Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = EDC/NHS coupling reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2679 KiB  
Article
Comparison of Synthetic Methods and Identification of Several Artificial Antigens of Deoxynivalenol
by Li Han, Yuetao Li, Jinqing Jiang, Changzhong Liu, Jie Hou, Bo Wang and Ziliang Wang
Molecules 2023, 28(6), 2789; https://doi.org/10.3390/molecules28062789 - 20 Mar 2023
Cited by 3 | Viewed by 2175
Abstract
The purpose of this experiment was to study the design and modification of hapten molecules and artificial antigen molecules of deoxynivalenol (DON), and to compare the preparation and identification methods of four artificial antigens. According to the characteristics of the molecular structure of [...] Read more.
The purpose of this experiment was to study the design and modification of hapten molecules and artificial antigen molecules of deoxynivalenol (DON), and to compare the preparation and identification methods of four artificial antigens. According to the characteristics of the molecular structure of DON, four artificial antigen coupling methods were designed—namely, N,N′-carbonyldiimidazole (CDI), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), isobutyl chloroformate (IBCF), and N-hydroxysuccinimide (NHS)—to prepare artificial antigens and detection antigens. Through ultraviolet (UV), infrared (IR), and SDS–polyacrylamide gel electrophoresis (SDS–PAGE), along with other physical and chemical identification methods and animal immunisation, the best artificial antigen coupling method was screened. The results showed that the CDI method achieved the best effect among the synthesis methods. The titre of anti-DON polyclonal antibody (pAb) produced by animal immunisation reached 1: (6.4 × 103). The half inhibitory concentration (IC50) was 47.75 ng/mL, the cross-reaction rate with 3-acetyldeoxynivalenol (3-AcDON) was slightly higher at 35.3%, and there was no cross-reaction with other compounds; therefore, four artificial antigens were successfully prepared by using the molecular structure of DON. Through identification, the CDI method was screened as the best artificial antigen synthesis method, with the highest DON pAb titre, the best sensitivity, and the strongest specificity. This will lay a solid antigenic foundation for the preparation of better anti-DON monoclonal antibodies (mAbs) in the future. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

17 pages, 3364 KiB  
Article
Layer-by-Layer Surface Modification of Alendronate-Loaded Polyester Microparticles—Enabling Protein Immobilization
by Tomasz Urbaniak and Witold Musiał
Polymers 2022, 14(22), 4943; https://doi.org/10.3390/polym14224943 - 15 Nov 2022
Cited by 2 | Viewed by 2375
Abstract
The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, [...] Read more.
The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions. In this work, alendronate-loaded microcores of three polyesters: poly-ε-caprolactone (PCL), poly(l-lactide-co-ε-caprolactone) (PLA-co-PCL) and poly(lactic-co-glycolic acid) (PLGA) were coated with three polyelectrolyte shells composed of chitosan/heparin (CHIT/HEP), polyallylamine/heparin (PAH/HEP), and polyethyleneimine/heparin (PEI/HEP) via the layer-by-layer method. Subsequently, the feasibility of model protein immobilization on obtained shells was assessed. Electrokinetic potential measurements confirmed the possibility of deposition of all investigated coating variants, and a positive correlation between initial core ζ potential and intensity of charge alterations after deposition of subsequent layers was identified. PEI/HEP assembly was stable in physiological-like conditions, while PAH/HEP multilayers disassembled in presence of phosphate ions, and CHIT/HEP shell showed limited stability in pH 7.4. Fluorescence assays of fluorescein tagged lysozyme surface coupled via ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) click reaction with all shell variants indicated satisfying reaction efficiency. Poly-ε-caprolactone cores coated with CHIT/HEP tetralayer were selected as suitable for model IgG surface immobilization. Antibodies immobilized on the shell surface exhibited a moderate degree of affinity to fluorescent IgG binding protein. Full article
(This article belongs to the Special Issue Function of Polymers in Encapsulation Process II)
Show Figures

