In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor
Abstract
:1. Introduction
2. Materials and Equipment
2.1. Reagents and Apparatus
2.2. Design and Fabrication of the Biosensor
3. Functionalization of the Biosensor
3.1. Chemical Cleaning of the Biosensor
3.2. Functionalization of the Biosensor
3.3. Differential Pulse Voltammetry (DPV) Measurement
4. Results and Discussion
4.1. Preparation of β-Amyloid 42 Antigen Solutions
4.2. Detection of β-Amyloid 42 in PBS Solution
4.3. Detection of β-Amyloid 42 in Human Serum
4.4. Interference Study of β-Amyloid 42 Sensor Against Tau Protein Antigen
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rosen, C.; Hansson, O.; Blennow, K.; Zetterberg, H. Fluid biomarkers in Alzheimer’s diseases-current concepts. Mol. Neurodegener. 2013, 8, 20. Available online: http://www.molecularneurodegeneration.com/content/8/1/20 (accessed on 1 August 2015). [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; de Leon, M.J. Zetterberg H: Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking pathophysiological process in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancer Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef]
- Hardy, J.; Higgins, G. Alzheimer’s diseases: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Golde, T.E.; Eckman, C.B.; Younkin, S.G. Biochemical detection of Aβ isoforms: Implications for pathogenesis, diagnosis and treatment of Alzheimer’s diseases. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2000, 1502, 172–187. [Google Scholar] [CrossRef]
- Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol. 2010, 43, 30–51. [Google Scholar] [CrossRef] [PubMed]
- Funke, S.A.; Birkmann, E.; Willbold, D. Detection of amyloid-beta aggregated in bodyfluids: A suitable method for early diagnosis of Alzheimer’s diseases? Curr. Alzheimer Res. 2009, 6, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sweeney, D.; Gandy, S.E.; Sisodia, S.S. The profile of soluble amyloid beta protein in cultured cell media-detection and quantification of amyloid protein and variants by immunoprecipitation mass spectrometry. J. Biol. Chem. 1996, 271, 31894–31902. [Google Scholar] [CrossRef] [PubMed]
- Haes, A.J.; Chang, L.; Klein, W.L.; Van Duyne, R.P. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Lee, J.H.; Oh, B.K.; Choi, J.W. Ultra-sensitive immunosensor for beta-amyloid (1-42) using scanning tunneling microscopyβ-based electrical detection. Biosens. Bioelectron. 2009, 24, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Picou, R.; Moses, J.P.; Wellman, A.D.; Kheterpal, I.; Gilman, S.D. Analysis of monomeric Aβ (1-40) peptide by capillary electrophoresis. Anal. 2010, 135, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Hestekin, C.; Kurtz, J.; Lutz-Rechtin, T. Microchannel electrophoresis for rapid, low concentration detection of early amyloid-beta aggregation. Alzheimer Dement. 2014, 10, 794–795. [Google Scholar]
- Gravina, S.A.; Ho, L.; Eckman, C.B.; Long, K.E.; Otvos, L., Jr.; Younkin, L.H.; Suzuki, N.; Younkin, S.G. Amyloid β protein (Aβ) in Alzheimer’s diseases brain biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42 (43). J. Biol. Chem. 1995, 270, 7013–7016. [Google Scholar] [CrossRef] [PubMed]
- Best, J.D.; Jay, M.T.; Out, F.; Ma, J.; Nadin, A.; Ellis, S.; Lewis, H.D.; Pattison, C.; Reilly, M.; Harrison, T.; et al. Quantitative measurement of changes in amyloid-beta 40 in the rat brain and cerebrospinal fluid following treatment with the gamma-secretase inhibitor LY-411575[N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-NJ-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b.d]azepin-7-yl]-L-alaninamide]. J. Pharmacol. Exp. Ther. 2005, 313, 902–908. [Google Scholar] [PubMed]
- Lanz, T.A.; Schachter, J.B. Demonstration of a common artifact in immunosorbent assays of brain extracts: development of a solid-phase extraction protocol to enable measurement of amyloid-beta from wild-type rodent brain. J. Neurosci. Methods 2006, 157, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Lanz, T.A.; Schachter, J.B. Solid-phase extraction enhances detection of beta-amyloid peptide in plasma and enables abeta quantification following passive immunization with a beta antibodies. J. Neurosci. Methods 2008, 169, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; Western, D.V.; Jeromin, A.; Song, L.; Hanlon, D.; Tan Hehir, C.A.; Baker, D.; et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016, 6, 26801. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Islam, A.T.; Lee, J.H.; Song, J.M.; Oh, B.K. Detection of beta-amyloid (1-42) on protein array based on electrical detection technique using scanning tunneling microscopy. J. Nanosci. Nanotechnol. 2011, 11, 4200–4204. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Nakashime, M.; Takehara, T.; Baba, H.; Machida, K.; Akitake, Y.; Ono, K.; Hosokawa, M.; Takahashi, M. Detection of amyloid beta protein in the urine of Alzheimer’s disease patients and healthy individuals. Neurosci. Lett. 2008, 435, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Prabhulkar, S.; Piatyszek, R.; Cirrito, J.R.; Wu, Z.Z.; Li, C.Z. Microbiosensor for Alzheimer’s disease diagnostics: Detection of amyloid beta biomarkers. J. Neurochem. 2012, 122, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.H.; Wang, J.; Wu, H.; Aksay, I.A.; Liu, J.; Lin, Y.H. Glucoseoxidase–grapheme–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 2009, 25, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.W.; Lin, C.W.; Hua, M.Y.; Liao, S.S.; Chen, Y.T.; Chen, H.C.; Weng, W.H.; Chuang, C.K.; Pang, S.T.; Ma, C.C. Combined detection of cancer cells and a tumor biomarker using an immunomagnetic sensor for the improvement of prostate cancer diagnosis. Adv. Mater. 2014, 26, 3662–3666. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Zhang, X.Y.; Ma, Y.F.; Huang, Y.; Wang, Y.S.; Chen, Y.S. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714. [Google Scholar] [CrossRef]
