event caused only temporary changes in the benthic community structure, demonstrating the high resilience of the community to annual and interannual stressors. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Coral Reefs)
Show Figures

Figure 1

33 pages, 30371 KiB  
Article
El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response
by Gabriel Santiago Gutiérrez-Cárdenas, Enrique Morales-Acuña, Leonardo Tenorio-Fernández, Jaime Gómez-Gutiérrez, Rafael Cervantes-Duarte and Sergio Aguíñiga-García
J. Mar. Sci. Eng. 2024, 12(7), 1061; https://doi.org/10.3390/jmse12071061 - 24 Jun 2024
Viewed by 2382
Abstract
The influence of El Niño–Southern Oscillation (ENSO) on productivity at upwelling systems has been extensively studied. However, in recent decades, ENSO diversity has been documented; there are more frequent events with anomalies in the central Pacific (CP) causing ecological impacts that are different [...] Read more.
The influence of El Niño–Southern Oscillation (ENSO) on productivity at upwelling systems has been extensively studied. However, in recent decades, ENSO diversity has been documented; there are more frequent events with anomalies in the central Pacific (CP) causing ecological impacts that are different from the canonical events centered in the eastern Pacific (EP). We hypothesize that ENSO effects on upwelling intensity and its biological response are highly dependent on ENSO diversity. Wavelet coherence was computed for monthly standardized anomalies of Ekman transport and sea surface Chlorophyll-a (Chl-a) concentration from eight upwelling centers located along the west coast of the Baja California peninsula (1993–2022). Ekman transport (ET) showed a non-linear association with ENSO at interannual periodicities between 1.2 and 7 years, as well as semiannual scale variability. Coherence between ENSO and ET showed a reduction in upwelling intensity during CP ENSO events and an increased upwelling intensity after EP El Niño events with regional differences. Our results reveal an influence of northern Pacific circulation that subsequently influences ENSO events during its development and its peak. We detected an influence of SST and wind anomalies on the ENSO–Ekman transport connection associated with the northern Pacific Meridional Mode pattern. The CP shows an important role in sea surface Chl-a concentration anomalies (1998–2022). We highlight the conceptual relevance of distinguishing ENSO diversity, with influential ecological effects associated with CP ENSO events. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 3348 KiB  
Article
The Use of the GWPCA-MGWR Model for Studying Spatial Relationships between Environmental Variables and Longline Catches of Yellowfin Tunas
by Menghao Li, Xiaoming Yang, Yue Wang, Yuhan Wang and Jiangfeng Zhu
J. Mar. Sci. Eng. 2024, 12(6), 1002; https://doi.org/10.3390/jmse12061002 - 15 Jun 2024
Cited by 3 | Viewed by 1758
Abstract
The yellowfin tuna represents a significant fishery resource in the Pacific Ocean. Its resource endowment status and spatial variation mechanisms are intricately influenced by marine environments, particularly under varying climate events. Consequently, investigating the spatial variation patterns of dominant environmental factors under diverse [...] Read more.
The yellowfin tuna represents a significant fishery resource in the Pacific Ocean. Its resource endowment status and spatial variation mechanisms are intricately influenced by marine environments, particularly under varying climate events. Consequently, investigating the spatial variation patterns of dominant environmental factors under diverse climate conditions, and understanding the response of yellowfin tuna catch volume based on the spatial heterogeneity among these environmental factors, presents a formidable challenge. This paper utilizes comprehensive 5°×5° yellowfin tuna longline fishing data and environmental data, including seawater temperature and salinity, published by the Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC) for the period 2000–2021 in the Pacific Ocean. In conjunction with the Niño index, a multiscale geographically weighted regression model based on geographically weighted principal component analysis (GWPCA-MGWR) and spatial association between zones (SABZ) is employed for this study. The results indicate the following: (1) The spatial distribution of dominant environmental factors affecting the catch of Pacific yellowfin tuna is primarily divided into two types: seawater temperature dominates in the western Pacific Ocean, while salinity dominates in the eastern Pacific Ocean. When El Niño occurs, the area with seawater temperature as the dominant environmental factor in the western Pacific Ocean further extends eastward, and the water layers where the dominant environmental factors are located develop to deeper depths; when La Niña occurs, there is a clear westward expansion in the area with seawater salinity as the dominant factor in the eastern Pacific Ocean. This change in the spatial distribution pattern of dominant factors is closely related to the movement of the position of the warm pool and cold tongue under ENSO events. (2) The areas with a higher catch of Pacific yellowfin tuna are spatially associated with the dominant environmental factor of mid-deep seawater temperature (105–155 m temperature) to a greater extent than other factors, the highest correlation exceeds 70%, and remain relatively stable under different ENSO events. The formation of this spatial association pattern is related to the vertical movement of yellowfin tuna as affected by subsurface seawater temperature. (3) The GWPCA-MGWR model can fully capture the differences in environmental variability among subregions in the Pacific Ocean under different climatic backgrounds, intuitively reflect the changing areas and influencing boundaries from a macro perspective, and has a relatively accurate prediction on the trend of yellowfin tuna catch in the Pacific Ocean. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

16 pages, 3194 KiB  
Article
Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation
by Minghong Liu, Hong-Li Ren, Run Wang, Jieru Ma and Xin Mao
Remote Sens. 2023, 15(16), 4030; https://doi.org/10.3390/rs15164030 - 14 Aug 2023
Cited by 12 | Viewed by 2093
Abstract
El Niño–Southern Oscillation (ENSO) has remarkable impacts on Tibetan Plateau (TP) summer precipitation. However, recently identified ENSO spatial diversity brings complexity to these impacts. This study investigates the distinct impacts of the Eastern Pacific (EP) and Central Pacific (CP) ENSOs on TP summer [...] Read more.
El Niño–Southern Oscillation (ENSO) has remarkable impacts on Tibetan Plateau (TP) summer precipitation. However, recently identified ENSO spatial diversity brings complexity to these impacts. This study investigates the distinct impacts of the Eastern Pacific (EP) and Central Pacific (CP) ENSOs on TP summer precipitation based on numerous precipitation data and satellite-observed and reanalyzed circulation data. The results show that the EP El Niño and the CP La Niña have opposite effects on summer precipitation in the southwestern TP, with significant decreases and increases, respectively, indicating a trans-type inversion. In contrast, the CP El Niño causes significant decreases in summer precipitation in the central-eastern TP. No significant anomaly occurs during the EP La Niña. Moisture budget and circulation analyses suggest that these distinct precipitation characteristics can be attributed to different atmospheric teleconnections, which provide varying vertical motion and moisture conditions. The EP El Niño triggers an atmospheric response similar to the Indian Summer Monsoon–East Asian Summer Monsoon teleconnection, and the CP La Niña generates a teleconnection in the opposite phase. In contrast, the CP El Niño mainly causes a teleconnection resembling the East Asian–Pacific pattern. This study may deepen our understanding of ENSO impacts on TP summer precipitation and have implications for regional climate predictions. Full article
Show Figures

Figure 1

Back to TopTop