Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,605)

Search Parameters:
Keywords = E/C ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3341 KB  
Article
Model Construction and Prediction of Combined Toxicity of Arsenic(V) and Lead(II) on Chlamydomonas reinhardtii
by Zhongquan Jiang, Tianyi Wei, Chunhua Zhang, Xiaosheng Shen, Zhemin Shen, Tao Yuan and Ying Ge
Biology 2025, 14(10), 1395; https://doi.org/10.3390/biology14101395 (registering DOI) - 11 Oct 2025
Abstract
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. [...] Read more.
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. This study aims to investigate the toxic effects of As and Pb individually and in combination of the mixture on the growth of Chlamydomonas reinhardtii (C. reinhardtii) in a lab setup using the Concentration Addition (CA) model and the Independent Action (IA) model to predict the toxic effects at different concentrations. The results indicated that As and Pb had significant inhibitory effects on the growth of algae, and the toxicity of As was greater than that of Pb (As EC50 = 374.87 μg/L, Pb EC50 = 19988.75 μg/L), measured by Spectrophotometer. As the metal concentrations increased, both metals demonstrated classic sigmoidal concentration-effect curves. Furthermore, we discovered that in mixtures of As and Pb at varying concentration ratios, the combined toxic effect shifted from additive to synergistic with increasing As concentration, exhibiting a pronounced concentration ratio dependency. Utilizing nonlinear least squares regression, we successfully constructed concentration-response models for both As and Pb, employing Observation-based Confidence Intervals (OCIs) to reflect the uncertainty of the data. By comparing experimental data with model predictions, the EC50 was used as an index to compare the toxicity magnitude of As/Pb mixtures. The toxicity of As and Pb mixtures gradually increases with the increase in their concentration ratios. Scanning and transmission electron microscopic observations revealed that the combination of 200 μg/L As and 2000 μg/L Pb resulted in the greatest synergistic toxic effect, with severe breakage and indentation to C. reinhardtii cells. This study not only provided new insights into the environmental behavior and ecological risks of As and Pb but also held significant implications for effective water pollution management strategies by offering a validated model-based framework for predicting mixture toxicity across different concentration regimes. Full article
(This article belongs to the Section Toxicology)
23 pages, 1842 KB  
Article
Evaluation of Scenarios for the Application of the Future PM2.5 and PM10 Standards: A Case Study of Three Urban Areas in Romania and Implications for Public Policies
by Liliana Drăgoi (Oniu), Marius-Mihai Cazacu and Iuliana-Gabriela Breabăn
Environments 2025, 12(10), 373; https://doi.org/10.3390/environments12100373 (registering DOI) - 11 Oct 2025
Abstract
Strengthening air quality protection across the EU, Directive (EU) 2024/2881 sets stricter daily standards and alert thresholds for particulate matter, which become applicable in 2030. Member States must transpose these standards by 2027. This study retrospectively applies the new framework to daily data [...] Read more.
Strengthening air quality protection across the EU, Directive (EU) 2024/2881 sets stricter daily standards and alert thresholds for particulate matter, which become applicable in 2030. Member States must transpose these standards by 2027. This study retrospectively applies the new framework to daily data from three urban areas in Romania from 2019 to 2024. The objective is to evaluate the risks of noncompliance and test additional, more sensitive indicators of pollution severity and source characteristics. The results show that the new standards would cause the daily and annual limits for PM2.5 and PM10 to be exceeded in at least two of the three analyzed cities. Three indicators are proposed and applied: (i) Excess Concentration (EC), which quantifies the total amount of daily exceedances of the limit value; (ii) Toxic Load Index (TLI), which integrates the PM2.5/PM10 ratio as a proxy for toxicological potential; and (iii) Episode Index (EI), which captures the magnitude and duration of episodes that would trigger alert thresholds. The study includes a summary review of the air quality legislative framework and contributes to public policy literature by emphasizing risk-proportionate interventions. The proposed indicators support a smoother transition to forthcoming European requirements. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

