Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics
Abstract
1. Introduction
2. Material and Methods
2.1. Biochar Production
Basic Characteristics of Biochar Products:
2.2. Compost Feedstock Preparation
2.3. Bioreactor Design and Treatment Application
2.4. Measurement of Temperature
2.5. Measurement of Greenhouse Gases and Ammonia Emissions
2.6. Compost Sampling and Analysis
2.7. Data Analysis
3. Results
3.1. Temperature
3.2. NH3 Emissions
3.3. N2O Emissions
3.4. CH4 Emissions
3.5. CO2 Emissions
3.6. Physiochemical Properties of Compost After Thermophilic Stage
4. Discussion
4.1. Temperature Across Treatments
4.2. Effects on NH3-N
4.3. Effects on GHGs (N2O, CH4, and CO2)
4.4. Effects on Compost Characteristics
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Sanderson, P.; Dang, B.T.; Bui, X.T.; Nguyen, N.S.H.; Vo, D.-V.N.; Tran, H.T. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 2022, 299, 134488. [Google Scholar] [CrossRef]
- Rathnayake, J. Greenhouse Gas Emission During Composting of Different Mixing Combinations of Natural Resource By-Products. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2023. [Google Scholar]
- Ussiri, D.A.; Lal, R. Historical and Contemporary Global Methane Cycling; Springer International Publishing: Cham, Switzerland, 2017; pp. 227–285. [Google Scholar]
- Fahad, S.; Arif, M.; Jan, T.; Riaz, M.; Rasul, F. Biochar; A Remedy for Climate Change; Springer: Berlin/Heidelberg, Germany, 2020; pp. 151–171. [Google Scholar]
- Zhang, C.; Liu, L.; Zhao, M.; Rong, H.; Xu, Y. The environmental characteristics and applications of biochar. Environ. Sci. Pollut. Res. 2018, 25, 21525–21534. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. CLEAN Soil Air Water 2012, 40, 1093–1098. [Google Scholar] [CrossRef]
- Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arab. J. Geosci. 2020, 13, 1–17. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Iqbal, R.; Deng, G. Biochar from agricultural waste as a strategic resource for promotion of crop growth and nutrient cycling of soil under drought and salinity stress conditions: A comprehensive review with context of climate change. J. Plant Nutr. 2025, 48, 1832–1883. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al–Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, C.; Li, M.; Zheng, Y.; Ge, C.; Gu, J.; Li, H.; Duan, M.; Wang, X.; Chen, R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Sci. Total. Environ. 2021, 798, 149294. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; Sommer, S.G.; Qin, W.; Ma, L. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Xiao, R.; Awasthi, M.K.; Li, R.; Park, J.; Pensky, S.M.; Wang, Q.; Wang, J.J.; Zhang, Z. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresour. Technol. 2017, 246, 203–213. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Duan, Y.; Awasthi, S.K.; Liu, T.; Zhang, Z. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting. Bioresour. Technol. 2020, 303, 122952. [Google Scholar] [CrossRef]
- Noor, R.S.; Shah, A.N.; Tahir, M.B.; Umair, M.; Nawaz, M.; Ali, A.; Ercisli, S.; Abdelsalam, N.R.; Ali, H.M.; Yang, S.H.; et al. Recent trends and advances in additive-mediated composting technology for agricultural waste resources: A comprehensive review. ACS Omega 2024, 9, 8632–8653. [Google Scholar] [CrossRef]
