First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Novakova-Marcincinova, L. Application of fused deposition modeling technology in 3D printing rapid prototyping area. Manuf. Ind. Eng. 2012, 11, 35–37. [Google Scholar]
- Noorani, R. Rapid Prototyping: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ben-Ner, A.; Siemsen, E. Decentralization and localization of production: The organizational and economic consequences of additive manufacturing (3D printing). Calif. Manag. Rev. 2017, 59, 5–12. [Google Scholar] [CrossRef]
- Sing, S.; Ramakrishna, S. Biomedical applications of additive manufacturing: Present and future. Curr. Opin. Biomed. Eng. 2017, 2, 105–115. [Google Scholar] [CrossRef]
- Li, Y.G.; Shi, Y.X.; Lu, Y.C.; Li, X.; Zhou, J.; Zadpoor, A.A.; Wang, L.N. Additive manufacturing of vascular stents. Acta Biomater. 2023, 167, 16–37. [Google Scholar] [CrossRef]
- Kundera, C.; Martsynkowskyy, V.; Gudkov, S.; Kozior, T. Effect of Rheological Parameters of Elastomeric Ring Materials on Dynamic of Face Seals. Proc. Eng. 2017, 177, 307–313. [Google Scholar] [CrossRef]
- Allum, J.; Gleadall, A.; Silberschmidt, V.V. Fracture of 3D-printed polymers: Crucial role of filament-scale geometric features. Eng. Fract. Mech. 2020, 224, 106818. [Google Scholar] [CrossRef]
- Hmeidat, N.S.; Pack, R.C.; Talley, S.J.; Moore, R.B.; Compton, B.G. Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing. Addit. Manuf. 2020, 34, 101385. [Google Scholar] [CrossRef]
- Amini, M.; Reisinger, A.; Pahr, D.H. Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Kozior, T.; Blachowicz, T.; Ehrmann, A. Adhesion of three-dimensional printing on textile fabrics: Inspiration from and for other research areas. J. Eng. Fibers Fabr. 2020, 15, 1558925020910875. [Google Scholar] [CrossRef]
- Sitotaw, D.B.; Ahrendt, D.; Kyosev, Y.; Kabish, A.K. Additive Manufacturing and Textiles—State-of-the-Art. Appl. Sci. 2020, 10, 5033. [Google Scholar] [CrossRef]
- Kabir, S.; Lee, S.H. Study of Shape Memory and Tensile Property of 3D Printed Sinusoidal Sample/Nylon Composite Focused on Various Thicknesses and Shape Memory Cycles. Polymers 2020, 12, 1600. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-Q.; Kan, C.-W. Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design. Coatings 2022, 12, 267. [Google Scholar] [CrossRef]
- Eutionnat-Diffo, P.A.; Chen, Y.; Guan, J.P.; Cayla, A.; Campagne, C.; Zeng, X.Y.; Nierstraz, V. Optimization of adhesion of poly lactic acid 3D printed onto polyethylene terephthalate woven fabrics through modelling using textile properties. Rap. Prototyp. J. 2020, 26, 390–401. [Google Scholar] [CrossRef]
- Loh, G.H.; Sotayo, A.; Pei, E.J. Development and testing of material extrusion additive manufactured polymer-textile composites. Fash. Text. 2021, 8, 2. [Google Scholar] [CrossRef]
- Cheung, T.C.; Choi, S.Y. Evaluation of the influence of three-dimensional printing conditions on peel resistance and surface roughness of flexible polymer-textile composites. Text. Res. J. 2023, 93, 1531–1550. [Google Scholar] [CrossRef]
- Grothe, T.; Brockhagen, B.; Storck, J.L. Three-dimensional printing resin on different textile substrates using stereolithography: A proof of concept. J. Eng. Fibers Fabr. 2020, 15, 1558925020933440. [Google Scholar] [CrossRef]
- Rudnik, M.; Hanon, M.M.; Szot, W.; Beck, K.; Gogolewski, D.; Zmarzly, P.; Kozior, T. Tribological Properties of Medical Material (MED610) Used in 3D Printing PJM Technology. Teh. Vjesn. 2022, 29, 1100–1108. [Google Scholar]
- Pilczynska, K. Material jetting. In Polymers for 3D Printing; William Andrew Applied Science Publishers: Burlington, MA, USA; pp. 91–103.
- Grimmelsmann, N.; Kreuziger, M.; Korger, M.; Meissner, H.; Ehrmann, A. Adhesion of 3D printed material on textile substrates. Rapid Prototyp. J. 2018, 24, 166–170. [Google Scholar] [CrossRef]
- Spahiu, T.; Al-Arabiyat, M.; Martens, Y.; Ehrmann, A.; Piperi, E.; Shehi, E. Adhesion of 3D printing polymers on textile fabrics for garment production. IOP Conf. Ser. Mater. Sci. Eng. 2019, 459, 012065. [Google Scholar] [CrossRef]
- DIN 53530; Testing of Organic Materials; Separation Test on Fabric Plies Bonded Together. Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 1981.
- ISO 6133; Rubber and Plastics—Analysis of Multi-Peak Traces Obtained in Determinations of Tear Strength and Adhesion Strength. ISO: Geneva, Switzerland, 2015.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozior, T.; Ehrmann, A. First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics. Polymers 2023, 15, 3536. https://doi.org/10.3390/polym15173536
Kozior T, Ehrmann A. First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics. Polymers. 2023; 15(17):3536. https://doi.org/10.3390/polym15173536
Chicago/Turabian StyleKozior, Tomasz, and Andrea Ehrmann. 2023. "First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics" Polymers 15, no. 17: 3536. https://doi.org/10.3390/polym15173536