El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ENSO Diversity
2.3. Wind Data and Ekman Transport
2.4. Sea Surface Chlorophyll-a Concentration
2.5. Wavelet Transform
2.6. Wavelet Coherence
3. Results
4. Discussion
4.1. ENSO and Upwelling Intensity: Interannual Coherence
4.2. Annual and Semiannual Coherence: ENSO and Ekman Transport
4.3. ENSO Development and Conditions in Pacific for Coherence Events
4.4. ENSO and Biological Response: Interannual Coherence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Event | Phase | Type | Coherence Lead ET (Time Months) | Coherence Chl-a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ENS | NPE | PE | BM | ENS | NPE | PE | BM | |||
1994/95 | El Niño | CP | 1–2 * (1–2) | 0 * | 0–4 * | - | - | - | - | |
1996/97 | La Niña | EP | - | - | - | - | ||||
1997/98 | El Niño | EP | 3–4 | 0–2 | 4–5 | 1–5 | - | - | - | - |
1998/99 | La Niña | CP | 1 | |||||||
1999/00 | La Niña | CP | c | 2 | 0–2 | 1 | 2 * (2) | 0 * | 0 * | |
2001/01 | La Niña | CP | 1–2 * (2–3) | 2 | 0 * | 0 * | ||||
2002/03 | El Niño | CP | 0 * | |||||||
2004/05 | El Niño | CP | 1 * (2) | |||||||
2007/08 | La Niña | CP | 0 | 1–2 * | ||||||
2008/09 | La Niña | CP | 0 * | 0 * | 1–2 * | 1 * | 1–4 | |||
2009/10 | El Niño | CP | 1–4 | 0–2 | 0–1 * (4–5) | 4 | 1–2 * (2) | 1 (3–4 *) | ||
I confirm2010/11 | La Niña | CP | 0 | 1–2 * | 21 * | 1–2 | ||||
2011/12 | La Niña | CP | 0 | 1–2 * | 0–2 * (4) | 1 * | 2–3 | |||
2014/15 | El Niño | CP | 0 * | 4 * | 4–5 | 1–2 * | 0 * (2–3) | |||
2015/16 | El Niño | EP | 1–2 * | 4 * | 0–4 | 1–2 * | ||||
2017/18 | La Niña | EP | 4–5 | 1–2 | ||||||
2018/19 | El Niño | CP | 0 * (0–1) | |||||||
2019/20 | El Niño | CP | 1 * | 5 | 0–1 | |||||
2020/21 | La Niña | EP | 0 * | |||||||
2021/22 | La Niña | CP | 0 | 0 * |
References
- Bonino, G.; Di Lorenzo, E.; Masina, S.; Iovino, D. Interannual to decadal variability within and across the major Eastern Boundary Upwelling Systems. Sci. Rep. 2019, 9, 19949. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Christensen, V. Primary production sustain global fisheries. Nature 1995, 347, 255–257. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 2015, 134, 1–18. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Wu, W.; Zhai, F.; Gu, Y.; Liu, C.; Li, P. Weak local upwelling may elevate the risks of harmful algal blooms and hypoxia in shallow waters during the warm season. Environ. Res. Lett. 2023, 18, 114031. [Google Scholar] [CrossRef]
- Villegas, N.; Málikov, I.; Díaz, D. Variabilidad mensual de la velocidad de surgencia y clorofila a en la región del Panama Bight. Rev. Mutis 2016, 6, 82–94. [Google Scholar] [CrossRef]
- Capet, X.; Estrade, P.; Machu, E.; Ndoye, S.; Grelet, J.; Lazar, A.; Marié, L.; Dausse, D.; Brehmer, P. On the dynamics of the southern Senegal upwelling center: Observed variability from synoptic to superinertial scales. J. Phys. Oceanogr. 2017, 47, 155–180. [Google Scholar] [CrossRef]
- Kämpf, J.; Doubell, M.; Griffin, D.; Matthews, R.L.; Ward, T.M. Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett. 2004, 31, 4–7. [Google Scholar] [CrossRef]
- Dang, X.; Bai, Y.; Gong, F.; Chen, X.; Zhu, Q.; Huang, H.; He, X. Different responses of phytoplankton to the ENSO in two upwelling systems of the South China Sea. Estuaries Coasts 2022, 45, 485–500. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, Z.; Lyu, Y.; Zhang, Y. Abnormal strong upwelling off the coast of southeast Vietnam in the late summer of 2016: A comparison with the case in 1998. Atmosphere 2020, 11, 940. [Google Scholar] [CrossRef]
