Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = E-jet printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 7658 KiB  
Review
SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications
by Hong Liu, Feng Xiao and Yang Gao
Appl. Sci. 2025, 15(12), 6488; https://doi.org/10.3390/app15126488 - 9 Jun 2025
Viewed by 1311
Abstract
Silicon carbide (SiC) materials have demonstrated promising application prospects in modern manufacturing due to their outstanding physical and chemical properties. With its process flexibility and formation feasibility, binder jetting 3D printing technology has become a crucial technical approach to meet the demand for [...] Read more.
Silicon carbide (SiC) materials have demonstrated promising application prospects in modern manufacturing due to their outstanding physical and chemical properties. With its process flexibility and formation feasibility, binder jetting 3D printing technology has become a crucial technical approach to meet the demand for mass production of complex, high-performance SiC components. Addressing the technical challenges of traditional manufacturing techniques in achieving high-quality, complex-shaped SiC components, this paper systematically reviews the application of binder jetting 3D printing technology in fabricating high-quality SiC-based ceramic components, with a particular focus on the regulation of key process parameters affecting SiC green body formation quality and the optimization of post-densification processes. Firstly, this paper elaborates on the powder pretreatment, green part formation process, and post-processing chain involved in this technology, establishes an evaluation index system for formation quality, and provides research directions for rapid prototyping of SiC powders. Secondly, it provides an in-depth analysis of the influence patterns of jetting parameters (e.g., jetting conditions, powder characteristics, binder properties) and various post-processing techniques on the quality of SiC-based components, along with optimization methods to enhance the dimensional accuracy and mechanical properties of 3D-printed SiC components. Furthermore, this paper systematically summarizes advanced characterization methods for evaluating formation quality and demonstrates the technology’s application potential across multiple industrial fields through representative engineering cases. Finally, it predicts the future development trends of this technology and discusses potential application expansion directions and key scientific issues in current research, aiming to provide theoretical references for promoting in-depth development of this technology. Full article
Show Figures

Figure 1

13 pages, 5284 KiB  
Communication
Electrohydrodynamically Printed Microlens Arrays with the High Filling Factor near 90%
by Linkun Zhong, Weixuan Liu, Hongbo Gong, Ye Li, Xueqian Zhao, Delai Kong, Qingguo Du, Bing Xu, Xiaoli Zhang and Yan Jun Liu
Photonics 2025, 12(5), 446; https://doi.org/10.3390/photonics12050446 - 5 May 2025
Viewed by 390
Abstract
Microlens arrays (MLAs) are essential for light collection, extraction, and high-resolution imaging. However, most reported MLAs have a limited filling factor. Here, we demonstrate MLAs using three different UV-curing optical adhesives based on the electrohydrodynamic inkjet (E-jet) printing technique. The highest filling factor [...] Read more.
Microlens arrays (MLAs) are essential for light collection, extraction, and high-resolution imaging. However, most reported MLAs have a limited filling factor. Here, we demonstrate MLAs using three different UV-curing optical adhesives based on the electrohydrodynamic inkjet (E-jet) printing technique. The highest filling factor of 89.91% is achieved. By controlling the curvature of the microlens via the surface treatment of the substrate, a series of MLAs with different numerical apertures can be obtained. With the high-consistency printing technique, the demonstrated high filling factor MLAs could be potentially useful to improve the performance of optical imaging and sensing systems. Full article
Show Figures