Graphical abstract

12 pages, 1682 KiB  
Article
A Novel Label-Free Electrochemical Immunosensor Based on a Self-Assembled Monolayer-Modified Electrode for Polychlorinated Biphenyl (PCB) in Environmental Analysis
by Samia Alsefri, Thanih Balbaied, Ibtihaj Albalawi, Hanan Alatawi and Eric Moore
Electrochem 2022, 3(3), 451-462; https://doi.org/10.3390/electrochem3030031 - 22 Aug 2022
Cited by 2 | Viewed by 3115
Abstract
PCBs (polychlorinated biphenyls) are a very large group of organic compounds that have between two and ten chlorine atoms attached to the biphenyl. These compounds have an acute impact as environmental pollutants, causing cancer and other adverse health effects in humans. It is [...] Read more.
PCBs (polychlorinated biphenyls) are a very large group of organic compounds that have between two and ten chlorine atoms attached to the biphenyl. These compounds have an acute impact as environmental pollutants, causing cancer and other adverse health effects in humans. It is therefore imperative to develop techniques for the cost-effective detection of PCBs at very low concentrations in ecosystems. In this paper, a novel label-free, indirect, competitive electrochemical immunosensor was first developed with a PCB-BSA conjugate. It is shown herein to compete with free PCBs for binding to the anti-PCB polyclonal primary antibody (IgY). Then, we used a secondary antibody to enhance the sensitivity of the sensor for the detection of PCB in a sample. It has been successfully immobilized on an 11-mercaptoundecanoic acid (11-MUA)-modified gold electrode via a carbodiimide-coupling reaction using cross-linking 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) on the electrode surface. The immunosensor was investigated by cyclic voltammetry and differential pulse voltammetry in a standard solution of [Fe(CN)6]3−/4−. A linear range of 0.011–220 ng/mL−1 and a limit of detection (LOD) of 0.11 ng/mL−1 for PCBs detection were achieved by the developed immunosensor, showing advantages over conventional assays. The novel label-free electrochemical immunosensor discussed in this paper is a solution for simple, rapid, cost-effective sample screening in a portable, disposable format. The proposed immunosensor has good sensitivity, and it can prove to be an adequate real-time monitoring solution for PCBs in soil samples or other samples. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

12 pages, 2731 KiB  
Article
Hemostatic Patches Based on Crosslinked Chitosan Films Applied in Interventional Procedures
by Moon Hyun Lee, Dae Ryeong Lee, Joon Woo Chon and Dong June Chung
Polymers 2021, 13(15), 2402; https://doi.org/10.3390/polym13152402 - 22 Jul 2021
Cited by 9 | Viewed by 3078
Abstract
In this study, we manufactured biocompatible hemostatic crosslinked chitosan (CS) patches and analyzed their physicochemical and biological properties for femoral arterial puncture applications. CS is a representative hemostatic material but has some drawbacks, such as swelling, shrinkage, and brittleness. Thus, it was crosslinked [...] Read more.
In this study, we manufactured biocompatible hemostatic crosslinked chitosan (CS) patches and analyzed their physicochemical and biological properties for femoral arterial puncture applications. CS is a representative hemostatic material but has some drawbacks, such as swelling, shrinkage, and brittleness. Thus, it was crosslinked via a 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling reaction and a nucleophilic addition reaction with citric acid (CA), glutaraldehyde (GTA), and genipin (GP) to remedy its shortcomings. The CSCA (crosslinked CS with CA/EDC), CSGTA (crosslinked CS with GTA), and CSG (crosslinked CS with GP) films showed low swelling degrees and good mechanical properties (excluding CSCA) compared with those of neat CS films. Additionally, every crosslinked CS film coated with thrombin (TB-CS) showed enhanced hemostatic ability in the whole blood clotting and activated partial thromboplastin time tests. Furthermore, the CSCA, CSGTA, and CSGP were nontoxic in an in vitro cell cytotoxicity test (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay) using L-929 mouse fibroblasts cells. Full article
(This article belongs to the Special Issue Chitosan and Chitosan Derivatives in Biomedical Applications)
Show Figures