- Rueda-Roa, D.T.; Ezer, T.; Muller-Karger, F.E. Description and mechanisms of the mid-year upwelling in the southern Caribbean Sea from remote sensing and local data. J. Mar. Sci. Eng. 2018, 6, 36. [Google Scholar] [CrossRef]
- Rueda-Roa, D.T.; Muller-Karger, F.E. The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep. Res. Part I Oceanogr. Res. Pap. 2013, 78, 102–114. [Google Scholar] [CrossRef]
- Durazo, R. Climate and upper ocean variability off Baja California, Mexico: 1997–2008. Prog. Oceanogr. 2009, 83, 361–368. [Google Scholar] [CrossRef]
- Durazo, R. Seasonality of the transitional region of the California Current System off Baja California. J. Geophys. Res. Ocean. 2015, 120, 1173–1196. [Google Scholar] [CrossRef]
- González-Silveira, A.; Santamaría-del-Ángel, E.; Camacho-Ibar, V.; López-Calderón, J.; Santander-Cruz, J.; Mercado-Santana, A. The effect of cold and warm anomalies on the phytoplankton pigment composition in waters off northern Baja California Peninsula (México). J. Mar. Sci. Eng. 2020, 8, 533. [Google Scholar] [CrossRef]
- Kahru, M.; Di Lorenzo, E.; Manzano-Sarabia, M.; Mitchell, B.G. Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current. J. Plankton Res. 2012, 34, 749–760. [Google Scholar] [CrossRef]
- Legaard, K.R.; Thomas, A.C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res. Ocean. 2006, 111, 1–21. [Google Scholar] [CrossRef]
- Herrera-Cervantes, H.; Lluch-Cota, S.E.; Lluch-Cota, D.B.; Gutiérrez-de-Velasco, G. Interannual correlations between sea surface temperature and concentration of chlorophyll pigment off Punta Eugenia, Baja California, during different remote forcing conditions. Ocean Sci. 2014, 10, 345–355. [Google Scholar] [CrossRef]
- Todd, R.E.; Rudnick, D.L.; Davis, R.E.; Ohman, M.D. Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Zaytsev, O.; Cervantes-Duarte, R.; Montante, O.; Gallegos-Garcia, A. Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. J. Oceanogr. 2003, 59, 489–502. [Google Scholar] [CrossRef]
- De la Cruz-Orozco, M.E.; Gómez-Ocampo, E.; Miranda-Bojórquez, L.E.; Cepeda-Morales, J.; Durazo, R.; Lavaniegos, B.E.; Espinosa-Carreón, T.L.; Sosa-Ávalos, R.; Aguirre-Hernández, E.; Gaxiola-Castro, G. Biomasa y producción del fitoplancton frente a la Península de Baja California: 1997–2016. Cienc. Mar. 2017, 43, 217–228. [Google Scholar] [CrossRef]
- Espinosa-Carreon, T.L.; Strub, P.T.; Beier, E.; Ocampo-Torres, F.; Gaxiola-Castro, G. Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California. J. Geophys. Res. Ocean. 2004, 109, 1–20. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Influence of the 1997-98 El Niño on the surface chlorophyll in the California Current. Geophys. Res. Lett. 2000, 27, 2937–2940. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Influence of the El Niño-La Niña cycle on satellite-derived primary production in the California Current. Geophys. Res. Lett. 2002, 29, 2–5. [Google Scholar] [CrossRef]
- Sosa-Ávalos, R.; Durazo, R.; Mitchell, B.G.; Cepeda-Morales, J.; Gaxiola-Castro, G. Parámetros fotosintéticos frente a Baja California: Una herramienta para estimar la producción primaria con datos de sensores remotos. Cienc. Mar. 2017, 43, 157–172. [Google Scholar] [CrossRef]