Figure 1

14 pages, 26007 KiB  
Article
Study of Charged Nanodroplet Deposition into Microcavity Through Many-Body Dissipative Particle Dynamics
by Yiwei Jin, Jiankui Chen, Wei Chen and Zhouping Yin
Micromachines 2025, 16(3), 278; https://doi.org/10.3390/mi16030278 - 27 Feb 2025
Viewed by 518
Abstract
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide [...] Read more.
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide material applicability and flexibility in patterning, have been widely used in the printing of high-resolution structures. However, due to factors such as the extremely small size of the droplets, the electric charge, the electric field, and the unavoidable positioning error, various deposition defects can occur. For droplets at a nanoscale, the dynamic deposition process is hard to observe. The continuum hypothesis fails and the fluid cannot be described by the traditional Navier–Stokes equation. In this work, the behaviors of charged nanodroplet deposition into a microcavity in an electric field are studied. The many-body dissipative particle dynamics (MDPD) method is used to examine the deformation of the nanodroplet during the impact process at a mesoscale. The dynamic process of charged droplet deposition into a microcavity under an electric field is revealed. Strategies for failure-free printing are proposed by analyzing the influences of the impact speeds, positioning errors, charge levels and electric intensities on the out-of-pixel spread length. The relationship between the internal charge moves and the deformation of the charged droplet in the deposition process is first discussed. The spreading theory of charged droplet deposition into a microcavity with a positioning error is established by analyzing the Coulombic capillary number. Moreover, the printing parameter space that results in successful printing is acquired. Full article
Show Figures

Figure 1

23 pages, 4816 KiB  
Article
Eco-Friendly Alternatives to Toluene-Based 2D Inks for Inkjet and Electrohydrodynamic Jet Printing Processes: A Rheological Study
by Pedro C. Rijo, Ilaria Tocci and Francisco J. Galindo-Rosales
Micromachines 2025, 16(2), 130; https://doi.org/10.3390/mi16020130 - 23 Jan 2025
Viewed by 1016
Abstract
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The [...] Read more.
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The incorporation of polyvinylpyrrolidone (PVP) attenuates the shear-thinning behavior of GNP and hBN suspensions, maintaining a constant shear viscosity over a wide range of shear rates regardless of PVP molecular weight. Despite the presence of polymer, elasticity is hindered by inertia effects, making it impossible to accurately measure the extensional relaxation time in the capillary breakup extensional rheometer (CaBER). Assuming the weak elasticity of the formulations has a negligible impact on the breakup mechanism, we estimated droplet sizes for drop-on-demand (DoD) inkjet printing and electrohydrodynamic (EHD) jet printing based on fluid properties, i.e., viscosity, surface tension and density, and nozzle inner diameter (Dnozzle). Results indicate that the droplet size ratio (Ddrop/Dnozzle) in DoD printing can be up to two orders of magnitude higher than the one predicted for EHD jet printing at the same flow rate. This work highlights the potential of cyrene-based 2D inks as eco-friendly alternatives for advanced printing technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Emerging Applications)
Show Figures

