Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Drosera

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 857 KiB  
Review
Officinal Plants as New Frontiers of Cosmetic Ingredients
by Annabella Vitalone, Lucia D’Andrea, Antonella Di Sotto, Alessandra Caruso and Rita Parente
Cosmetics 2025, 12(4), 140; https://doi.org/10.3390/cosmetics12040140 - 3 Jul 2025
Viewed by 817
Abstract
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores [...] Read more.
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores a curated selection of medicinal plants widely used or emerging in dermocosmetics, highlighting their phytochemical composition, mechanisms of action, and experimental support. A narrative literature review was conducted using databases such as PubMed and Scopus, targeting studies on topical cosmetic applications. Results show that many officinal plants, including Camellia sinensis, Panax ginseng, and Mentha piperita, offer antioxidant, anti-inflammatory, antimicrobial, photoprotective, and anti-aging benefits. Less conventional species, such as Drosera ramentacea and Kigelia africana, demonstrated depigmenting and wound-healing potential. In particular, bioactive constituents like flavonoids, iridoids, saponins, and polyphenols act on key skin targets such as COX-2, MMPs, tyrosinase, and the Nrf2 pathway. These findings underscore the potential of botanical extracts to serve as effective, natural, and multifunctional agents in modern skincare. While only Mentha piperita is currently recognized as a traditional herbal medicinal product for dermatological use, this research supports the broader dermocosmetic integration of these species. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

40 pages, 1645 KiB  
Review
The Occurrence, Uses, Biosynthetic Pathway, and Biotechnological Production of Plumbagin, a Potent Antitumor Naphthoquinone
by Polavarapu B. Kavi Kishor, Bangaru Naidu Thaddi, Rajasheker Guddimalli, Tukaram Dayaram Nikam, Krothapalli Raja Surya Sambasiva Rao, Rupasree Mukhopadhyay and Prashant Singam
Molecules 2025, 30(7), 1618; https://doi.org/10.3390/molecules30071618 - 4 Apr 2025
Viewed by 1165
Abstract
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin [...] Read more.
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin synthesis are not completely known, but details of these are being revealed. Several species, including Plumbago, Drosera, and others, are being uprooted for the extraction of plumbagin by pharmaceutical industries, leading to the destruction of natural habitats. The pharmaceutical industry is therefore facing an acute shortage of plant material. This necessitates enhancing the accumulation of plumbagin using suspensions and hairy roots to meet market demands. Many factors, such as the aggregate size of the inoculum, stability of the culture, and the sequential effects of elicitors, immobilization, and permeabilization, have been demonstrated to act synergistically and markedly augment plumbagin accumulation. Hairy root cultures can be used for the large-scale production, growth, and plumbagin accumulation, and the exploration of their efficacy is now imperative. The secretion of compounds into the spent medium and their in situ adsorption via resin has remarkable potential, but this has not been thoroughly exploited. Improvements in the quality of biomass, selection of cell lines, and production of plumbagin in bioreactors have thus far been sporadic, and these parameters need to be further exploited. In this review, we report the advances made relating to the importance of stable cell line selection for the accumulation of compounds in long-term cultures, hairy root cultures for the accumulation of plumbagin, and its semicontinuous production via total cell recycling in different types of bioreactors. Such advances might pave the way for industrial exploitation. The steps in the biosynthetic pathway that are currently understood might also aid us in isolating the relevant genes in order to examine the effects of their overexpression or heterologous downregulation or to edit the genome using CRISPR-Cas9 technology in order to enhance the accumulation of plumbagin. Its potential as an anticancer molecule and its mode of action have been amply demonstrated, but plumbagin has not been exploited in clinics due to its insolubility in water and its highly lipophilic nature. Plumbagin-loaded nanoemulsions, plumbagin–silver, or albumin nanoparticle formulations can overcome these problems relating to its solubility and are currently being tried to improve its bioavailability and antiproliferative activities, as discussed in the current paper. Full article
Show Figures

