Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. TP Summer Precipitation Anomalies during Different Types of ENSOs
3.2. Circulation and Moisture Anomalies Associated with Different Types of ENSOs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteor. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Son, J.H.; Seo, K.H.; Wang, B. How does the Tibetan Plateau dynamically affect downstream monsoon precipitation? Geophys. Res. Lett. 2020, 47, e2020GL090543. [Google Scholar] [CrossRef]
- Hu, J.; Duan, A. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon. Clim. Dym. 2015, 45, 2697–2711. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, B.; Bao, Q.; Duan, A.; Jin, F.-F. Thermal Controls on the Asian Summer Monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y.; Zhang, Q.; Duan, A.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Liang, X. The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35, L20815. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Chen, X.; You, Q. Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season. J. Clim. 2017, 30, 8973–8985. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.; Song, Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon. J. Meteorol. Soc. Japan. Ser. II 1992, 70, 319–351. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Zhou, T. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. 2012, 117, D20114. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Yang, S.; Lau, N.-C.; Duan, A. Teleconnection between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau. J. Clim. 2018, 31, 6433–6444. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.-Y. Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Clim. 2001, 14, 2896–2909. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H. Influences of spring land surface thermal anomalies over West Asia on Indian early Summer Monsoon activity and its pathway. J. Clim. 2022, 35, 6051–6074. [Google Scholar] [CrossRef]
- Jiang, X.; Ting, M. A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J. Clim. 2017, 30, 9607–9620. [Google Scholar] [CrossRef]
- Dong, W.; Lin, Y.; Wright, J.S.; Ming, Y.; Xie, Y.; Wang, B.; Luo, Y.; Huang, W.; Huang, J.; Wang, L.; et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun. 2016, 7, 10925. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Duan, A.; Wu, G. Interannual variability of late-spring circulation and diabatic heating over the Tibetan Plateau associated with Indian Ocean forcing. Adv. Atmos. Sci. 2018, 35, 927–941. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Li, S. Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 3534–3544. [Google Scholar] [CrossRef]
- Li, F.; Wang, B.; He, Y.; Huang, W.; Xu, S.; Liu, L.; Liu, J.; Li, L. Important role of North Atlantic air–sea coupling in the interannual predictability of summer precipitation over the eastern Tibetan Plateau. Clim. Dym. 2021, 56, 1433–1448. [Google Scholar] [CrossRef]
- Hu, S.; Wu, B.; Zhou, T.; Yu, Y. Dominant anomalous circulation patterns of Tibetan Plateau summer climate generated by ENSO-forced and ENSO-independent teleconnections. J. Clim. 2022, 35, 1679–1694. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Z. Quasi-3-yr cycle of rainy season precipitation in Tibet related to different types of ENSO during 1981–2015. J. Meteorol. Res.-Prc. 2018, 32, 181–190. [Google Scholar] [CrossRef]
- Yang, X.; Yao, T.; Deji; Zhao, H.; Xu, B. Possible ENSO Influences on the Northwestern Tibetan Plateau Revealed by Annually Resolved Ice Core Records. J. Geophys. Res. Atmos. 2018, 123, 3857–3870. [Google Scholar] [CrossRef]
- Choudhury, D.; Nath, D.; Wen, C. The role of surface air temperature over the east Asia on the early and late Indian Summer Monsoon Onset over Kerala. Sci. Rep. 2019, 9, 11756. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Nath, D.; Chen, W. The modulation of Indian summer monsoon onset processes during ENSO through equatorward migration of the subtropical jet stream. Clim. Dym. 2021, 57, 141–152. [Google Scholar] [CrossRef]
- Xue, X.; Chen, W. Distinguishing interannual variations and possible impacted factors for the northern and southern mode of South Asia high. Clim. Dym. 2019, 53, 4937–4959. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Rong, X.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dym. 2014, 43, 1257–1269. [Google Scholar] [CrossRef]
- Xie, S.-P.; Kosaka, Y.; Du, Y.; Hu, K.; Chowdary, J.S.; Huang, G. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Zhou, Z.-Q. Seasonal modulations of El Niño–related atmospheric variability: Indo–western Pacific Ocean feedback. J. Clim. 2017, 30, 3461–3472. [Google Scholar] [CrossRef]
- Ren, Q.; Zhou, C.; He, J.; Cen, S.; Deng, M. Impact of preceding Indian Ocean sea surface temperature anomaly on water vapor content over the Tibetan Plateau moist pool in summer and its possible reason. Chin. J. Atmos. Sci. 2017, 41, 648–658. (In Chinese) [Google Scholar] [CrossRef]
- Dong, N.; Xu, X.; Cai, W.; Zhao, T.; Sun, C. Comprehensive effects of interdecadal change of sea surface temperature increase in the Indo-Pacific Ocean on the warming-wetting of the Qinghai–Tibet Plateau. Sci. Rep. 2022, 12, 22306. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.C.H.; Sobel, A.H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Clim. 2002, 15, 2616–2631. [Google Scholar] [CrossRef]
- Peng, L.; Sun, Z.; Ni, D.; Chen, H.; Tan, G. Interannual variation of summer South Asia high and its association with ENSO. Chin. J. Atmos. Sci. 2009, 33, 783–795. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K.M. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Song, Y.; Zhu, S.; Zhou, B.; Zhang, J. Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over Northern China. J. Clim. 2021, 34, 5999–6021. [Google Scholar] [CrossRef]
- Cherchi, A.; Navarra, A. Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Clim. Dym. 2013, 41, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Zhou, T.; Wu, B. Impact of developing ENSO on Tibetan Plateau summer rainfall. J. Clim. 2021, 34, 3385–3400. [Google Scholar] [CrossRef]