Figure 1

17 pages, 7200 KiB  
Article
Preliminary Characterization of a Novel Aerosol Jet-Printed Strain Sensor for Feasibility Assessment in a Variable Stiffness Arterial Simulator Application
by Federico Filippi, Giorgia Fiori, Annalisa Genovesi, Massimiliano Barletta, Matteo Lancini, Mauro Serpelloni, Andrea Scorza and Salvatore Andrea Sciuto
Sensors 2024, 24(23), 7725; https://doi.org/10.3390/s24237725 - 3 Dec 2024
Viewed by 1123
Abstract
Wearable strain sensors are widespread in many fields, including the biomedical field where they are used for their stretchability and ability to be applied to non-regular surfaces. The study of the propagation speed of the pressure wave generated by the heartbeat within vessels, [...] Read more.
Wearable strain sensors are widespread in many fields, including the biomedical field where they are used for their stretchability and ability to be applied to non-regular surfaces. The study of the propagation speed of the pressure wave generated by the heartbeat within vessels, i.e., the Pulse Wave Velocity (PWV), is of significant relevance in this field to assess arterial stiffness, a parameter commonly used for the early diagnosis of cardiovascular diseases. In this context, arterial simulators are useful tools to study the relationship between the PWV and other hemodynamic quantities in vitro. This study aims to characterize novel strain sensors to assess their suitability within an arterial simulator capable of varying the stiffness of an arterial surrogate by varying the transmural pressure. Six sensors deposited on arterial surrogates by Aerosol Jet Printing technology were subjected to deformation through a load frame. The results show that the sensors were able to distinguish strains of 0.1%, the maximum strain was around 6–8%, and the fatigue strength depended strongly on the strain rate. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 7530 KiB  
Article
Cold Consolidation of Pharmaceutical Waste Glass Powders Through Alkali Activation and Binder Jet 3D Printing
by Hamada Elsayed, Filippo Gobbin, Alberto Barci, Enrico Bernardo and Paolo Colombo
Materials 2024, 17(21), 5164; https://doi.org/10.3390/ma17215164 - 23 Oct 2024
Cited by 2 | Viewed by 1247
Abstract
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable [...] Read more.
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable fraction. Coarse fragments are effectively reused as feedstock for glass melting; on the contrary, fine powders (<100 microns), contaminated by metal and ceramic particles due to the same crushing operations, are landfilled. Landfilling is also suggested for pharmaceutical containers after medical use. This study aims at proposing new opportunities for the recycling of fine glass particles, according to recent findings concerning alkali activation of pharmaceutical glass, combined with novel processing, i.e., binder jetting printing. It has already been shown that pharmaceutical glass, immersed in low-molarity alkaline solution (not exceeding 2.5 M NaOH), undergoes surface dissolution and hydration; cold consolidation is later achieved, upon drying at 40–60 °C, by a condensation reaction occurring at hydrated layers of adjacent particles. Binder jetting printing does not realize a full liquid immersion of the glass powders, as the attacking solution is selectively sprayed on a powder bed. Here, we discuss the tuning of key parameters, such as the molarity of the attacking solution (from 2.5 to 10 M) and the granulometry of the waste glass, to obtain stable printed blocks. In particular, the stability depends on the formation of bridges between adjacent particles consisting of strong T-O bonds (Si-O-Si, Al-O-Si, B-O-Si), while degradation products (concentrating Na ions) remain as a secondary phase, solubilized by immersion in boiling water. Such stability is achieved by operating at 5 M NaOH. Full article
(This article belongs to the Special Issue State of the Art of Materials Science and Engineering in Italy)
Show Figures

Figure 1

18 pages, 8953 KiB  
Article
Process Development for Fabricating 3D-Printed Polycaprolactone-Infiltrated Hydroxyapatite Bone Graft Granules: Effects of Infiltrated Solution Concentration and Agitating Liquid
by Faungchat Thammarakcharoen, Autcharaporn Srion, Waraporn Suvannapruk, Watchara Chokevivat, Wiroj Limtrakarn and Jintamai Suwanprateeb
Biomedicines 2024, 12(9), 2161; https://doi.org/10.3390/biomedicines12092161 - 23 Sep 2024
Cited by 1 | Viewed by 1312
Abstract
Bone grafts are commonly used in orthopedic and dental surgeries to facilitate bone repair and regeneration. A new type of bone graft, polycaprolactone-infiltrated three dimensionally printed hydroxyapatite (3DP HA/PCL), was previously developed by infiltrating polycaprolactone (PCL) into preformed three-dimensional-printed hydroxyapatite (3DP HA) that [...] Read more.
Bone grafts are commonly used in orthopedic and dental surgeries to facilitate bone repair and regeneration. A new type of bone graft, polycaprolactone-infiltrated three dimensionally printed hydroxyapatite (3DP HA/PCL), was previously developed by infiltrating polycaprolactone (PCL) into preformed three-dimensional-printed hydroxyapatite (3DP HA) that was fabricated using binder jetting technology combined with a low-temperature phase transformation process. However, when producing small granules, which are often used for bone grafting, issues of granule agglomeration emerged, complicating the application of this method. This study aimed to develop a fabrication process for 3DP HA/PCL bone graft granules using solution infiltration and liquid agitation. The effects of varying PCL solution concentrations (40% and 50% w/w) and different agitating liquids (deionized water or DI, N-Methyl-2-Pyrrolidone or NMP, and an NMP-DI mixture) on the properties of the resulting composites were investigated. XRD and FTIR analysis confirmed the coexistence of HA and PCL within the composites. The final PCL content was comparable across all conditions. The contact angles of 3DP HA/PCL were 26.3 and 69.8 degree for 40% and 50% PCL solution, respectively, when using DI, but were zero when using NMP and NMP-DI. The highest compression load resistance and diametral tensile strength were achieved using the 50% PCL solution with DI or the NMP-DI mixture. DI resulted in a dense PCL coating, while NMP and the NMP-DI mixture produced a porous and irregular surface morphology. All samples exhibited a porous internal microstructure due to PCL infiltration into the initial pores of the 3D-printed HA. Biocompatibility tests showed that all samples supported the proliferation of MC3T3-E1 cells, with the greatest OD values observed for the 50% PCL solution with DI or the NMP-DI mixture at each cultured period. Considering the microstructural, mechanical, and biological properties, the 50% PCL solution with the NMP-DI mixture demonstrated overall desirable properties. Full article
(This article belongs to the Special Issue Biomaterials for Bone Regeneration)
Show Figures

