Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = EMI technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6229 KiB  
Article
Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform
by Jingwen Yang, Demi Ai and Duluan Zhang
Buildings 2025, 15(15), 2616; https://doi.org/10.3390/buildings15152616 - 23 Jul 2025
Abstract
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. [...] Read more.
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. In this approach, the EMA signals of arranged piezoelectric ceramic (PZT) patches were successively measured at initial undamaged and post-damaged states, and the signals were decomposed and processed using the DWT technique to derive indicators including the wavelet energy, the variance, the mean, and the entropy. Then these indicators, incorporated with traditional ones including root mean square deviation (RMSD), baseline-changeable RMSD named RMSDk, correlation coefficient (CC), and mean absolute percentage deviation (MAPD), were processed by a support vector machine (SVM) model, and finally damage type could be automatically classified and identified. To validate the approach, experiments on a full-scale reinforced concrete (RC) slab and application to a practical tunnel segment RC slab structure instrumented with multiple PZT patches were conducted to classify severe transverse cracking and minor crack/impact damages. Experimental and application results cogently demonstrated that the proposed DWT-based approach can precisely classify different types of damage on concrete structures with higher accuracy than traditional ones, highlighting the potential of the DWT-decomposed EMA signatures for damage characterization in concrete infrastructure. Full article
Show Figures

Figure 1

12 pages, 1275 KiB  
Article
Performance of G3-PLC Channel in the Presence of Spread Spectrum Modulated Electromagnetic Interference
by Waseem ElSayed, Amr Madi, Piotr Lezynski, Robert Smolenski and Paolo Crovetti
Signals 2025, 6(3), 33; https://doi.org/10.3390/signals6030033 - 17 Jul 2025
Viewed by 166
Abstract
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used [...] Read more.
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used to mitigate the EMI peaks generated from the power converters. Consequently, the performance of the nearby communication systems is affected under the presence of EMI, which is not covered in many situations. In this paper, the behavior of the G3 Power Line Communication (PLC) channel is evaluated in terms of the Shannon–Hartley equation in the presence of SS-modulated EMI from a buck converter. The SS-modulation technique used is the Random Carrier Frequency Modulation with Constant Duty cycle (RCFMFD). Moreover, The analysis is validated by experimental results obtained with a test setup reproducing the parasitic coupling between the PLC system and the power converter. Full article
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 265
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

29 pages, 2673 KiB  
Review
Pulse-Width Modulation Approaches for Efficient Harmonic Suppression
by Wojciech Wojtkowski and Rafał Kociszewski
Electronics 2025, 14(13), 2651; https://doi.org/10.3390/electronics14132651 - 30 Jun 2025
Viewed by 236
Abstract
Pulse-width modulation (PWM) and pulse-density modulation (PDM) are widely used in applications where electrical energy is delivered in a pulsed manner. Typical examples include LED (light-emitting diode) control, DC motor control, switched-mode power supplies (SMPS), and electric heating control. However, the pulsed operation [...] Read more.
Pulse-width modulation (PWM) and pulse-density modulation (PDM) are widely used in applications where electrical energy is delivered in a pulsed manner. Typical examples include LED (light-emitting diode) control, DC motor control, switched-mode power supplies (SMPS), and electric heating control. However, the pulsed operation of power switches is often associated with significant electromagnetic interference (EMI). As an alternative, stochastic pulse-density modulation (SPDM), also referred to as stochastic signal density modulation (SSDM), can be considered. This technique distributes the energy of generated harmonics over a broader frequency spectrum, thereby reducing the amplitude of individual frequency components. As a result, unwanted frequencies become easier to filter out, mitigating EMI more effectively. Full article
(This article belongs to the Special Issue Electric Power Systems and Renewable Energy Sources)
Show Figures