Figure 1

15 pages, 3494 KiB  
Article
Hyaluronic Acid Functionalization with Jeffamine® M2005: A Comparison of the Thermo-Responsiveness Properties of the Hydrogel Obtained through Two Different Synthesis Routes
by Mathieu Madau, Didier Le Cerf, Virginie Dulong and Luc Picton
Gels 2021, 7(3), 88; https://doi.org/10.3390/gels7030088 - 9 Jul 2021
Cited by 9 | Viewed by 3705
Abstract
Hyaluronic acid (HA) of different molar masses (respectively 38,000, 140,000 and 1,200,000 g.mol−1) have been functionalized with a commercial poly(etheramine), Jeffamine® M2005, in order to devise physical thermo-responsive hydrogels. Two routes have been studied, involving the use of either water [...] Read more.
Hyaluronic acid (HA) of different molar masses (respectively 38,000, 140,000 and 1,200,000 g.mol−1) have been functionalized with a commercial poly(etheramine), Jeffamine® M2005, in order to devise physical thermo-responsive hydrogels. Two routes have been studied, involving the use of either water for the first one or of N,N′-Dimethylformamide (DMF), a polar aprotic solvent, for the second one. In the case of the water route, the reaction was performed using a mixture of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling reagents. The reaction was optimized while making sure no free M2005 remained in the final material, leading to M2005 grafting degrees of about 4%, which enabled the formation of hydrogels by increasing the temperature. In the case of the organic solvent route, propylphosphonic anhydride T3P® was used as a coupling reagent in DMF, resulting in a M2005 grafting degree of around 8% with better thermo-responsive properties of HA-g-M2005 compared to those obtained when the reaction was performed in water. However, the reaction systematically led to covalent cross-linking in the case of the HA, with the highest starting molar masses resulting in a very different rheological behaviour and with higher gel strength retaining thermo-responsive behaviour but being only poorly soluble in water. Full article
(This article belongs to the Special Issue Gels Horizons: From Science to Smart Materials)
Show Figures

Figure 1

22 pages, 3405 KiB  
Article
Magnetic Nanoparticles Fishing for Biomarkers in Artificial Saliva
by Arpita Saha, Hamdi Ben Halima, Abhishek Saini, Juan Gallardo-Gonzalez, Nadia Zine, Clara Viñas, Abdelhamid Elaissari, Abdelhamid Errachid and Francesc Teixidor
Molecules 2020, 25(17), 3968; https://doi.org/10.3390/molecules25173968 - 31 Aug 2020
Cited by 11 | Viewed by 5739
Abstract
Magnetic nanoparticles (MNPs) were synthesized using the colloidal co-precipitation method and further coated with silica using the Stöber process. These were functionalized with carboxylic and amine functionalities for further covalent immobilization of antibodies on these MNPs. The procedure for covalent immobilization of antibodies [...] Read more.
Magnetic nanoparticles (MNPs) were synthesized using the colloidal co-precipitation method and further coated with silica using the Stöber process. These were functionalized with carboxylic and amine functionalities for further covalent immobilization of antibodies on these MNPs. The procedure for covalent immobilization of antibodies on MNPs was developed using 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The evaluation of the efficiency of the coupling reaction was carried out by UV-vis spectrophotometry. The developed antibodies coupled to MNPs were tested for the pre-concentration of two biomarkers tumor necrosis factor alpha (TNF-α) and Interleukin-10 (IL-10). Both biomarkers were assessed in the matrix based on phosphate-buffered saline solution (PBS) and artificial saliva (AS) to carry out the demonstration of the format assay. Supernatants were used to determine the number of free biomarkers for both studies. Reduction of the nonspecific saliva protein adsorption on the surface of the complex antibodies-MNPs to levels low enough to allow the detection of biomarkers in complex media has been achieved. Full article
Show Figures