Figure 1

18 pages, 7485 KiB  
Article
Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel
by Radoslav Vandžura, Vladimír Simkulet, František Botko, Matúš Geľatko and Michal Hatala
Materials 2024, 17(12), 2964; https://doi.org/10.3390/ma17122964 - 17 Jun 2024
Cited by 2 | Viewed by 876
Abstract
The presented manuscript focuses on the influence of process parameters of abrasive water jet technology on the creation of non-transient erosive grooves. The processed stainless steel SS 316L is additively manufactured using the selective laser melting (SLM) method. Due to the distinct mechanical [...] Read more.
The presented manuscript focuses on the influence of process parameters of abrasive water jet technology on the creation of non-transient erosive grooves. The processed stainless steel SS 316L is additively manufactured using the selective laser melting (SLM) method. Due to the distinct mechanical properties of this material resulting from the production process, the material was machined in two planes according to the direction of the printing layers. The experimental part employed a planned experiment utilizing the DoE (Design of Experiment) method. Experiments aimed at varying process parameters (traverse speed, standoff distance, abrasive mass flow) were conducted at a water pressure of 50 MPa, assessing the parameters’ impact on the removed material and the properties of the resulting non-transient erosion groove. The properties of the erosion groove, such as shape and the material removal (area of erosion groove), were evaluated. The influences of process parameters on the observed parameters were assessed using the analysis of variance (ANOVA) method. Experiment preparation and setup were based on a thorough theoretical analysis of the machining process with the abrasive water jet (AWJ) method. The experiment also highlights the diverse properties of the SS 316L material prepared using the SLM method when machined with AWJ technology. Full article
Show Figures

Figure 1

18 pages, 9323 KiB  
Article
Bulge-Free and Homogeneous Metal Line Jet Printing with StarJet Technology
by Dániel Straubinger, Peter Koltay, Roland Zengerle, Sabrina Kartmann and Zhe Shu
Micromachines 2024, 15(6), 743; https://doi.org/10.3390/mi15060743 - 31 May 2024
Cited by 4 | Viewed by 4026
Abstract
The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes [...] Read more.
The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes for solar cells. This paper provides an experimental investigation to deepen insights into the non-contact printing of solder lines using StarJet technology, eliminating the need for surface activation, substrate heating, curing, or post-processing. Moreover, it employs bulk metal instead of conventional inks or pastes, leading to cost-effective production and enhanced conductivity. The effect of molten metal temperature, substrate temperature, standoff distance, and printing velocity was investigated on polymer foils (i.e., PET sheets). Robust printing parameters were derived to print uniform, bulge-free, bulk metal lines suitable for additive manufacturing applications. The applicability of the derived parameters was extended to 3D-printed PLA, TPU, PA-GF, and PETG substrates having a much higher surface roughness. Additionally, a high aspect ratio of approx. 16:1 wall structure has been demonstrated by printing multiple metal lines on top of each other. While challenges persist, this study contributes to advancing additively manufactured electronic devices, highlighting the capabilities of StarJet metal jet-printing technology. Full article
Show Figures