Figure 1

20 pages, 7152 KiB  
Article
Design and Hysteresis Compensation of Novel Resistive Angle Sensor Based on Rotary Potentiometer
by Ruiqi Liu, Min Li, Jiahong Zhang and Zhengguo Han
Sensors 2025, 25(13), 4077; https://doi.org/10.3390/s25134077 - 30 Jun 2025
Viewed by 271
Abstract
Resistive angle sensors are widely used due to their simple signal conditioning circuits and high cost-effectiveness. This paper presents a resistive angle sensor based on a rotary potentiometer, designed to offer a measurement range of 180° for low-cost angle measurement in industrial automation [...] Read more.
Resistive angle sensors are widely used due to their simple signal conditioning circuits and high cost-effectiveness. This paper presents a resistive angle sensor based on a rotary potentiometer, designed to offer a measurement range of 180° for low-cost angle measurement in industrial automation and electromagnetic interference (EMI)-sensitive applications. The sensor features a specially designed signal conditioning circuit and mechanical housing. Experimental results show that it exhibits excellent linearity and temperature stability over a wide temperature range of −20 °C to 60 °C, with a zero-temperature drift of approximately 0.004°/°C. For the nonlinearity and hysteresis caused by unavoidable friction and manufacturing tolerances between the transmission mechanism and rotary potentiometer, an adaptive linear neuron (ADALINE) technique based on the α-least mean square (α-LMS) algorithm was implemented for software compensation. The results show that the percentage nonlinearity error was reduced from the original 4.413% to 0.182%, and the percentage hysteresis error was decreased from the original 4.061% to 0.404%. The research results of this paper offer valuable insight for high-precision resistive angle sensors. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

25 pages, 3882 KiB  
Article
Graphene Nanoplatelets Reinforced ABS Nanocomposite Films by Sonication-Assisted Cast Film Technique for Emission Shielding Application
by Mohammed Iqbal Shueb, Noraiham Mohamad, Syarfa Zahirah Sapuan, Yee See Khee, Dewi Suriyani Che Halin, Andrei Victor Sandu and Petrica Vizureanu
Materials 2025, 18(11), 2645; https://doi.org/10.3390/ma18112645 - 5 Jun 2025
Viewed by 574
Abstract
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced [...] Read more.
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced with graphene nanoplatelets (GNPs), offering a promising solution to this growing challenge. A persistent issue in incorporating GNPs into the ABS matrix is their poor wettability, which impedes uniform dispersion. To overcome this, a sonication-assisted casting technique was employed, enabling effective integration of GNPs at loadings of 1, 3, and 5 wt%. The resulting nanocomposite films exhibit uniform dispersion and enhanced functional properties. Comprehensive characterization using FESEM, UV-Vis spectroscopy, TGA, DSC, FTIR, and dielectric/EMI analyses revealed significant improvements in thermal stability, UV absorption, and dielectric behavior. Notably, the films demonstrated moderate EMI shielding effectiveness, reaching 0.0064 dB at 4 MHz. These findings position the developed GNP-reinforced ABS nanocomposites as promising candidates for advanced applications in the automotive, aerospace, and electronics industries. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

16 pages, 3490 KiB  
Review
GaN Power Transistors in Converter Design Techniques
by Piotr J. Chrzan and Pawel B. Derkacz
Energies 2025, 18(11), 2890; https://doi.org/10.3390/en18112890 - 30 May 2025
Viewed by 742
Abstract
The expected outstanding performance of GaN-based transistors in power applications, characterized by high switching frequency, efficiency, and compactness, requires that the design rules of converter layout optimization, filtering, and shielding need to be reexamined. Addressing the above topics, this paper reviews commercial GaN [...] Read more.
The expected outstanding performance of GaN-based transistors in power applications, characterized by high switching frequency, efficiency, and compactness, requires that the design rules of converter layout optimization, filtering, and shielding need to be reexamined. Addressing the above topics, this paper reviews commercial GaN power transistors and specifies their integration techniques, including printed circuit board (PCB) embedded solutions. Then, referring to the optimization results of a half-bridge inverter leg, design techniques are presented that reduce the harmful effect of inductive and capacitive internal converter couplings, thus mitigating the electromagnetic interference (EMI) conducted emissions. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