- Pires, A.J.; Esteves, C.; Bexiga, R.; Oliveira, M.; Fangueiro, D. Biochar Supplementation of Recycled Manure Solids: Impact on Their Characteristics and Greenhouse Gas Emissions During Storage. Agronomy 2025, 15, 973. [Google Scholar] [CrossRef]
- Stegenta-Dąbrowska, S.; Syguła, E.; Bednik, M.; Rosik, J. Effective carbon dioxide mitigation and improvement of compost nutrients with the use of composts’ biochar. Materials 2024, 17, 563. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 1–13. [Google Scholar]
- Haug, R.T. The Practical Handbook of Compost Engineering; Routledge: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Alkoaik, F.; Al-Faraj, A.; Al-Helal, I.; Fulleros, R.; Ibrahim, M.; Abdel-Ghany, A.M. Toward sustainability in rural areas: Composting palm tree residues in rotating bioreactors. Sustainability 2019, 12, 201. [Google Scholar] [CrossRef]
- Heimsch, L. Greenhouse Gas Fluxes and Carbon Balance in Finnish Agroecosystems that Utilise Regenerative Farming Practices. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2024. [Google Scholar]
- Brummell, M. Greenhouse gas production and consumption in soils of the Canadian High Arctic. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2015. [Google Scholar]
- US Composting Council. Test Methods for the Examination of Composting and Compost (TMECC); Thompson, W.H., Ed.; U.S. Government Printing Office: Washington, DC, USA, 2002. [Google Scholar]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Berendes, D.; Levy, K.; Knee, J.; Handzel, T.; Hill, V.R. Ascaris and Escherichia coli inactivation in an ecological sanitation system in Port-au-Prince, Haiti. PLoS ONE 2015, 10, e0125336. [Google Scholar] [CrossRef]
- Szabová, E.; Juriš, P.; Papajová, I. Sanitation composting process in different seasons. Ascaris suum as model. Waste Manag. 2010, 30, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.; de Neergaard, A.; Jensen, L.S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 2014, 97, 16–25. [Google Scholar] [CrossRef]
- Preneta, N.; Kramer, S.; Magloire, B.; Noel, J.M. Thermophilic co-composting of human wastes in Haiti. J. Water Sanit. Hyg. Dev. 2013, 3, 649–654. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef] [PubMed]
- López-Cano, I.; Roig, A.; Cayuela, M.L.; Alburquerque, J.A.; Sánchez-Monedero, M.A. Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag. 2016, 49, 553–559. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Singh, B.P.; Smillie, R.; Harden, S.; Fornasier, F. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag. 2017, 61, 129–137. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Dong, D.; Deng, H.; Strong, P.J.; Wang, H.; Wu, W. Insight into the effects of biochar on manure composting: Evidence supporting the relationship between N2O emission and denitrifying community. Environ. Sci. Technol. 2013, 47, 7341–7349. [Google Scholar] [CrossRef]