Figure 1

16 pages, 8033 KiB  
Article
Thermo-Mechano-Chemical Processing of Printed Circuit Boards for Organic Fraction Removal
by Sergey M. Frolov, Viktor A. Smetanyuk, Anton S. Silantiev, Ilias A. Sadykov, Fedor S. Frolov, Jaroslav K. Hasiak, Alexey A. Shiryaev and Vladimir E. Sitnikov
Waste 2024, 2(2), 153-168; https://doi.org/10.3390/waste2020009 - 15 Apr 2024
Cited by 1 | Viewed by 2001
Abstract
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is [...] Read more.
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is referred to as the high-temperature thermo-mechano-chemical gasification (TMCG) of PCBs by the detonation-born gasification agent (GA), which is a blend of H2O and CO2 heated to a temperature above 2000 °C. The GA is produced in a pulsed detonation gun (PDG) operating on a near-stoichiometric methane–oxygen mixture. The PDG operates in a pulsed mode producing pulsed supersonic jets of GA and pulsed shock waves possessing a huge destructive power. When the PDG is attached to a compact flow reactor filled with waste PCBs, the PCBs are subject to the intense thermo-mechano-chemical action of both strong shock waves and high-temperature supersonic jets of GA in powerful vortical structures established in the flow reactor. The shock waves grind waste PCBs into fine particles, which undergo repeated involvement and gasification in the high-temperature vortical structures of the GA. Demonstration experiments show full (above 98%) gasification of the 1 kg batch of organic matter in a setup operation time of less than 350 s. The gaseous products of PCB gasification are mainly composed of CO2, CO, H2, N2, and CH4, with the share of flammable gas components reaching about 45 vol%. The solid residues appear in the form of fine powder with visible metal inclusions of different sizes. All particles in the powder freed from the visible metal inclusions possess a size less than 300–400 μm, including a large fraction of sizes less than 100 μm. The powder contains Sn, Pb, Cu, Ni, Fe, In, Cd, Zn, Ca, Si, Al, Ti, Ni, and Cl. Among these substances, Sn (10–20 wt%), Pb (5–10 wt%), and Cu (up to 1.5 wt%) are detected in the maximum amounts. In the powder submitted for analysis, precious elements Ag, Au, and Pt are not detected. Some solid mass (about 20 wt% of the processed PCBs) is removed from the flow reactor with the escaping gas and is partly (about 10 wt%) trapped by the cyclones in the exhaust cleaning system. Metal inclusions of all visible sizes accumulate only in the flow reactor and are not detected in powder samples extracted from the cyclones. The gasification degree of the solid residues extracted from the cyclones ranges from 76 to 91 wt%, i.e., they are gasified only partly. This problem will be eliminated in future work. Full article
Show Figures

Figure 1

5 pages, 2041 KiB  
Proceeding Paper
Toward the Development of Plasmonic Biosensors to Realize Point-of-Care Tests for the Detection of Viruses and Bacteria
by Francesco Arcadio, Ines Tavoletta, Chiara Marzano, Luca Pasquale Renzullo, Nunzio Cennamo and Luigi Zeni
Eng. Proc. 2023, 56(1), 113; https://doi.org/10.3390/ASEC2023-15277 - 6 Dec 2023
Cited by 1 | Viewed by 1080
Abstract
Optical fiber biosensors can be used to develop point-of-care tests (POCTs) for detecting viruses and bacteria in several matrices. In particular, the surface plasmon resonance (SPR) and localized SPR phenomena (LSPR) can be excited by exploiting low-cost and small-size optical fiber chips. Generally, [...] Read more.
Optical fiber biosensors can be used to develop point-of-care tests (POCTs) for detecting viruses and bacteria in several matrices. In particular, the surface plasmon resonance (SPR) and localized SPR phenomena (LSPR) can be excited by exploiting low-cost and small-size optical fiber chips. Generally, SPR or LSPR sensors are realized using several kinds of modified optical fibers (silica, plastic, or specialty) or by exploiting other optical waveguides (e.g., slab, spoon-shaped waveguides, etc.). More specifically, optical fiber sensors can be classified as intrinsic or extrinsic. In the “optical fiber intrinsic sensors”, the sensing area is realized in the optical fiber directly, such as in the case of plasmonic platforms based on D-shaped plastic optical fibers (POFs), tapered optical fibers, U-bend POFs, or light-diffusing fibers (LDFs). By contrast, when an optical fiber is used as a mere waveguide allowing for the launch of light to the sensing region and its collection, it is defined as an extrinsic optical fiber sensor, like in the case of the plasmonic sensors realized by Cennamo et al. using POFs combined with spoon-shaped waveguides, 3D-printed platforms, bacterial cellulose waveguides, nanogratings, and InkJet-printed chips. To realize optical biosensor chips for the detection of viruses and bacteria, both intrinsic and extrinsic plasmonic POF sensors can be efficiently combined with receptors specific for membrane proteins, either biological (e.g., antibodies, aptamers, enzymes, etc.) or synthetic (e.g., molecularly imprinted polymers), to build groundbreaking POCTs. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