- Bograd, S.J.; Lynn, R.J. Physical-biological coupling in the California Current during the 1997-99 El Niño-La Niña cycle. Geophys. Res. Lett. 2001, 28, 275–278. [Google Scholar] [CrossRef]
- Capotondi, A.; Sardeshmukh, P.D.; Di Lorenzo, E.; Subramanian, A.C.; Miller, A.J. Predictability of US west coast ocean temperatures is not solely due to ENSO. Sci. Rep. 2019, 9, 10993. [Google Scholar] [CrossRef] [PubMed]
- Checkley, D.M.; Barth, J.A. Patterns and processes in the California Current System. Prog. Oceanogr. 2009, 83, 49–64. [Google Scholar] [CrossRef]
- Sung, M.K.; Kim, B.M.; An, S.I. Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Clim. Dyn. 2014, 42, 159–170. [Google Scholar] [CrossRef]
- Patricola, C.M.; O’Brien, J.P.; Risser, M.D.; Rhoades, A.M.; O’Brien, T.A.; Ullrich, P.A.; Stone, D.A.; Collins, W.D. Maximizing ENSO as a source of western US hydroclimate predictability. Clim. Dyn. 2020, 54, 351–372. [Google Scholar] [CrossRef]
- Jacox, M.G.; Fiechter, J.; Moore, A.M.; Edwards, C.A. ENSO and the California Current coastal upwelling response. J. Geophys. Res. Ocean. 2015, 120, 1691–1702. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Takahashi, K.; Montecinos, A.; Goubanova, K.; Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Xu, T.; Zhao, Y.; Newman, M.; Capotondi, A.; Stevenson, S.; Amaya, D.J.; Anderson, B.T.; Ding, R.; Furtado, J.C.; et al. Modes and mechanisms of Pacific decadal-scale variability. Ann. Rev. Mar. Sci. 2023, 15, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Okumura, Y.M. ENSO diversity from an atmospheric perspective. Curr. Clim. Change Rep. 2019, 5, 245–257. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Stuecker, M.F.; Turner, A.G.; Jin, F.F.; Geng, X. Impact of ENSO longitudinal position on teleconnections to the NAO. Clim. Dyn. 2018, 52, 257–274. [Google Scholar] [CrossRef]
- Gutiérrez-Cárdenas, G.S.; Díaz, D.C. El Niño-Southern Oscillation diversity and its relationship with the North Atlantic Oscillation—Atmospheric anomalies response over the North Atlantic and the Pacific. Atmosfera 2024, 38, 129–149. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Ocean warming on North Atlantic tropical cyclones. Science 2009, 77, 77–80. [Google Scholar] [CrossRef]
- Beltrán, L.; Díaz, D.C. Oscilaciones macroclimáticas que afectan la oferta hídrica en la Cuenca del Río Gachaneca; Boyacá-Colombia. Rev. Bras. Meteorol. 2020, 35, 171–185. [Google Scholar] [CrossRef]
- Navarro-Monterroza, E.; Arias, P.A.; Vieira, S.C. El Niño/Southern Oscillation Modoki and its effects on the spatiotemporal variability of precipitation in Colombia. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2019, 43, 120–132. [Google Scholar] [CrossRef]
- Salas, H.D.; Poveda, G.; Mesa, Ó.J.; Marwan, N. Generalized synchronization between ENSO and hydrological variables in Colombia: A recurrence quantification approach. Front. Appl. Math. Stat. 2020, 6, 3. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Cavalcanti, I.F.A.; Grimm, A.M. Influences of two types of ENSO on South American precipitation. Int. J. Climatol. 2013, 33(6), 1382–1400. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.; Rodrigues, R.; Taschetto, A.; Garreaud, R.; Dewitte, B.; Germán, P.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño—Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Li, Y.; Lau, N.C. Impact of ENSO on the atmospheric variability over the North Atlantic in late winter-role of transient eddies. J. Clim. 2012, 25, 320–342. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, B.; Qi, L.; He, J. Impacts of two types of La Niña on the NAO during boreal winter. Clim. Dyn. 2015, 44, 1351–1366. [Google Scholar] [CrossRef]