22 pages, 6554 KB  
Article
Mechanical Properties of Novel 3D-Printed Restorative Materials for Definitive Dental Applications
by Moritz Hoffmann, Andrea Coldea and Bogna Stawarczyk
Materials 2025, 18(20), 4662; https://doi.org/10.3390/ma18204662 - 10 Oct 2025
Abstract
The aim of this study is to evaluate the mechanical properties and long-term stability of 3D-printable resins for permanent fixed dental prostheses (FDPs), focusing on whether material performance is influenced by 3D-printer type or by differences in resin formulations. Specimens (N = 621) [...] Read more.
The aim of this study is to evaluate the mechanical properties and long-term stability of 3D-printable resins for permanent fixed dental prostheses (FDPs), focusing on whether material performance is influenced by 3D-printer type or by differences in resin formulations. Specimens (N = 621) were printed. CAD/CAM blocks (BRILLIANT Crios) served as control. Flexural strength (FS) with elastic modulus (E_calc), Weibull modulus (m), Martens’ hardness (HM), indentation modulus (EIT), elastic modulus (E_RFDA), shear modulus (G_RFDA), and Poisson’s Ratio (ν) were measured initially, after water storage (24 h, 37 °C), and after thermocycling (5–55 °C, 10,000×). SEM analysis assessed microstructure. Data were analyzed using Kolmogorov–Smirnov, ANOVA with Scheffe post hoc, Kruskal–Wallis with Mann–Whitney U, and Weibull statistics with maximum likelihood (α = 0.05). A ceramic crown printed with Midas showed higher FS, HM, and EIT values after thermocycling than with Pro55s, and higher E_calc scores across all aging regimes. A Varseo Smile Crown Plus printed with VarseoXS and AsigaMax showed a higher FS value than TrixPrint2, while AsigaMax achieved the highest initial E_calc and E_RFDA values, and VarseoXS did so after thermocycling. HM, EIT, and G_RFDA were higher for TrixPrint2 and AsigaMax printed specimens, while ν varied by system and aging. 3Delta Crown, printed with AsigaMax, showed the highest FS, E_calc, HM, EIT, and m values after aging. VarseoSmile triniQ and Bridgetec showed the highest E_RFDA and G_RFDA values depending on aging, and Varseo Smile Crown Plus exhibited higher ν initially and post-aging. Printer system and resin formulation significantly influence the mechanical and aging behaviors of 3D-printed FDP materials, underscoring the importance of informed material and printer selection to ensure long-term clinical success. Full article
(This article belongs to the Special Issue Dental Biomaterials: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

35 pages, 5321 KB  
Article
Optimization of Artificial Neural Networks for Predicting the Radiological Risks of Thermal Waters in Türkiye
by Selin Erzin
Appl. Sci. 2025, 15(20), 10891; https://doi.org/10.3390/app152010891 - 10 Oct 2025
Abstract
In this study, the prediction of four radiological risk parameters of thermal waters in Türkiye (dose contribution (DE) from radon release in thermal water to air for workers and visitors, the annual effective dose from radon ingestion (Ding [...] Read more.
In this study, the prediction of four radiological risk parameters of thermal waters in Türkiye (dose contribution (DE) from radon release in thermal water to air for workers and visitors, the annual effective dose from radon ingestion (Ding) and the annual effective dose to the stomach from radon ingestion (Dsto)) from three physicochemical properties of thermal waters (electrical conductivity (EC), pH and temperature (T)) was investigated using multilayer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). To achieve this, two separate MLPANN and RBFANN models were constructed using data from the literature. The MLPANN and RBFANN models were verified using performance metrics (relative absolute error (RAE), root mean square error (RMSE), mean absolute error (MAE), and ratio of RMSE to data standard deviation (RSR)). The comparison of performance metrics shows that MLPANN models achieved approximately 54% lower error metrics than RBF models. The performance of the developed models was further examined using rank analysis, Taylor and Scaled Percentage Error (SPE) plots. Rank analysis and Taylor and SPE graphs showed that MLPANN models predicted the values of four radiological risk parameters of thermal waters more correctly than RBFANN models. This study demonstrates that MLPANNs significantly outperformed RBFANNs in predicting the radiological risks of thermal waters in Türkiye. Full article
(This article belongs to the Special Issue Measurement and Assessment of Environmental Radioactivity)
Show Figures