9 pages, 4172 KiB  
Communication
First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics
by Tomasz Kozior and Andrea Ehrmann
Polymers 2023, 15(17), 3536; https://doi.org/10.3390/polym15173536 - 25 Aug 2023
Cited by 8 | Viewed by 2269
Abstract
Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural [...] Read more.
Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural strength and point-wise definable properties of 3D printed parts. These experiments, however, were mostly performed using fused deposition modeling (FDM), which is an inexpensive and broadly available technique, but which suffers from the high viscosity of the molten polymers, often impeding a form-locking connection between polymer and textile fibers. One study reported stereolithography (SLA) to be usable for direct printing on textile fabrics, but this technique suffers from the problem that the textile material is completely soaked in resin during 3D printing. Combining the advantages of FDM (material application only at defined positions) and SLA (low-viscous resin which can easily flow into a textile fabric) is possible with PolyJet modeling (PJM) printing. Here, we report the first proof-of-principle of PolyJet printing on textile fabrics. We show that PJM printing with a common resin on different textile fabrics leads to adhesion forces according to DIN 53530 in the range of 30–35 N, which is comparable with the best adhesion forces yet reported for fused deposition modeling (FDM) printing with rigid polymers on textile fabrics. Full article
Show Figures

Figure 1

22 pages, 6775 KiB  
Article
Effects of Slit Edge Notches on Mechanical Properties of 3D-Printed PA12 Nylon Kirigami Specimens
by Jing Shu, Junming Wang, Zheng Li and Kai-yu (Raymond) Tong
Polymers 2023, 15(14), 3082; https://doi.org/10.3390/polym15143082 - 18 Jul 2023
Cited by 3 | Viewed by 2088
Abstract
Kirigami structures, a Japanese paper-cutting art form, has been widely adopted in engineering design, including robotics, biomedicine, energy harvesting, and sensing. This study investigated the effects of slit edge notches on the mechanical properties, particularly the tensile stiffness, of 3D-printed PA12 nylon kirigami [...] Read more.
Kirigami structures, a Japanese paper-cutting art form, has been widely adopted in engineering design, including robotics, biomedicine, energy harvesting, and sensing. This study investigated the effects of slit edge notches on the mechanical properties, particularly the tensile stiffness, of 3D-printed PA12 nylon kirigami specimens. Thirty-five samples were designed with various notch sizes and shapes and printed using a commercial 3D printer with multi-jet fusion (MJF) technique. Finite element analysis (FEA) was employed to determine the mechanical properties of the samples computationally. The results showed that the stiffness of the kirigami samples is positively correlated with the number of edges in the notch shape and quadratically negatively correlated with the notch area of the samples. The mathematical relationship between the stretching tensile stiffness of the samples and their notch area was established and explained from an energy perspective. The relationship established in this study can help fine-tune the stiffness of kirigami-inspired structures without altering the primary parameters of kirigami samples. With the rapid fabrication method (e.g., 3D printing technique), the kirigami samples with suitable mechanical properties can be potentially applied to planar springs for hinge structures or energy-absorbing/harvesting structures. These findings will provide valuable insights into the development and optimization of kirigami-inspired structures for various applications in the future. Full article
(This article belongs to the Special Issue Mechanical Response of Fibre-Reinforced Polymers II)
Show Figures