- Chen, M.; Yu, J.-Y.; Wang, X.; Jiang, W. The Changing impact mechanisms of a diverse El Niño on the western Pacific Subtropical high. Geophys. Res. Lett. 2019, 46, 956–962. [Google Scholar] [CrossRef]
- Racault, M.F.; Sathyendranath, S.; Brewin, R.J.W.; Raitsos, D.E.; Jackson, T.; Platt, T. Impact of El Niño variability on oceanic phytoplankton. Front. Mar. Sci. 2017, 4, 133. [Google Scholar] [CrossRef]
- Lehodey, P.; Bertrand, A.; Hobday, A.J.; Kiyofuji, H.; McClatchie, S.; Menkès, C.E.; Pilling, G.; Polovina, J.; Tommasi, D. ENSO Impact on Marine Fisheries and Ecosystems. Chapter 19. In El Niño Southern Oscillation in a Changing Climate; McPhaden, M.J., Santoso, A., Cai, W., Eds.; AGU Publications: Washington, DC, USA, 2020; pp. 429–451. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Kao, H.-Y.; Lee, T. Subtropics-related interannual sea surface temperature variability in the central Equatorial Pacific. Am. Meteorol. Soc. 2010, 23, 2869–2884. [Google Scholar] [CrossRef]
- Wang, X.; Guan, C.; Xin, R.; Wei, H.; Wang, L. The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Clim. Dyn. 2019, 52, 6585–6597. [Google Scholar] [CrossRef]
- Amaya, D.J. The Pacific Meridional Mode and ENSO: A Review. Curr. Clim. Change Rep. 2019, 5, 296–307. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; An, S. Il Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Lee, T.; McPhaden, M.J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- López-Aviles, B.; Beier, E.; Duran, R.; Gómez-Valdés, J.; Castro, R.; Sánchez-Velasco, L. The California Current System off Baja California Sur. Prog. Oceanogr. 2024, 222, 103225. [Google Scholar] [CrossRef]
- Kurczyn, J.A.; Beier, E.; Lavín, M.F.; Chaigneau, A. Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: Statistical characterization from satellite altimetry. J. Geophys. Res. Ocean. 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Espinosa-Carreón, T.L.; Gaxiola-Castro, G.; Beier, E.; Strub, P.T.; Kurczyn, J.A. Effects of mesoscale processes on phytoplankton chlorophyll off Baja California. J. Geophys. Res. Ocean. 2012, 117, C04005. [Google Scholar] [CrossRef]
- Castro, R.; Martínez, J.A. Variabilidad espacial y temporal del campo de viento. Dinámica del ecosistema pelágico frente a Baja California. In Dinámica del Ecosistema Pelágico Frente a Baja California 1997–2007, Diez años de investigaciones mexicanas de la Corriente de California; Gaxiola-Castro, G., Durazo, R., Eds.; Centro de Investigaciones Científicas y de Educación Superior de Ensenada: UABC; SEMARNAT: Instituto Nacional de Ecología: Ensenada, Mexico, 2010; pp. 129–147. ISBN 978-607-7908-30-2. [Google Scholar]
- Vazquez, H.J.; Gomez-Valdes, J. Wind events in a subtropical coastal upwelling region as detected by admittance analysis. Ocean Dyn. 2021, 71, 631. [Google Scholar] [CrossRef]
- Sullivan, A.; Luo, J.J.; Hirst, A.C.; Bi, D.; Cai, W.; He, J. Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Sci. Rep. 2016, 6, 38540. [Google Scholar] [CrossRef]