- Vickery, J.L.; Patil, A.J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180. [Google Scholar] [CrossRef]
- Carrero-Sanchez, J.C.; Elías, A.L.; Mancilla, R.; Arrellín, G.; Terrones, H.; Laclette, J.P.; Terrones, M. Biocompatibility andvtoxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 2006, 6, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Lin, C.W.; Wei, K.C.; Huang, C.Y.; Hsu, P.H.; Liu, H.L.; Lu, Y.J.; Lin, S.C.; Yang, H.W.; Ma, C.C. Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic. Biosensor. Sci. Rep. 2016, 6, 25155. [Google Scholar] [CrossRef] [PubMed]
- Janyasupab, M.; Lee, Y.; Zhang, Y.; Liu, C.W.; Cai, J.; Popa, A.; Samia, A.C.; Wang, K.W.; Xu, J.; Hu, C.C.; et al. Detection of lysyl oxidase-like 2 (LOXL2) a biomarker of metastasis from breast cancers using human blood samples. Recent Pat. Biomark. 2015, 5, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Molazemhosseini, A.; Magagni, L.; Vena, P.; Liu, C.C. Single-use disposable electrochemical label-free immunosensor for detection of glycated hemoglobin (HbA1c) using differential pulse voltammetry (DPV). Sensors 2016, 16, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willner, I.; Riklin, A. Electrical communication between electrode and NAD(P)+-dependent enzymes using pyrroloquiuolinequinone-electrodes in a self-assembled monolayer configuration: Design of a new class of amperometric biosensors. Anal. Chem. 1994, 66, 1535–1539. [Google Scholar] [CrossRef]
- Campuzano, S.; Glavez, R.; Dedrero, M.; DeVillena, F.J.M.; Pingarron, J.M. Preparation characterization and application of alkanethiol self-assembled monolayers modified with tetrathiafulvalene and glucose oxidase at a gold disk electrode. J. Electroanal. Chem. 2002, 526, 92–100. [Google Scholar] [CrossRef]
- Dai, Y.; Molazemhosseini, A.; Liu, C.C. A single-use, in vitro biosensor for the detection of T-tau protein, a biomarker of neuro-degenerative disorders, in PBS and human serum using differential pulse voltammetry (DPV). Biosensors 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Braiek, M.; Rokbani, K.B.; Chrouda, A.; Mrabet, B.; Bakhrouf, A.; Maaref, A.; Jaffrezic-Renault, N. An electrochemical immunosensor for detection of staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2012, 2, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Vericat, C.; Vela, M.E.; Benitez, G.; Carro, P.; Salvarezza, R.C. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chem. Soc. Rev. 2010, 39, 1805–1834. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A.; Presnova, G.V.; Rubtsova, M.Y.; Egorow, A.M. Oriented immobilization of antibodies onto the gold surface via their native thiol groups. Anal. Chem. 2000, 72, 3805–3811. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.; Hwang, H.J.; Kim, J.H. Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control. J. Biomed. Sci. Eng. 2011, 4, 242–247. [Google Scholar] [CrossRef]
- Tanaka, G.; Funabashi, H.; Mie, M.; Kobatake, E. Fabrication of an antibody microwell array with self-adhering antibody binding protein. Anal. Biochem. 2006, 350, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; ISBN 0-471-04372-9. [Google Scholar]
- Dai, Y.; Liu, C.C. Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, M.; Naldi, M.; Fiori, J.; Valle, F.; Biscarini, F.; Nicolau, D.V.; Andrisano, V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethod logical approach. Anal. Biochem. 2011, 414, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Stine, W.B.; Jungbauer, L.; Yu, C.; LaDu, M.J. Preparing Synthetic Aβ in Different Aggregation States. Methods Mol. Biol. 2011, 670, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Murphy, R.M. Solvent effects on self-assembly of beta-amyloid peptide. Biophys. J. 1995, 69, 640–651. [Google Scholar] [CrossRef]
- Hellstrand, E.; Boland, B.; Walsh, D.M.; Linse, S. Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chem. Neurosci. 2010, 1, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C.; Steensgaard, J. Binding properties of monoclonal anti-IgG antibodies: Analysis of bindingcurves in monoclonal antibody systems. Immunology 1984, 51, 423–430. [Google Scholar] [PubMed]
- Rama, E.C.; Gonzalez-Garcia, M.B.; Costa-Garcia, A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated Screen-Printed Carbon Electrodes. Sens. Actuators B Chem. 2014, 201, 567–571. [Google Scholar] [CrossRef]
- Kaushik, A.; Shah, P.; Vabbina, P.K.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Yndart, A.; Nair, M. A label-free electrochemical immunosensor for beta-amyloid detection. Anal. Methods 2016, 8, 6115–6120. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Molazemhosseini, A.; Liu, C.C. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. Biosensors 2017, 7, 29. https://doi.org/10.3390/bios7030029
Dai Y, Molazemhosseini A, Liu CC. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. Biosensors. 2017; 7(3):29. https://doi.org/10.3390/bios7030029
Chicago/Turabian StyleDai, Yifan, Alireza Molazemhosseini, and Chung Chiun Liu. 2017. "In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor" Biosensors 7, no. 3: 29. https://doi.org/10.3390/bios7030029
APA StyleDai, Y., Molazemhosseini, A., & Liu, C. C. (2017). In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. Biosensors, 7(3), 29. https://doi.org/10.3390/bios7030029