Figure 1

12 pages, 1141 KB  
Article
Bitumen Extraction from Bituminous Sands by Ultrasonic Irradiation
by Yerzhan Imanbayev, Yerdos Ongarbayev, Akerke Abylaikhan, Binur Mussabayeva, Dinara Muktaly and Zhannur Myltykbayeva
ChemEngineering 2025, 9(5), 109; https://doi.org/10.3390/chemengineering9050109 - 10 Oct 2025
Abstract
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration [...] Read more.
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration (1 wt.%) were optimized to achieve a maximum bitumen recovery of 98 wt.% within 8 min. The most effective sand-to-solution mass ratio was determined as 1:2, while the optimal process temperature was 75 °C. The application of ultrasound significantly enhances cavitation and reagent penetration, enabling efficient separation of bitumen with minimal chemical usage. Fourier-transform infrared (FTIR) spectroscopy and GC–MS analyses revealed the presence of aromatic hydrocarbons, paraffinic and naphthenic structures, as well as sulfur- and oxygen-containing functional groups (e.g., sulfoxides, carboxylic acids). These characteristics suggest moderate maturity and a high degree of aromaticity of the organic matter. Despite suitable thermal and compositional properties, the extracted bitumen exhibits a relatively low stiffness and softening point, indicating the need for additional upgrading (e.g., oxidation) prior to use in road construction. Although standard rheological tests (e.g., dynamic shear rhinometry) were not conducted in this study, the penetration and softening point values suggest a relatively soft binder, possibly unsuitable for high-temperature paving applications without modification. Future research will focus on rheological evaluation and oxidative upgrading to meet the ST RK 1373-2013 specification requirements. Full article
Show Figures

Figure 1

9 pages, 1430 KB  
Article
Real-Time Ultrasound-Guided Transurethral Incision for Posterior Urethral Valves
by Yudai Goto, Kouji Masumoto, Takato Sasaki, Yasuhisa Urita, Kazuki Shirane and Katsuhiko Ueoka
Children 2025, 12(10), 1365; https://doi.org/10.3390/children12101365 - 9 Oct 2025
Abstract
Background/Objectives: Transurethral incision (TUI) is a common procedure for posterior urethral valves (PUV). However, no standardized method has been established to assess its efficacy intraoperatively. In this study, we aimed to develop and evaluate a real-time ultrasound-guided TUI (RUG-TUI) technique. Methods: A [...] Read more.
Background/Objectives: Transurethral incision (TUI) is a common procedure for posterior urethral valves (PUV). However, no standardized method has been established to assess its efficacy intraoperatively. In this study, we aimed to develop and evaluate a real-time ultrasound-guided TUI (RUG-TUI) technique. Methods: A single-center, retrospective feasibility study with a cohort design was conducted using historical controls to compare RUG-TUI with standard TUI in children with PUV. Data from patients who underwent RUG-TUI for PUV between April 2021 and July 2022 or TUI without real-time ultrasound guidance between August 2020 and March 2021 (control group) were retrospectively reviewed. A transperineal linear probe provided longitudinal imaging. The diameters of the constricted (C) and expanded (E) portions of the urethra before and after the procedure were measured, and the E/C ratio was calculated. The primary outcome was the duration of postoperative gross hematuria, and the secondary outcomes included changes in the urethral diameter ratio (E/C ratio), intraoperative complications, and residual obstruction on VCUG. Results: The mean duration of post-procedure macroscopic hematuria was significantly shorter in the RUG-TUI group than in the control group (p = 0.049). No massive intraoperative bleeding or sphincter damage occurred. In the RUG-TUI group, the mean diameters of the constricted segment before and after the procedure were 3.0 (±1.0) and 5.7 (±1.2) mm, respectively, while the pre- and postoperative E/C ratios were 1.8 (±0.5) and 0.9 (±0.1), respectively (p < 0.0001). Conclusions: RUG-TUI for PUV enabled visualization of the longitudinal axis of the urethra, allowing assessment of the anatomical relationship between the stenosis and external urethral sphincter. In this retrospective feasibility cohort, RUG-TUI was associated with a shorter duration of postoperative gross hematuria. These exploratory findings suggest that RUG-TUI may support intraoperative evaluation of procedural adequacy. Full article
(This article belongs to the Section Pediatric Surgery)
Show Figures