- Santamaría-del-Ángel, E.; Sebastia-Frasquet, M.T.; González-Silveira, A.; Aguilar-Maldonado, J.; Mercado-Santana, A.; Herrera-Carmona, J.C. Uso potencial de las anomalías estandarizadas en la interpretación de fenómenos oceanográficos globales a escalas locales. In Tópicos de Agenda para la Sostenibilidad de Costas y Mares Mexicanos; Rivera-Arriaga, E., Sánchez-Gil, P., Gutiérrez, J., Eds.; Red RICOMAR; Universidad Autónoma de Campeche: Campeche, Mexico, 2019; pp. 193–211. ISBN 978-607-844-57-1. [Google Scholar]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Ray, S.; Swain, D. A systematic method of estimation of alongshore windstress and Ekman transport associated with coastal upwelling. MethodsX 2023, 10, 102186. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.E.; Emery, W.J. Data Analysis in Physical Oceanography, 3rd ed.; Elsevier: Oxford, UK, 2014; ISBN 9780123877826. [Google Scholar]
- Díaz, D.; Villegas, N. Wavelet coherence between ENSO indices and two precipitation databases for the Andes region of Colombia. Atmosfera 2022, 35, 237–271. [Google Scholar] [CrossRef]
- Das, J.; Jha, S.; Goyal, M.K. On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: Wavelet & global coherence approaches. Atmos. Res. 2020, 238, 104889. [Google Scholar] [CrossRef]
- Veleda, D.; Montagne, R.; Araujo, M. Cross-wavelet bias corrected by normalizing scales. Am. Meteorol. Soc. 2012, 29, 1401–1408. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear analysis of multivariate geoscientific data—Advanced methods, theory and application. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79(1), 61–78. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel, L.; et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 2017, 8, 6–13. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.-S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S.; et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Linacre, L.; Durazo, R.; Hernández-Ayón, J.M.; Delgadillo-Hinojosa, F.; Cervantes-Díaz, G.; Lara-Lara, J.R.; Camacho-Ibar, V.; Siqueiros-Valencia, A.; Bazán-Guzmán, C. Temporal variability of the physical and chemical water characteristics at a coastal monitoring observatory: Station ENSENADA. Cont. Shelf Res. 2010, 30, 1730–1742. [Google Scholar] [CrossRef]
- McPhaden, M.J. Evolution of the 2002/03 El Niño. Am. Meteorol. Soc. 2004, 85(5), 677–695. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W.; Yu, B.; Wu, R.; Graf, H.F.; Chen, L. Enhanced impact of the Aleutian Low on increasing the Central Pacific ENSO in recent decades. npj Clim. Atmos. Sci. 2023, 6, 29. [Google Scholar] [CrossRef]
- Anderson, B.T.; Perez, R.C.; Karspeck, A. Triggering of El Niño onset through trade wind—Induced charging of the equatorial Pacific. Geophys. Res. Lett. 2013, 40, 1212–1216. [Google Scholar] [CrossRef]
- Schwing, F.B.; Murphree, T.; Green, P.M. The evolution of oceanic and atmospheric anomalies in the northeast Pacific during El Niño and La Niña events of 1995-2001. Prog. Oceanogr. 2002, 54, 459–491. [Google Scholar] [CrossRef]
- Xie, S.P. A Dynamic ocean—atmosphere model of the Tropical Atlantic decadal variability. J. Clim. 1999, 12, 64–70. [Google Scholar] [CrossRef]
- Hartman, D. Pacific sea surface temperature and winter of 2014. Geophys. Res. Lett. 2015, 42, 1894–1902. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W.; Wu, R.; Yu, B.; Graf, H.F. Potential impact of preceding Aleutian low variation on El Niño–Southern oscillation during the following winter. J. Clim. 2020, 33, 3061–3077. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S. Kosaka Physical drivers of the summer 2019 North Pacific marine heathwave. Nat. Commun. 2019, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, E.; Combes, V.; Keister, J.E.; Strub, P.T.; Thomas, A.C.; Franks, P.J.S.; Ohman, M.D.; Furtado, J.C.; Bracco, A.; Bograd, S.J.; et al. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 2013, 26, 68–81. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112, 1–27. [Google Scholar] [CrossRef]