32 pages, 2219 KiB  
Article
Intelligent Health Monitoring in 6G Networks: Machine Learning-Enhanced VLC-Based Medical Body Sensor Networks
by Bilal Antaki, Ahmed Hany Dalloul and Farshad Miramirkhani
Sensors 2025, 25(11), 3280; https://doi.org/10.3390/s25113280 - 23 May 2025
Cited by 1 | Viewed by 995
Abstract
Recent advances in Artificial Intelligence (AI)-driven wireless communication are driving the adoption of Sixth Generation (6G) technologies in crucial environments such as hospitals. Visible Light Communication (VLC) leverages existing lighting infrastructure to deliver high data rates while mitigating electromagnetic interference (EMI); however, patient [...] Read more.
Recent advances in Artificial Intelligence (AI)-driven wireless communication are driving the adoption of Sixth Generation (6G) technologies in crucial environments such as hospitals. Visible Light Communication (VLC) leverages existing lighting infrastructure to deliver high data rates while mitigating electromagnetic interference (EMI); however, patient movement induces fluctuating signal strength and dynamic channel conditions. In this paper, we present a novel integration of site-specific ray tracing and machine learning (ML) for VLC-enabled Medical Body Sensor Networks (MBSNs) channel modeling in distinct hospital settings. First, we introduce a Q-learning-based adaptive modulation scheme that meets target symbol error rates (SERs) in real time without prior environmental information. Second, we develop a Long Short-Term Memory (LSTM)-based estimator for path loss and Root Mean Square (RMS) delay spread under dynamic hospital conditions. To our knowledge, this is the first study combining ray-traced channel impulse response modeling (CIR) with ML techniques in hospital scenarios. The simulation results demonstrate that the Q-learning method consistently achieves SERs with a spectral efficiency (SE) lower than optimal near the threshold. Furthermore, LSTM estimation shows that D1 has the highest Root Mean Square Error (RMSE) for path loss (1.6797 dB) and RMS delay spread (1.0567 ns) in the Intensive Care Unit (ICU) ward, whereas D3 exhibits the highest RMSE for path loss (1.0652 dB) and RMS delay spread (0.7657 ns) in the Family-Type Patient Rooms (FTPRs) scenario, demonstrating high estimation accuracy under realistic conditions. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

51 pages, 20222 KiB  
Review
Selective Notch Frequency Technology for EMI Noise Reduction in DC–DC Converters: A Review
by Yasunori Kobori, Yifei Sun and Haruo Kobayashi
Sensors 2025, 25(10), 3196; https://doi.org/10.3390/s25103196 - 19 May 2025
Viewed by 565
Abstract
This review presents our band-selective frequency technology of Electromagnetic Interference (EMI) noise spread spectrum in the DC–DC switching converter for communication devices. The DC–DC switching converter generates electromagnetic interference (EMI) noise. To comply with EMI regulations and reduce the need for bulky filters [...] Read more.
This review presents our band-selective frequency technology of Electromagnetic Interference (EMI) noise spread spectrum in the DC–DC switching converter for communication devices. The DC–DC switching converter generates electromagnetic interference (EMI) noise. To comply with EMI regulations and reduce the need for bulky filters and shielding, noise spread spectrum technology is commonly employed. However, conventional methods may allow noise to encroach upon the signal band. To address this issue, selective notch frequency technology has been developed. This technology creates notch characteristic spectrum bands, ensuring a low noise level within the received frequency range. It detects the received frequency and generates a notch band there using a switching pulse control technology. This technology employs pulse coding techniques, including pulse width coding, pulse phase coding, and a combination of pulse width and phase coding. Then, we demonstrate a technique that tunes the notch band frequency to the received signal one automatically. We review their underlying principles, theoretical analyses, and experimental results, which validate the effectiveness of the selective notch frequency technology. Also, possible applications of this technology to sensor systems are discussed. Full article
Show Figures

Figure 1

16 pages, 6812 KiB  
Article
Research on Efficient Prediction and Suppression of Electromagnetic Interference in Electric Drive Systems
by Ruoxi Tan, Shangbin Ye, Qianlei Peng, Changhong Du and Zeyan Zhou
World Electr. Veh. J. 2025, 16(4), 201; https://doi.org/10.3390/wevj16040201 - 1 Apr 2025
Viewed by 445
Abstract
Accurate prediction and efficient suppression of conducted electromagnetic interference(EMI) in electric drive systems(EDS) are achieved through an innovative technique proposed in this paper, leveraging a key path impedance characteristic model. The influence of critical components—namely; three-phase alternating current modules; motors; and insulated gate [...] Read more.
Accurate prediction and efficient suppression of conducted electromagnetic interference(EMI) in electric drive systems(EDS) are achieved through an innovative technique proposed in this paper, leveraging a key path impedance characteristic model. The influence of critical components—namely; three-phase alternating current modules; motors; and insulated gate bipolar transistor drive parameters—on EMI is meticulously analyzed by establishing a current spectrum characteristic analysis model of the critical path impedance. This study calculates current characteristic curves under varying filter parameters for interference suppression, while voltage characteristic curves are computed based on a comprehensive electric drive system model. The mapping relationship between current and voltage spectrum characteristics is scrutinized, revealing a high consistency between the model’s current spectrum curves and the conducted interference voltage spectrum. This alignment enables precise prediction of risk frequency points. Moreover, the critical path impedance model remarkably enhances computational efficiency by 87.5%, thereby facilitating an efficient evaluation and design of EMI suppression in electric drive systems. The proposed technique effectively reconciles the incompatibility between accurate EMI prediction and efficient filter circuit design. Experimental results corroborate the technique’s accuracy and reliability. This method, validated through stringent testing, holds significant practical value and broad applicability, marking a substantial advancement in the field of electromagnetic compatibility for electric drive systems. Full article
Show Figures