Graphical abstract

14 pages, 2768 KiB  
Article
Graphene Oxide Nanoribbons in Chitosan for Simultaneous Electrochemical Detection of Guanine, Adenine, Thymine and Cytosine
by Jiayun Zhou, Shaopei Li, Meissam Noroozifar and Kagan Kerman
Biosensors 2020, 10(4), 30; https://doi.org/10.3390/bios10040030 - 27 Mar 2020
Cited by 23 | Viewed by 6195
Abstract
Herein, graphene oxide nanoribbons (GONRs) were obtained from the oxidative unzipping of multi-walled carbon nanotubes. Covalent coupling reaction of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS) with amine functional groups (-NH2) of the chitosan natural polymer (CH) was used for [...] Read more.
Herein, graphene oxide nanoribbons (GONRs) were obtained from the oxidative unzipping of multi-walled carbon nanotubes. Covalent coupling reaction of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS) with amine functional groups (-NH2) of the chitosan natural polymer (CH) was used for entrapping GONRs on the activated glassy carbon electrode (GCE/GONRs-CH). The nanocomposite was characterized by high-resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). In addition, the modification steps were monitored using FTIR. The nanocomposite-modified electrode was used for the simultaneous electrochemical determination of four DNA bases; guanine (G), adenine (A), thymine (T) and cytosine (C). The nanocomposite-modified GCE displayed a strong, stable and continuous four oxidation peaks during electrochemistry detection at potentials 0.63, 0.89, 1.13 and 1.27 V for G, A, T and C, respectively. The calibration curves were linear up to 256, 172, 855 and 342 μM with detection limits of 0.002, 0.023, 1.330 and 0.641 μM for G, A, T and C, respectively. The analytical performance of the GCE/GONRs-CH has been used for the determination of G, A, T and C in real samples and obtained a recovery percentage from 91.1%–104.7%. Our preliminary results demonstrated that GCE/GONRs-CH provided a promising platform to detect all four DNA bases for future studies on DNA damage and mutations. Full article
Show Figures