Figure 1

15 pages, 5859 KiB  
Article
Influence of Alumina Grade on Sintering Properties and Possible Application in Binder Jetting Additive Technology
by Maciej Kwiatkowski, Joanna Marczyk, Piotr Putyra, Michał Kwiatkowski, Szymon Przybyła and Marek Hebda
Materials 2023, 16(10), 3853; https://doi.org/10.3390/ma16103853 - 19 May 2023
Cited by 11 | Viewed by 3107
Abstract
Alumina is one of the most popular ceramic materials widely used in both tooling and construction applications due to its low production cost, and high properties. However, the final properties of the product depend not only on the purity of the powder, but [...] Read more.
Alumina is one of the most popular ceramic materials widely used in both tooling and construction applications due to its low production cost, and high properties. However, the final properties of the product depend not only on the purity of the powder, but also, e.g., on its particle size, specific surface area, and the production technology used. These parameters are particularly important in the case of choosing additive techniques for the production of details. Therefore, the article presents the results of comparing five grades of Al2O3 ceramic powder. Their specific surface area (via Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods), particle size distribution, and phase composition by X-ray diffraction (XRD) were determined. Moreover, the surface morphology was characterized by the scanning electron microscopy (SEM) technique. The discrepancy between generally available data and the results obtained from measurements has been indicated. Moreover, the method of spark plasma sintering (SPS), equipped with the registration system of the position of the pressing punch during the process, was used to determine the sinterability curves of each of the tested grades of Al2O3 powder. Based on the obtained results, a significant influence of the specific surface area, particle size, and the width of their distribution at the beginning of the Al2O3 powder sintering process was confirmed. Furthermore, the possibility of using the analyzed variants of powders for binder jetting technology was assessed. The dependence of the particle size of the powder used on the quality of the printed parts was demonstrated. The procedure presented in this paper, which involves analyzing the properties of alumina varieties, was used to optimize the Al2O3 powder material for binder jetting printing. The selection of the best powder in terms of technological properties and good sinterability makes it possible to reduce the number of 3D printing processes, which makes it more economical and less time-consuming. Full article
(This article belongs to the Special Issue Recent Application of Powder Metallurgy Materials)
Show Figures

Figure 1

11 pages, 2930 KiB  
Article
PZT Composite Film Preparation and Characterization Using a Method of Sol-Gel and Electrohydrodynamic Jet Printing
by Yan Cui, Hao Yu, Zeshan Abbas, Zixiang Wang, Lunxiang Wang and Dazhi Wang
Micromachines 2023, 14(5), 918; https://doi.org/10.3390/mi14050918 - 24 Apr 2023
Cited by 7 | Viewed by 3241
Abstract
Lead zircon titanate (PZT) composite films were advantageously prepared by a novel hybrid method of sol-gel and electrohydrodynamic jet (E-jet) printing. PZT thin films with thicknesses of 362 nm, 725 nm and 1092 nm were prepared on Ti/Pt bottom electrode via Sol-gel method, [...] Read more.
Lead zircon titanate (PZT) composite films were advantageously prepared by a novel hybrid method of sol-gel and electrohydrodynamic jet (E-jet) printing. PZT thin films with thicknesses of 362 nm, 725 nm and 1092 nm were prepared on Ti/Pt bottom electrode via Sol-gel method, and then the PZT thick films were printed on the base of the PZT thin films via E-jet printing to form PZT composite films. The physical structure and electrical properties of the PZT composite films were characterized. The experimental results showed that, compared with PZT thick films prepared via single E-jet printing method, PZT composite films had fewer micro-pore defects. Moreover, the better bonding with upper and lower electrodes and higher preferred orientation of crystals were examined. The piezoelectric properties, dielectric properties and leakage currents of the PZT composite films were obviously improved. The maximum piezoelectric constant of the PZT composite film with a thickness of 725 nm was 69.4 pC/N, the maximum relative dielectric constant was 827 and the leakage current was reduced to 1.5 × 10−6A at a test voltage of 200V. This hybrid method can be widely useful to print PZT composite films for the application of micro-nano devices. Full article
(This article belongs to the Special Issue Micro/Nano Printing Technology and Devices)
Show Figures

Figure 1

Back to TopTop