- Zhao, J.; Kug, J.; Park, J.-H.; An, S.I. Diversity of North Pacific meridional mode and its distinct impacts on El Niño-Southern Oscillation. Geophys. Res. Lett. 2020, 47, e2020GL088993. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Yu, J.Y.; Hu, X.; Dong, W.; He, S. El Niño-Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev. 2018, 5, 840–857. [Google Scholar] [CrossRef]
- Rogers, J.C. The North Pacific oscillation. J. Climatol. 1981, 1, 39–57. [Google Scholar] [CrossRef]
- Vimont, D.J.; Wallace, J.M.; Battisti, D.S. The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Clim. 2003, 16, 2668–2675. [Google Scholar] [CrossRef]
- Vimont, D.J.; Battisti, D.S.; Hirts, A.C. Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 2001, 28, 3923–3926. [Google Scholar] [CrossRef]
El Niño | La Niña | |
---|---|---|
EP | 1997/98, 2015/16 | 1996/97, 2017/18, 2021/22 |
CP | 1994/95, 2002/03, 2004/05, 2009/10, 2014/15, 2018/19, 2019/20 | 1998/99, 1999/00, 2000/01, 2007/08, 2008/09, 2010/11, 2011/12, 2020/21 |
Region | Upwelling Center | Long Term Mean (m s−1) | Standard Deviation | Month (Minimum Value) |
---|---|---|---|---|
Bahía Magdalena | Isla Santa Margarita | −3.82 × 10−9 | 1.82 × 10−9 | June (−5.58 × 10−9) |
Puerto Magdalena | −4.18 × 10−9 | 1.96 × 10−9 | June (−5.94 × 10−9) | |
Punta Eugenia | San Pablo | −2.34 × 10−9 | 0.97 × 10−9 | April (−3.43 × 10−9) |
Clambey | −3.12 × 10−9 | 1.24 × 10−9 | April (−4.71 × 10−9) | |
North of Punta Eugenia | María | −1.95 × 10−9 | 0.79 × 10−9 | April (−2.85 × 10−9) |
Punta Prieta | −3.38 × 10−9 | 1.35 × 10−9 | April (−4.85 × 10−9) | |
Ensenada | San Antonio del Mar | −1.85 × 10−10 | 4.13 × 10−10 | December (−1.98 × 10−9) |
La Bocana | −4.21 × 10−10 | 2.73 × 10−10 | December (−1.37 × 10−9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Cárdenas, G.S.; Morales-Acuña, E.; Tenorio-Fernández, L.; Gómez-Gutiérrez, J.; Cervantes-Duarte, R.; Aguíñiga-García, S. El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response. J. Mar. Sci. Eng. 2024, 12, 1061. https://doi.org/10.3390/jmse12071061
Gutiérrez-Cárdenas GS, Morales-Acuña E, Tenorio-Fernández L, Gómez-Gutiérrez J, Cervantes-Duarte R, Aguíñiga-García S. El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response. Journal of Marine Science and Engineering. 2024; 12(7):1061. https://doi.org/10.3390/jmse12071061
Chicago/Turabian StyleGutiérrez-Cárdenas, Gabriel Santiago, Enrique Morales-Acuña, Leonardo Tenorio-Fernández, Jaime Gómez-Gutiérrez, Rafael Cervantes-Duarte, and Sergio Aguíñiga-García. 2024. "El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response" Journal of Marine Science and Engineering 12, no. 7: 1061. https://doi.org/10.3390/jmse12071061
APA StyleGutiérrez-Cárdenas, G. S., Morales-Acuña, E., Tenorio-Fernández, L., Gómez-Gutiérrez, J., Cervantes-Duarte, R., & Aguíñiga-García, S. (2024). El Niño–Southern Oscillation Diversity: Effect on Upwelling Center Intensity and Its Biological Response. Journal of Marine Science and Engineering, 12(7), 1061. https://doi.org/10.3390/jmse12071061