Figure 1

19 pages, 19542 KiB  
Article
A Programmable Gain Amplifier Featuring a High Power Supply Rejection Ratio for a 20-Bit Sigma-Delta ADC
by Wenhui Li, Daishi Tian, Hao Zhu and Qingqing Sun
Electronics 2025, 14(4), 720; https://doi.org/10.3390/electronics14040720 - 12 Feb 2025
Viewed by 951
Abstract
A programmable gain amplifier (PGA) is commonly used to optimize the input dynamic range of high-performance systems such as headphones and biomedical sensors. But PGA is rather sensitive to electromagnetic interference (EMI), which limits the precision of these systems. Many capacitor-less low-dropout regulator [...] Read more.
A programmable gain amplifier (PGA) is commonly used to optimize the input dynamic range of high-performance systems such as headphones and biomedical sensors. But PGA is rather sensitive to electromagnetic interference (EMI), which limits the precision of these systems. Many capacitor-less low-dropout regulator (LDO) schemes with high power supply rejection have been proposed to act as the independent power supply for PGA, which consumes additional power and area. This paper proposed a PGA with a high power supply rejection ratio (PSRR) and low power consumption, which serves as the analog front-end amplifier in the 20-bit sigma-delta ADC. The PGA is a two-stage amplifier with hybrid compensation. The first stage is the recycling folded cascode amplifier with the gain-boost technique, while the second stage is the class-AB output stage. The PGA was implemented in the 0.18 μm CMOS technology and achieved a 9.44 MHz unity-gain bandwidth (UGBW) and a 57.8° phase margin when driving the capacitor of 5.9 pF. An optimum figure-of-merit (FoM) value of 905.67 has been achieved with the proposed PGA. As the front-end amplifier of a high-precision ADC, it delivers a DC gain of 162.1 dB, the equivalent input noise voltage of 301.6 nV and an offset voltage of 1.61 μV. Within the frequency range below 60 MHz, the measured PSRR of ADC is below −70 dB with an effective number of bits (ENOB), namely 20 bits. Full article
Show Figures

Figure 1

32 pages, 4617 KiB  
Review
A Review of Advanced Soil Moisture Monitoring Techniques for Slope Stability Assessment
by Yongsheng Yao, Jiabin Fan and Jue Li
Water 2025, 17(3), 390; https://doi.org/10.3390/w17030390 - 31 Jan 2025
Cited by 7 | Viewed by 1746
Abstract
Slope failures caused by changes in soil moisture content have become a growing global concern, resulting in significant loss of life and economic damage. To ensure the stability of slopes, it is necessary to accurately monitor the moisture content and understand the complex [...] Read more.
Slope failures caused by changes in soil moisture content have become a growing global concern, resulting in significant loss of life and economic damage. To ensure the stability of slopes, it is necessary to accurately monitor the moisture content and understand the complex interactions between soil, water, and slope behavior. This paper provides a comprehensive overview of advanced soil moisture detection techniques for unsaturated soil slopes, including point-scale measurements and geophysical methods. It first introduces the fundamental concepts of the soil–water characteristic curve (SWCC) and its influence on the shear strength and stability of unsaturated soil slopes. It then delves into the working principles and applications of various point-scale measurement techniques, such as time-domain reflectometry (TDR), frequency-domain reflectometry (FDR), and neutron probe methods. Additionally, this paper explores the use of geophysiDear Editor: The author has checked that the name and affiliation are accuratecal methods, including ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI), for the non-invasive assessment of soil moisture conditions and slope stability monitoring. This review highlights the advantages of integrating multiple geophysical techniques, combined with traditional geotechnical and hydrological measurements, to obtain a more comprehensive understanding of the subsurface conditions and their influence on slope stability. Several case studies are presented to demonstrate the successful application of this integrated approach in various slope monitoring scenarios. The continued advancement in these areas will contribute to the development of more accurate, reliable, and widely adopted solutions for the assessment and management of slope stability risks. Full article
Show Figures