- Wu, R.; Hu, Z.Z.; Kirtman, B.P. Evolution of ENSO-related rainfall anomalies in East Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Yang, S.; Yang, K.; Chen, J. Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime Continent. J. Clim. 2016, 29, 121–138. [Google Scholar] [CrossRef]
- Jin, R.; Wu, Z.; Zhang, P. Tibetan Plateau capacitor effect during the summer preceding ENSO: From the Yellow River climate perspective. Clim. Dym. 2017, 51, 57–71. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, Y.; Wang, B.; Yao, T.; Yang, K.; Zhang, X.; Zhai, J.; Ma, N. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.Y.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res.-Oceans 2007, 112, C11007. [Google Scholar] [CrossRef]
- Kao, H.-Y.; Yu, J.-Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.-Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteor. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.-L.; Jin, F.-F. Niño indices for two types of ENSO. Geophys. Res. Lett. 2011, 38, L04704. [Google Scholar] [CrossRef]
- Feng, J.; Li, J. Contrasting impacts of two types of ENSO on the boreal spring Hadley Circulation. J. Clim. 2013, 26, 4773–4789. [Google Scholar] [CrossRef]
- Karori, M.A.; Li, J.; Jin, F.-F. The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J. Clim. 2013, 26, 4567–4582. [Google Scholar] [CrossRef]
- Hu, C.D.; Yang, S.; Wu, Q.G.; Li, Z.N.; Chen, J.W.; Deng, K.Q.; Zhang, T.T.; Zhang, C.Y. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 2016, 7, 11721. [Google Scholar] [CrossRef] [Green Version]
- Beyene, M.T.; Jain, S. North American wintertime temperature anomalies: The role of El Niño diversity and differential teleconnections. Clim. Dym. 2017, 50, 4365–4377. [Google Scholar] [CrossRef]
- Wu, R.; Chen, J.; Chen, W. Different types of ENSO influences on the Indian summer monsoon variability. J. Clim. 2012, 25, 903–920. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.-F.; Turner, A. Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, J.; Zheng, F.; Xie, F.; Sun, C. Contrasting impacts of developing phases of two types of El Niño on southern China rainfall. J. Meteorol. Soc. Japan. Ser. II 2016, 94, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.-L.; Lu, B.; Wan, J.; Tian, B.; Zhang, P. Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteorol. Res.-Prc. 2018, 32, 923–936. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, B.; Qi, L.; He, J. Impacts of two types of La Niña on the NAO during boreal winter. Clim. Dym. 2015, 44, 1351–1366. [Google Scholar] [CrossRef]
- Chen, D.K.; Lian, T.; Fu, C.B.; Cane, M.A.; Tang, Y.M.; Murtugudde, R.; Song, X.S.; Wu, Q.Y.; Zhou, L. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci. 2015, 8, 339–345. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, Y.L.; Jin, F.F.; Stuecker, M.F.; Turner, A.G. Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett. 2015, 42, 8570–8576. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, C.Z. Different impacts of various El Niño events on the Indian Ocean Dipole. Clim. Dym. 2014, 42, 991–1005. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-SURFACE Precipitation from Rain-Gauges Built on GTS-Based and Historic Data; Global Precipitation Climatology Centre: Offenbach am Main, Germany, 2011. [CrossRef]
- Wu, J.; Gao, X.-J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteor. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteor. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Quart. J. R. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Wang, L.; Chen, W.; Feng, J.; Liu, Y. Structural changes in the Pacific–Japan Pattern in the late 1990s. J. Clim. 2019, 32, 607–621. [Google Scholar] [CrossRef]
- Nitta, T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Jpn. 1987, 65, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.H.; Li, W.J. Influence and physical mechanism of heat source anomaly over the tropical western Pacific on the subtropical high over East Asia. Chin. J. Atmos. Sci. 1988, 12, 107–116. (In Chinese) [Google Scholar] [CrossRef]
- Yim, S.-Y.; Jhun, J.-G.; Yeh, S.-W. Decadal change in the relationship between east Asian–western North Pacific summer monsoons and ENSO in the mid-1990s. Geophys. Res. Lett. 2008, 35, L20711. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Lin, R.; Zheng, F.; Dong, X. ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models. Adv. Atmos. Sci. 2018, 35, 495–506. [Google Scholar] [CrossRef]
- Dong, X.; Xue, F. Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century. Adv. Atmos. Sci. 2016, 33, 330–338. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.R.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N.; et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ren, H.-L.; Xu, X.; Huang, B.; Wu, J.; Liu, J. Seasonal-interannual predictions of summer precipitation over the Tibetan Plateau in North American Multimodel Ensemble. Geophys. Res. Lett. 2022, 49, e2022GL100294. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Yang, S.; Shu, J.; He, G. Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau. Clim. Dym. 2015, 45, 3091–3102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Ren, H.-L.; Wang, R.; Ma, J.; Mao, X. Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation. Remote Sens. 2023, 15, 4030. https://doi.org/10.3390/rs15164030
Liu M, Ren H-L, Wang R, Ma J, Mao X. Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation. Remote Sensing. 2023; 15(16):4030. https://doi.org/10.3390/rs15164030
Chicago/Turabian StyleLiu, Minghong, Hong-Li Ren, Run Wang, Jieru Ma, and Xin Mao. 2023. "Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation" Remote Sensing 15, no. 16: 4030. https://doi.org/10.3390/rs15164030
APA StyleLiu, M., Ren, H. -L., Wang, R., Ma, J., & Mao, X. (2023). Distinct Impacts of Two Types of Developing El Niño–Southern Oscillations on Tibetan Plateau Summer Precipitation. Remote Sensing, 15(16), 4030. https://doi.org/10.3390/rs15164030