- Kaudal, B.B.; Weatherley, A.J. Agronomic effectiveness of urban biochar aged through co-composting with food waste. Waste Manag. 2018, 77, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Awasthi, M.K.; Wu, L.; Yan, Y.; Lv, J. Microbial driving mechanism of biochar and bean dregs on NH3 and N2O emissions during composting. Bioresour. Technol. 2020, 315, 123829. [Google Scholar] [CrossRef] [PubMed]
- Castro-Herrera, D.; Prost, K.; Kim, D.; Yimer, F.; Tadesse, M.; Gebrehiwot, M.; Brüggemann, N. Biochar addition reduces non-CO2 greenhouse gas emissions during composting of human excreta and cattle manure. J. Environ. Qual. 2023, 52, 814–828. [Google Scholar] [CrossRef]
- Chen, W.; Liao, X.; Wu, Y.; Liang, J.B.; Mi, J.; Huang, J.; Zhang, H.; Wu, Y.; Qiao, Z.; Li, X.; et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag. 2017, 61, 506–515. [Google Scholar] [CrossRef]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N.J.B.T. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting processes for agricultural waste management: A comprehensive review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Alburquerque, J.; Sánchez-Monedero, M.; Roig, A.; Cayuela, M. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresour. Technol. 2015, 192, 272–279. [Google Scholar] [CrossRef]
- Liu, W.; Huo, R.; Xu, J.; Liang, S.; Li, J.; Zhao, T.; Wang, S. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresour. Technol. 2017, 235, 43–49. [Google Scholar] [CrossRef]
- Khan, N.; Bolan, N.; Jospeh, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Borchard, N.; Sánchez-Monedero, M.A.; Jindo, K.; Solaiman, Z.M.; et al. Complementing compost with biochar for agriculture, soil remediation and climate mitigation. Adv. Agron. 2023, 179, 1–90. [Google Scholar]
- Wang, S.-P.; Wang, L.; Sun, Z.-Y.; Wang, S.-T.; Shen, C.-H.; Tang, Y.-Q.; Kida, K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresour. Technol. 2021, 337, 125492. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sánchez-Monedero, M.A.; Shea, S.; Meier, S.; Qi, F.; Kookana, R.S.; Bolan, N. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere 2016, 142, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F.; Marcet, P.; Asensio, V. Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. Environ. Monit. Assess. 2018, 190, 610. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Liang, J.; Zhang, C.; Dai, J.; Xiong, W.; Song, B.; Wu, S.; Yu, J. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 2019, 140, 278–285. [Google Scholar] [CrossRef]
Variables | Pyrolysis T (300) °C | Pyrolysis T (600) °C |
---|---|---|
pH | 6.84 | 8.75 |
EC (ds m−1) | 7.27 | 7.86 |
Total C (%) | 55.31 | 67.54 |
Total N (%) | 0.49 | 0.39 |
Total P (%) | 0.07 | 0.09 |
BET surface area (m2 g−1) | 3.72 | 162.94 |
Material | MC | C% | N% | C:N | Quantity (Q) | Total Mixture for Each Treatment Q/kg |
---|---|---|---|---|---|---|
Date palm residues | 7.3 | 43.51 | 0.75 | 58:1 | 12 kg | - |
Chicken manure | 9.63 | 43.88 | 2.9 | 15:1 | 6 kg | - |
Water | 100 | 0 | 0 | - | 23.4 L | |
Total (Treatment without biochar) | 41.4 (Bioreactor 1) | |||||
Quantity after biochar addition | ||||||
Biochar pyrolyzed at 300 °C (5%) | 0.9 kg | 42.3 (Bioreactor 2) | ||||