Figure 1

28 pages, 6449 KiB  
Review
A Review of Matrix Converters in Motor Drive Applications
by Annette von Jouanne, Emmanuel Agamloh and Alex Yokochi
Energies 2025, 18(1), 164; https://doi.org/10.3390/en18010164 - 3 Jan 2025
Cited by 4 | Viewed by 1673
Abstract
A matrix converter (MC) converts an AC source voltage into a variable-voltage variable-frequency AC output voltage (direct AC-AC) without an intermediate DC-link capacitance. By eliminating the traditional DC-link capacitor, MCs can achieve higher power densities and reliability when compared to conventional AC-DC-AC converters. [...] Read more.
A matrix converter (MC) converts an AC source voltage into a variable-voltage variable-frequency AC output voltage (direct AC-AC) without an intermediate DC-link capacitance. By eliminating the traditional DC-link capacitor, MCs can achieve higher power densities and reliability when compared to conventional AC-DC-AC converters. MCs also offer the following characteristics: total semiconductor solution, sinusoidal input and output currents, bidirectional power flow and controllable input power factor. This paper reviews the history, recent developments and commercialization of MCs and discusses several technical requirements and challenges, including bidirectional switches, wide bandgap (WBG) opportunities using GaN and SiC, overvoltage protection, electromagnetic interference (EMI) and ride-through in motor drive applications. MC design solutions and operation are discussed, including a comparison of control and modulation techniques as well as the detailed development of space vector modulation (SVM) to provide a deep insight into the control implementation and results. The paper concludes with compelling motor drive innovation opportunities made possible by advanced MCs including fully integrated and multiphase systems. For conventional MCs, size reductions of 30% are reported, as well as efficiencies of 98% and low input current total harmonic distortion of 3–5%. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 3586 KiB  
Review
Hair Regeneration Methods Using Cells Derived from Human Hair Follicles and Challenges to Overcome
by Ons Ben Hamida, Moon Kyu Kim, Young Kwan Sung, Min Kyu Kim and Mi Hee Kwack
Cells 2025, 14(1), 7; https://doi.org/10.3390/cells14010007 - 25 Dec 2024
Cited by 1 | Viewed by 4742
Abstract
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with [...] Read more.
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial–mesenchymal interaction (EMI). Many studies have developed and focused on various methods to optimize the EMI through in vivo and in vitro approaches for hair regeneration. The culturing of human hair mesenchymal cells resulted in the loss of trichogenicity and inductive properties of DP cells, limiting their potential application in de novo hair follicle generation in vivo. Epithelial stem cells derived from human hair follicles are challenging to isolate and culture, making it difficult to obtain enough cells for hair regeneration purposes. Mesenchymal stem cells and epithelial stem cells derived from human hair follicles lose their ability to form hair follicles during culture, limiting the study of hair follicle formation in vivo. Therefore, many attempts and methods have been developed to overcome these limitations. Here, we review the possible and necessary cell methods and techniques used for human hair follicle regeneration and the restoration of hair follicle cell inductivity in culture. Full article
Show Figures

Figure 1

16 pages, 5306 KiB  
Article
Electromagnetic Imaging for Breathing Monitoring
by Ivan Vassilyev and Zhassulan Mendakulov
Sensors 2024, 24(23), 7722; https://doi.org/10.3390/s24237722 - 3 Dec 2024
Cited by 1 | Viewed by 1583
Abstract
The search for new non-invasive methods of investigating the functioning of human internal organs is an urgent task. One of these methods for assessing the functioning of the human respiratory system is electromagnetic sensing, which is based on a significant difference in the [...] Read more.
The search for new non-invasive methods of investigating the functioning of human internal organs is an urgent task. One of these methods for assessing the functioning of the human respiratory system is electromagnetic sensing, which is based on a significant difference in the dielectric permittivity of muscle tissue and air. During breathing, when the lungs are filled with air, the dielectric permittivity of the lungs decreases, which leads to a change in the level of the electromagnetic signal passing through the body. The results of experiments on recording changes in the level of electromagnetic radiation passing through the human body performed on an experimental device consisting of eight transmitting and receiving antennas located on opposite sides of the chest have been presented in the article. The possibility of visualizing the measured “pulmonograms” in the form of dynamic two-dimensional images showing the process of filling various parts of the lungs with air has been demonstrated. Full article
(This article belongs to the Special Issue Sensors for Breathing Monitoring)
Show Figures

Figure 1

Back to TopTop