Figure 1

11 pages, 4854 KiB  
Article
Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A3 Based on Au@Fe3O4 as Substrate
by Qingmin Wei, Jianjuan Lin, Fa Liu, Changchun Wen, Na Li, Guobao Huang and Zhihui Luo
Sensors 2019, 19(23), 5152; https://doi.org/10.3390/s19235152 - 25 Nov 2019
Cited by 7 | Viewed by 3750
Abstract
A surface-enhanced Raman scattering (SERS) tag is proposed for high-sensitivity detection of gibberellin A3 (GA3). Silver nanoparticles (AgNPs) were synthesized using citrate reduction. 4-Mercaptobenzoic acid (MBA) was used for the Raman-labeled molecules, which were coupled to the surface of the [...] Read more.
A surface-enhanced Raman scattering (SERS) tag is proposed for high-sensitivity detection of gibberellin A3 (GA3). Silver nanoparticles (AgNPs) were synthesized using citrate reduction. 4-Mercaptobenzoic acid (MBA) was used for the Raman-labeled molecules, which were coupled to the surface of the AgNPs using sulfydryls. MBA was coated with silica using the Stöber method to prevent leakage. GA3 antibodies were attached via the active functional groups N-Hydroxysuccinimide (NHS) and N-Ethyl-N’-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) to construct a novel immuno-AgNPs@SiO2 SERS tags. The captured SERS substrates were fabricated through Fe3O4 nanoparticles and gold nanoparticles (AuNPs) using chemical methods. These nanoparticles were characterized using ultraviolet-visible spectroscopy (UV–Vis), dynamic light scattering, Raman spectroscopy, transmission electron microscope (TEM), and X-ray diffraction (XRD). This immuno-AgNPs@SiO2 SERS tags has a strong SERS signal based on characterizations via Raman spectroscopy. Based on antigen-antibody reaction, the immuno-Au@Fe3O4 nanoparticles can capture the GA3 and AgNPs@SiO2 SERS tags. Due to the increasing number of captured nanoprobes, the SERS signal from MBA was greatly enhanced, which favored the sensitive detection of GA3. The linear equation for the SERS signal was y = −13635x + 202211 (R2 = 0.9867), and the limit of detection (LOD) was 10−10 M. The proposed SERS tags are also applicable for the detection of other food risk factors. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 4216 KiB  
Article
Conjugation of Urokinase to Water-Soluble Magnetic Nanoparticles for Enhanced Thrombolysis
by Qian Li, Xiaojun Liu, Zhen Lu, Wenjun Yang, Zili Lei and Ming Chang
Appl. Sci. 2019, 9(22), 4862; https://doi.org/10.3390/app9224862 - 13 Nov 2019
Cited by 5 | Viewed by 2914
Abstract
In this study, covalent conjugation of thrombolytic drug urokinase to water-soluble magnetic nanoparticles (NPs) is proposed to enhance the efficiency of thrombolysis. Hydrophobic NPs of oleic acid (OA)-coated Fe3O4 are first synthesized and then surface-modified with the amphipathic copolymer poly(maleic [...] Read more.
In this study, covalent conjugation of thrombolytic drug urokinase to water-soluble magnetic nanoparticles (NPs) is proposed to enhance the efficiency of thrombolysis. Hydrophobic NPs of oleic acid (OA)-coated Fe3O4 are first synthesized and then surface-modified with the amphipathic copolymer poly(maleic anhydride-alt-1-octadecylene) (PMAO) to form water-soluble NPs of PMAO-OA-Fe3O4 with monodispersed sizes. PMAO-OA-Fe3O4 NPs display a good water-based stability without aggregation at near neutral pH and show good magnetic separation characteristics. The thrombolytic drug urokinase is then covalently linked with the former product through dehydration condensation reaction between the amino and carboxyl produced by dehydration of the anhydride under N-Ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Transmission electron microscope (TEM) images and dynamic light scattering (DLS) results show that the urokinase@PMAO-OA-Fe3O4 NPs are uniformly dispersed in water. The in vitro thrombolytic effect based on the manipulation of magnetic coupling, combined with static and alternating current (AC) magnetic fields, in a mimic blood-vascular system was studied. Drug release test shows that AC magnetic field can be used as switch and accelerator for NPs to release drugs. In addition, thrombolytic efficiency is nearly four times that of pure urokinase. This indicates that the coupling magnetic field may be a promising method to improve thrombolytic effect of the prepared magnetic carrier drug conjugates. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles: Novel Synthesis Methods and Applications)
Show Figures

Figure 1

16 pages, 3604 KiB  
Article
The Importance of Reaction Conditions on the Chemical Structure of N,O-Acylated Chitosan Derivatives
by Agnieszka Piegat, Agata Goszczyńska, Tomasz Idzik and Agata Niemczyk
Molecules 2019, 24(17), 3047; https://doi.org/10.3390/molecules24173047 - 22 Aug 2019
Cited by 54 | Viewed by 5470
Abstract
The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the [...] Read more.
The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process. As reaction media, two diluted acid solutions—i.e., acetic acid and hydrochloric acid)—and two coupling systems—i.e., 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N–hydroxysulfosuccinimide (EDC/NHS)—were used. The chemical structure of the derivatives was studied in detail by means of two spectroscopic methods, namely infrared and nuclear magnetic resonance spectroscopy, in order to analyze the preference of the systems towards N- or O-acylation reactions, depending on the synthesis conditions used. The results obtained from advanced 1H-13C HMQC spectra emphasized the challenge of achieving a selective acylation reaction path. Additionally, the study of the molecular weight and solution behavior of the derivatives revealed that even slight changes in their chemical structure have an important influence on their final properties. Therefore, an exact knowledge of the obtained structure of derivatives is essential to achieve reaction reproducibility and to target the application. Full article
(This article belongs to the Special Issue Advances in Chitin and Chitosan Science)
Show Figures