Graphical abstract

19 pages, 1630 KB  
Article
Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics
by Ibrahim A. Abdelfadeel, Khaled D. Alotaibi, Fahad N. Alkoiak, Saud S. Aloud and Ronnel B. Fulleros
Processes 2025, 13(10), 3210; https://doi.org/10.3390/pr13103210 - 9 Oct 2025
Abstract
The composting of organic waste is a sustainable strategy for waste management and soil fertility improvement. However, the composting process is often associated with greenhouse gas (GHG) emissions, having a negative impact on the environment. This study investigated the effects of BC pyrolysis [...] Read more.
The composting of organic waste is a sustainable strategy for waste management and soil fertility improvement. However, the composting process is often associated with greenhouse gas (GHG) emissions, having a negative impact on the environment. This study investigated the effects of BC pyrolysis temperature (300 °C, 600 °C) and application rate (5% and 10%) on GHG emissions during the thermophilic phase and compost quality. The experimental treatments were a control and four BC treatments varying in pyrolysis temperature (300 °C, 600 °C) and application rate (5%, 10%). As a result, BC pyrolyzed at 600 °C and added at 10% (T2R2) resulted in the highest thermophilic temperature (63.5 ± 0.5 °C). This treatment significantly achieved substantial reductions in NH3, N2O, CH4, and CO2 emissions by 55 ± 2.7%, 50 ± 2.7%, 88 ± 4.2%, and 23 ± 2.3%, respectively, relative to the control. Compost quality was enhanced notably, with dry matter increasing to 46.4 ± 0.11% (T2R1), organic matter reaching 30.9 ± 0.05% in T2R1, and total nitrogen peaking at 0.8 ± 0.001% (T1R2). The C:N ratio decreased from 27:1 in the control to 21:1 in the treatment of T1R2, indicating an accelerated composting process. The NH4-N levels were the highest in T1R2 and T2R2 (659 ± 0.1 and 416 ± 0.2 mg kg−1), while EC increased to 9.5 ± 0.006 ms/cm (T2R1), and bulk density decreased to 410 ± 0.08 kg/m3 (T1R1). These results demonstrate that high-temperature biochar, especially at a rate of 10%, is effective in reducing emissions and improving compost quality. Future research should explore long-term effects and microbial mechanisms to optimize biochar use in composting systems. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