Biochar pyrolyzed at 300 °C (10%) | 1.8 kg | 43.2 (Bioreactor 3) | ||||
Biochar pyrolyzed at 600 °C (5%) | 0.9 kg | 42.3 (Bioreactor 4) | ||||
Biochar pyrolyzed at 600 °C (10%) | 1.8 kg | 43.2 (Bioreactor 5) | ||||
Confirmation | ||||||
C:N ratio after mixing | 28:1 | |||||
Mixture initial moisture content (%) | 60 |
Parameter | T0 | T1R1 | T1R2 | T2R1 | T2R2 | LSD |
---|---|---|---|---|---|---|
Dry matter (%) | 38.2 ± 0.6 c | 41.4 ± 0.7 b | 43.3 ± 1.2 b | 46.4 ± 0.11 a | 37.5 ± 0.5 c | 2.14 |
TN (%) | 0.5 ± 0.01 e | 0.6 ± 0.002 c | 0.8 ± 0.001 a | 0.7 ± 0.01 b | 0.6 ± 0.002 d | 0.03 |
NH4-N (mg kg−1) | 399.0 ± 0.5 c | 99.0 ± 0.06 e | 659.0 ± 0.1 a | 336.0 ± 0.3 d | 416.0 ± 0.2 b | 0.96 |
TP% | 0.2 ± 0.004 b | 0.2 ± 0.001 c | 0.2 ± 0.002 a | 0.2 ± 0.002 d | 0.2 ± 0.005 e | 0.003 |
TK% | 0.9 ± 0.002 b | 0.8 ± 0.003 d | 0.9 ± 0.006 c | 0.9 ± 0.002 a | 0.8 ± 0.006 d | 0.005 |
OM% | 26.3 ± 0.1 e | 28.1 ± 0.02 c | 29.2 ± 0.1 b | 30.9 ± 0.05 a | 26.7 ± 0.02 d | 0.35 |
pH | 8.5 ± 0.008 a | 8.3 ± 0.02 ab | 8.0 ± 0.008 b | 8.1 ± 0.2 a | 8.2 ± 0.002 ab | 0.34 |
EC ms/cm | 6.8 ± 0.01 e | 7.8 ± 0.005 d | 8.9 ± 0.002 b | 9.5 ± 0.006 a | 8.7 ± 0.008 c | 0.03 |
C:N | 27:1 ± 0.05 a | 26:1 ± 0.03 b | 21:1 ± 0.05 c | 26:1 ± 0.02 b | 26:1 ± 0.03 b | 0.05 |
NO3-N (mg kg−1) | 6.2 ± 0.08 a | 4.8 ± 0.02 c | 4.8 ± 0.01 c | 4.5 ± 0.02 d | 6.0 ± 0.08 b | 0.17 |
BD (kg m−3) | 496.0 ± 1.7 a | 410.0 ± 0.08 e | 487.0 ± 0.5 b | 429.0 ± 0.08 d | 438.0 ± 0.2 c | 2.8 |
S (mg kg−1) | 1788.6 ± 0.4 e | 2233.3 ± 0.3 b | 2412.0 ± 0.5 a | 2184.8 ± 0.3 c | 2086.2 ± 1.6 d | 2.4 |
Ca (%) | 1.8 ± 0.001 c | 1.9 ± 0.002 b | 2.1 ± 0.004 a | 1.7 ± 0.001 d | 1.7 ± 0.002 e | 0.004 |
Mg (%) | 0.2 ± 0.007 c | 0.3 ± 0.006 b | 0.3 ± 0.002 a | 0.2 ± 0.001 c | 0.2 ± 0.002 c | 0.011 |
B (mg kg−1) | 13.5 ± 0.1 d | 15.2 ± 0.05 b | 16.8 ± 0.05 a | 13.8 ± 0.02 c | 13.5 ± 0.05 cd | 0.27 |
Cu (mg kg−1) | 21.1 ± 5.4 b | 24.6 ± 0.11 a | 19.3 ± 0.02 ab | 24.1 ± 0.05 a | 17.6 ± 0.05 ab | 8.01 |
Fe (mg kg−1) | 1118.6 ± 0.11 e | 2479.4 ± 0.5 c | 3137.6 ± 0.9 b | 21,786.5 ± 1.3 a | 2996.7 ± 1.4 b | 3.1 |
Mn (mg kg−1) | 76.0 ± 0.2 d | 79.8 ± 0.02 c | 86.7 ± 0.2 b | 106.9 ± 0.02 a | 69.6 ± 0.02 e | 0.6 |
Zn (mg kg−1) | 66.0 ± 0.1 c | 65.8 ± 0.1 d | 76.9 ± 0.05 a | 67.8 ± 0.1 b | 57.8 ± 0.05 e | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelfadeel, I.A.; Alotaibi, K.D.; Alkoiak, F.N.; Aloud, S.S.; Fulleros, R.B. Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics. Processes 2025, 13, 3210. https://doi.org/10.3390/pr13103210
Abdelfadeel IA, Alotaibi KD, Alkoiak FN, Aloud SS, Fulleros RB. Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics. Processes. 2025; 13(10):3210. https://doi.org/10.3390/pr13103210
Chicago/Turabian StyleAbdelfadeel, Ibrahim A., Khaled D. Alotaibi, Fahad N. Alkoiak, Saud S. Aloud, and Ronnel B. Fulleros. 2025. "Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics" Processes 13, no. 10: 3210. https://doi.org/10.3390/pr13103210
APA StyleAbdelfadeel, I. A., Alotaibi, K. D., Alkoiak, F. N., Aloud, S. S., & Fulleros, R. B. (2025). Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics. Processes, 13(10), 3210. https://doi.org/10.3390/pr13103210