Graphical abstract

17 pages, 3414 KiB  
Article
The Role of Orientation of Surface Bound Dihydropyrrol-2-ones (DHP) on Biological Activity
by Aditi Taunk, Renxun Chen, George Iskander, Kitty K. K. Ho, Basmah Almohaywi, David StClair Black, Mark D. P. Willcox and Naresh Kumar
Molecules 2019, 24(14), 2676; https://doi.org/10.3390/molecules24142676 - 23 Jul 2019
Cited by 7 | Viewed by 4161
Abstract
Quorum sensing (QS) signaling system is important for bacterial growth, adhesion, and biofilm formation resulting in numerous infectious diseases. Dihydropyrrol-2-ones (DHPs) represent a novel class of antimicrobial agents that inhibit QS, and are less prone to develop bacterial resistance due to their non-growth [...] Read more.
Quorum sensing (QS) signaling system is important for bacterial growth, adhesion, and biofilm formation resulting in numerous infectious diseases. Dihydropyrrol-2-ones (DHPs) represent a novel class of antimicrobial agents that inhibit QS, and are less prone to develop bacterial resistance due to their non-growth inhibition mechanism of action which does not cause survival pressure on bacteria. DHPs can prevent bacterial colonization and quorum sensing when covalently bound to substrates. In this study, the role of orientation of DHP compounds was investigated after covalent attachment by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling reaction to amine-functionalized glass surfaces via various positions of the DHP scaffold. The functionalized glass surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements and tested for their in vitro biological activity against S. aureus and P. aeruginosa. DHPs attached via the N-1 position resulted in the highest antibacterial activities against S. aureus, while no difference was observed for DHPs attached either via the N-1 position or the C-4 phenyl ring against P. aeruginosa. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

16 pages, 4617 KiB  
Article
An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer
by Kefilwe Vanessa Mokwebo, Oluwatobi Samuel Oluwafemi and Omotayo Ademola Arotiba
Sensors 2018, 18(10), 3368; https://doi.org/10.3390/s18103368 - 9 Oct 2018
Cited by 45 | Viewed by 5417
Abstract
We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous [...] Read more.
We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1–10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 μA mM−1 cm−2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule. Full article
(This article belongs to the Special Issue Development of Enzymatic Electrochemical Biosensors and Applications)
Show Figures

Figure 1

11 pages, 1766 KiB  
Article
In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor
by Yifan Dai, Alireza Molazemhosseini and Chung Chiun Liu
Biosensors 2017, 7(3), 29; https://doi.org/10.3390/bios7030029 - 20 Jul 2017
Cited by 24 | Viewed by 8092
Abstract
A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction [...] Read more.
A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction between antibody and antigen of β-amyloid 42 to the redox couple probe of K4Fe(CN)6 and K3Fe(CN)6. Differential pulse voltammetry (DPV) served as the transduction mechanism measuring the current output derived from the redox coupling reaction. The biosensor was a three-electrode electrochemical system, and the working and counter electrodes were 50 nm thin gold film deposited by a sputtering technique. The reference electrode was a thick-film printed Ag/AgCl electrode. Laser ablation technique was used to define the size and structure of the biosensor. Cost-effective roll-to-roll manufacturing process was employed in the fabrication of the biosensor, making it simple and relatively inexpensive. Self-assembled monolayers (SAM) of 3-Mercaptopropionic acid (MPA) was employed to covalently immobilize the thiol group on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N–hydroxysuccinimide (NHS) was undertaken for cross-linking antibody of β-amyloid 42 to the carboxylic groups on one end of the MPA. The antibody concentration of β-amyloid 42 used was 18.75 µg/mL. The concentration range of β-amyloid 42 in this study was from 0.0675 µg/mL to 0.5 µg/mL for both PBS and undiluted human serum. DPV measurements showed excellent response in this antigen concentration range. Interference study of this biosensor was carried out in the presence of Tau protein antigen. Excellent specificity of this β-amyloid 42 biosensor was demonstrated without interference from other species, such as T-tau protein. Full article
(This article belongs to the Special Issue Biosensors for the Detection of Biomarkers)
Show Figures

Figure 1

Back to TopTop