22 pages, 2355 KB  
Article
Evaluating Shear Strength of Reinforced Concrete Elements Containing Macro-Synthetic Fibers and Traditional Steel Reinforcement
by Benedikt Farag, Travis Thonstad and Paolo M. Calvi
Buildings 2025, 15(19), 3617; https://doi.org/10.3390/buildings15193617 - 9 Oct 2025
Viewed by 33
Abstract
This study investigates the shear behavior of concrete elements reinforced with both traditional steel reinforcement and macro-synthetic fibers, with an emphasis on evaluating the predictive capabilities of current shear design provisions. A review of available experimental data, involving 52 beams and 8 panel [...] Read more.
This study investigates the shear behavior of concrete elements reinforced with both traditional steel reinforcement and macro-synthetic fibers, with an emphasis on evaluating the predictive capabilities of current shear design provisions. A review of available experimental data, involving 52 beams and 8 panel specimens, revealed limitations in both quantity and consistency, hindering the formulation of robust design recommendations. To address this, an extensive parametric numerical study was conducted using the VecTor2 nonlinear finite element program, incorporating a recently developed modeling approach for PFRC shear response. A total of 288 simulations were carried out to explore the influence of fiber content, transverse reinforcement ratio, and concrete compressive strength, particularly in ranges not previously captured by experimental programs. The performance of existing design codes, including ACI, CSA, EC2, AASHTO, and the Fib Model Code, was assessed against both experimental data and the enriched parametric dataset. The Fib Model Code demonstrated the most reliable and consistent predictions, maintaining close alignment with reference strengths across all fiber contents, reinforcement ratios, and concrete strengths. AASHTO provisions performed moderately well, showing generally conservative and stable predictions, though some underestimation occurred for beams with higher shear reinforcement. In contrast, ACI and CSA models were consistently conservative, especially at higher concrete strengths, potentially leading to uneconomical designs. EC2 models exhibited the highest variability and least reliability, particularly in the presence of fibers, indicating limited applicability without modification. The results highlight that most conventional codes do not fully account for the synergistic action between fibers and transverse steel reinforcement, and that their reliability deteriorates for high-strength PFRC. These findings have practical implications for the design of PFRC elements, suggesting that the Fib Model Code may be the most suitable for current applications, whereas other provisions may require recalibration or modification. Future research should focus on expanding experimental datasets and developing unified design models that explicitly consider fiber–steel interactions, concrete strength, and fiber distribution. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
Enhanced Piezoelectric and Ferroelectric Properties in the Lead-Free [(BiFeO3)m/(SrTiO3)n]p Multilayers by Varying the Thickness Ratio r = n/m and Periodicity p
by Jonathan Vera Montes, Francisco J. Flores-Ruiz, Carlos A. Hernández-Gutiérrez, Enrique Camps, Enrique Campos-González, Gonzalo Viramontes Gamboa, Fernando Ramírez-Zavaleta and Dagoberto Cardona Ramírez
Coatings 2025, 15(10), 1170; https://doi.org/10.3390/coatings15101170 - 6 Oct 2025
Viewed by 246
Abstract
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically [...] Read more.
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically investigated using X-ray diffraction, AFM, and PFM. The BiFeO3 layers crystallized in a distorted rhombohedral phase (R3c), free of secondary phases. Compared to single-layer BiFeO3 films, the multilayers exhibited markedly lower leakage current densities and enhanced piezoelectric response. Electrical conduction transitioned from space-charge-limited current at low fields (E < 100 kV/cm) to Fowler–Nordheim tunneling at high fields (E > 100 kV/cm). Optimal performance was achieved for r = 0.30, p = 1, with minimal leakage (J = 8.64 A/cm2 at E = 400 kV/cm) and a peak piezoelectric coefficient (d33 = 55.55 pm/V). The lowest coercive field (Ec = 238 kV/cm) occurred in the configuration r = 0.45, p = 3. Saturated hysteresis loops confirmed stable ferroelectric domains. These findings demonstrate that manipulating layer geometry in [(BiFeO3)m/(SrTiO3)n]p stacks significantly enhances functional properties, offering a viable path toward efficient, lead-free piezoelectric nanodevices. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Graphical abstract

19 pages, 7802 KB  
Article
Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
by Thomas Hanemann, Martin Ade, Emine Cimen, Julia Schoenfelder, Kirsten Honnef, Matthias Wapler and Ines Ketterer
Ceramics 2025, 8(4), 126; https://doi.org/10.3390/ceramics8040126 - 4 Oct 2025
Viewed by 273
Abstract
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from [...] Read more.
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from 0.0 to 0.25 in 0.05 steps, due to the enhanced synthetic effort, and in the case of the SGP, x was set only to 0.05, 0.15, and 0.25. The resulting properties after synthesis, calcination, and sintering, like particle size distribution, specific surface area, particle morphology, and crystalline phase were characterized. The expected tetragonal phase, free from any remarkable impurity, was found in all cases, and irrespective of the selected synthesis method. Pressed pellets were used for the measurement of the temperature and frequency-dependent relative permittivity enabling the estimation of the Curie temperatures of all synthesized BSTs. Irrespective of the selected synthesis method, the obtained Curie temperature drops with increasing strontium content to almost identical values, e.g., in the case of x = 0.15, a Curie temperature range 95–105 °C was measured. Thin BST films could be deposited on different substrate materials applying electrophoretic deposition in a good and reliable quality according to the Hamaker equation. The properties of the BSTs obtained by the simpler solid-state route are almost identical to the ones yielded by the more complex sol–gel process. In future, this result allows for a possible wider usage of BST perovskites for ferroelectric and piezoelectric devices due to the easy synthetic access by the solid-state route. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

23 pages, 8881 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Viewed by 207
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
Show Figures

Figure 1

16 pages, 7612 KB  
Article
Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas
by Lulu Gao, Chao Zhang and Cheng Li
Land 2025, 14(10), 1986; https://doi.org/10.3390/land14101986 - 2 Oct 2025
Viewed by 270
Abstract
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland [...] Read more.
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland soil quality based on multi-source remote sensing data (Sentinel-2 MSI, GF-5 AHSI hyperspectral and field hyperspectral data). Soil organic matter content, salt content, and pH were selected as indicators of cultivated land soil quality in soda–saline soil areas. A threshold of 20% crop residue cover was set to mask high-cover areas, extracting bare soil information. The spectral indices SI1 and SI2 were utilized to predict the comprehensive grade of soil organic matter + salinity based on the cloud model (MEc = 0.74 and MEv = 0.68). The pH grade was predicted using the red-edge ratio vegetation index (RVIre) (MEc = 0.95 and MEv = 0.98). The short-board method was used to construct a soil quality evaluation system. The results indicate that 13.73% of the cultivated land in Da’an City is of high quality (grade 1), 80.63% is of medium quality (grades 2–3), and 5.65% is of poor quality (grade 4). This study provides a rapid assessment tool for the sustainable management of cultivated land in saline–alkali areas at the county level. Full article
(This article belongs to the Special Issue New Advance in Intensive Agriculture and Soil Quality)
Show Figures

Figure 1

29 pages, 5748 KB  
Article
Metatranscriptome Analysis of Sheep Rumen Reveals Methane Production Changes Induced by Moringa oleifera as a Dietary Supplement
by Alicia Alejandra Grijalva-Hinojos, Vicente Arnau, Wladimiro Díaz, Samuel Piquer, Daniel Díaz-Plascencia, Yamicela Castillo-Castillo, Joel Domínguez-Viveros and Perla Lucia Ordoñez-Baquera
Fermentation 2025, 11(10), 568; https://doi.org/10.3390/fermentation11100568 - 1 Oct 2025
Viewed by 869
Abstract
Global warming has become a significant public health concern, with intensive livestock farming as a major contributor. To mitigate greenhouse gas emissions, strategies such as manipulating the ruminal environment with dietary additives are essential. This study evaluated Moringa oleifera, a globally widespread [...] Read more.
Global warming has become a significant public health concern, with intensive livestock farming as a major contributor. To mitigate greenhouse gas emissions, strategies such as manipulating the ruminal environment with dietary additives are essential. This study evaluated Moringa oleifera, a globally widespread tree with antioxidant, multivitamin, protein-rich, and anti-inflammatory properties, as a feed additive. Rumen fluid was collected from three Pelibuey sheep, homogenized, and subjected to an in vitro fermentation study for 48 h with three alfalfa/moringa ratio treatments: T0 Control (100:0), T1 Low (85:15), and T2 High (70:30). Total RNA was extracted, followed by high-definition sequencing of the metatranscriptome. The sequencing yielded approximately 456 million sequences. A total of 117 phyla were identified and approximately 1300 genera were mapped. Predominant phylum differed by treatment: T0, Firmicutes; T1, Proteobacteria; and T2 with Synergistetes, at least one sample per treatment. Archaea were nearly absent in T1, which explains a statistically significant decrease in methane production. In the Gene Set Enrichment Analysis (GSEA), it was observed that one of the metabolic pathways with a statistically significant difference (p-value < 0.05) was that of methane, specifically in the low moringa treatment (T1) compared to the control (T0). From the functional analysis, differentially expressed enzymes were identified, some of which are involved in the methane metabolic pathway, such as formate dehydrogenase (EC 1.17.1.9) and glycine hydroxymethyltransferase (EC 2.1.2.1), which are intermediates in methane formation. These results suggest that 15% Moringa oleifera supplementation alters ruminal microbiota, reduces archaeal activity, and suppresses methane-related pathways. These findings provide molecular evidence supporting the potential of M. oleifera as a methane mitigation strategy in ruminant nutrition. Full article
(This article belongs to the Special Issue Ruminal Fermentation: 2nd Edition)
Show Figures

Figure 1

27 pages, 3330 KB  
Article
Revealing Short-Term Memory Communication Channels Embedded in Alphabetical Texts: Theory and Experiments
by Emilio Matricciani
Information 2025, 16(10), 847; https://doi.org/10.3390/info16100847 - 30 Sep 2025
Viewed by 290
Abstract
The aim of the present paper is to further develop a theory on the flow of linguistic variables making a sentence, namely, the transformation of (a) characters into words; (b) words into word intervals; and (c) word intervals into sentences. The relationship between [...] Read more.
The aim of the present paper is to further develop a theory on the flow of linguistic variables making a sentence, namely, the transformation of (a) characters into words; (b) words into word intervals; and (c) word intervals into sentences. The relationship between two linguistic variables is studied as a communication channel whose performance is determined by the slope of their regression line and by their correlation coefficient. The mathematical theory is applicable to any field/specialty in which a linear relationship holds between two variables. The signal-to-noise ratio Γ is a figure of merit of a channel being “deterministic”, i.e., a channel in which the scattering of the data around the regression line is negligible. The larger Γ is, the more the channel is “deterministic”. In conclusion, humans have invented codes whose sequences of symbols that make words cannot vary very much when indicating single physical or mental objects of their experience (larger Γ). On the contrary, large variability (smaller Γ) is achieved by introducing interpunctions to make word intervals, and word intervals make sentences that communicate concepts. This theory can inspire new research lines in cognitive science research. Full article
Show Figures

Figure 1

24 pages, 3215 KB  
Article
Biaxial Stretching of PBAT/PLA Blends for Improved Mechanical Properties
by Nikki Rodriguez, Osnat Gillor, Murat Guvendiren and Lisa Axe
Polymers 2025, 17(19), 2651; https://doi.org/10.3390/polym17192651 - 30 Sep 2025
Viewed by 230
Abstract
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer [...] Read more.
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer domains, thereby altering the mechanical performance of polymer blends. In this study, we employed a design of experiment (DoE) approach to investigate the effects of biaxial stretching at three drawing temperatures (Tds) and draw ratios (λs) on a biodegradable blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT), aiming to optimize both the strength and ductility. The DoE analysis revealed that the composition, the λ, the interaction between the λ and composition, and the interaction between the Td and composition significantly affect the elongation at break (εBreak). For the stress at break (σBreak), the most influential factors were the interaction between the λ and PLA concentration; a three-way interaction among the λ, PLA, and Td; the Td; the λ; and finally the PLA concentration alone. The optimal εBreak and σBreak were achieved at a λ = 5 × 5 and Td = 110 °C, with a composition of 10% PLA and 90% PBAT. The stretched samples exhibited higher crystallinity compared to the pressed samples across all compositions. This work demonstrates that in addition to the composition, the processing parameters, such as the λ and Td, critically influence the mechanical properties, enabling performance enhancements without the need for compatibilizers or toxic additives. Full article
Show Figures

Graphical abstract

Back to TopTop