Graphical abstract

38 pages, 15903 KiB  
Review
Selected Medicinal Plants Used in the Treatment and Management of Tuberculosis and Related Symptoms in South Africa
by Makosha P. Mamabolo, Babalwa Tembeni, Xavier Siwe Noundou and Nontobeko P. Mncwangi
Pharmaceuticals 2025, 18(4), 513; https://doi.org/10.3390/ph18040513 - 31 Mar 2025
Viewed by 680
Abstract
Background/Objectives: Medicinal plants are used around the globe to treat and/or manage various medical conditions, including respiratory diseases such as tuberculosis, which affect the lower respiratory tract, with its related symptoms being treated and/or managed using medicinal plants. This review collates the [...] Read more.
Background/Objectives: Medicinal plants are used around the globe to treat and/or manage various medical conditions, including respiratory diseases such as tuberculosis, which affect the lower respiratory tract, with its related symptoms being treated and/or managed using medicinal plants. This review collates the available literature pertaining to the medicinal uses and phytochemistry of Carpobrotus edulis, Drosera capensis, Pelargonium reniforme, and Tulbaghia violacea used for the treatment and management of tuberculosis in South Africa. The abovementioned plants were selected based on their long history of use, anecdotal evidence, and the scientific data available. Methods: Data to compile this review article were sourced and analyzed from Google Scholar, Pubmed, ScienceDirect, and textbooks published from 2000 to 2022. The search terms included the plant and genus names of each species, tuberculosis, and Mycobacterium tuberculosis. Results: The data obtained indicate that the plants do not only have an effect on Mycobacterium tuberculosis, but also on other conditions, including cough, colds, eczema, infections, and asthma, which are differential diagnoses in suspected tuberculosis cases. The literature indicates that extracts from the four plants under review have antimicrobial activity, with MICs ranging between 0.20 and 50.00 mg/mL. The major classes of phytochemicals identified from the four medicinal plants included flavonoids, naphthoquinone, terpenoids, and sulfur-containing compounds. Conclusions: The literature review on the plants reveals that they are also used to treat other lower-respiratory ailments, including cough and fever, which may be signs and symptoms of TB. The literature review reveals that medicinal plants contain valuable phytochemicals which may be strong drug leads to combat the tuberculosis epidemic. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 9452 KiB  
Article
Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera
by Wojciech Makowski, Kinga Mrzygłód, Agnieszka Szopa, Paweł Kubica, Marta Krychowiak-Maśnicka, Krzysztof Michał Tokarz, Barbara Tokarz, Iga Ryngwelska, Ewa Paluszkiewicz and Aleksandra Królicka
Biomolecules 2024, 14(9), 1132; https://doi.org/10.3390/biom14091132 - 7 Sep 2024
Cited by 1 | Viewed by 1680
Abstract
Sundews (Drosera sp.) are the source of biologically active secondary metabolites: phenolic acids, flavonoids, and 1,4-naphtoquinones. Because obtaining them from the natural environment is impossible (rare and endangered species), in this study modifications of traditional tissue cultures grown in solid medium (SM), [...] Read more.
Sundews (Drosera sp.) are the source of biologically active secondary metabolites: phenolic acids, flavonoids, and 1,4-naphtoquinones. Because obtaining them from the natural environment is impossible (rare and endangered species), in this study modifications of traditional tissue cultures grown in solid medium (SM), such as agitated cultures (ACs) (cultures in liquid medium with rotary shaking) and temporary immersion bioreactors PlantformTM (TIB), were used for multiplication of four sundew species: Drosera peltata, Drosera indica, Drosera regia, and Drosera binata, with simultaneously effective synthesis of biologically active phenolic compounds. Each species cultivated on SM, AC, and TIB was tested for biomass accumulation, the content of total phenols and selected phenolic derivative concentrations (DAD-HPLC), the productivity on of phenolic compounds, as well as its antibacterial activity against two human pathogens: Staphylococcus aureus and Escherichia coli. The results showed that the type of culture should be selected for each species separately. Phytochemical analyses showed that the synthesis of secondary metabolites from the groups of phenolic acids, flavonoids, and 1,4-naphthoquinones can be increased by modifying the cultivation conditions. D. regia turned out to be the richest in phenolic compounds, including 1,4-naphtoquinones: plumbagin and ramentaceone. Extracts from D. indica and D. regia tissue showed strong antibacterial activity against both pathogens. It has also been shown that the growth conditions of sundews can modify the level of secondary metabolites, and thus, their biological activity. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 1694 KiB  
Review
Distribution of Acetogenic Naphthoquinones in Droseraceae and Their Chemotaxonomic Utility
by Jan Schlauer, Andreas Fleischmann, Siegfried R. H. Hartmeyer, Irmgard Hartmeyer and Heiko Rischer
Biology 2024, 13(2), 97; https://doi.org/10.3390/biology13020097 - 3 Feb 2024
Cited by 1 | Viewed by 3504
Abstract
Chemotaxonomy is the link between the state of the art in analytical chemistry and the systematic classification and phylogenetic analysis of biota. Although the characteristic secondary metabolites from diverse biotic sources have been used in pharmacology and biological systematics since the dawn of [...] Read more.
Chemotaxonomy is the link between the state of the art in analytical chemistry and the systematic classification and phylogenetic analysis of biota. Although the characteristic secondary metabolites from diverse biotic sources have been used in pharmacology and biological systematics since the dawn of mankind, only comparatively recently established reproducible methods have allowed the precise identification and distinction of structurally similar compounds. Reliable, rapid screening methods like TLC (Thin Layer Chromatography) can be used to investigate sufficiently large numbers of samples for chemotaxonomic purposes. Using distribution patterns of mutually exclusive naphthoquinones, it is demonstrated in this review how a simple set of chemical data from a representative sample of closely related species in the sundew family (Droseraceae, Nepenthales) provides taxonomically and phylogenetically informative signal within the investigated group and beyond. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

23 pages, 5920 KiB  
Article
Effects of Environmental Conditions on the Individual Architectures and Photosynthetic Performances of Three Species in Drosera
by Krzysztof Banaś, Rafał Ronowski and Paweł Marciniak
Int. J. Mol. Sci. 2023, 24(12), 9823; https://doi.org/10.3390/ijms24129823 - 6 Jun 2023
Cited by 3 | Viewed by 2462
Abstract
The aim of this study was to determine the environmental conditions, individual architectures, and photosynthetic efficiencies of three sundew species: Drosera rotundifolia, D. anglica, and D. intermedia, found in well-preserved peatlands and sandy lake shores in NW Poland. Morphological traits [...] Read more.
The aim of this study was to determine the environmental conditions, individual architectures, and photosynthetic efficiencies of three sundew species: Drosera rotundifolia, D. anglica, and D. intermedia, found in well-preserved peatlands and sandy lake shores in NW Poland. Morphological traits and chlorophyll a fluorescence (Fv/Fm) were measured in 581 individuals of Drosera. D. anglica occupies the best-lit and warmest habitats, and also those that are the most heavily hydrated and the richest in organic matter; its rosettes are larger under conditions of higher pH, less organic matter, and less well-lit habitats. D. intermedia occupies substrates with the highest pH but the lowest conductivity, the poorest level of organic matter, and the least hydration. It is highly variable in terms of individual architecture. D. rotundifolia occupies habitats that are the most diverse, and that are often poorly lit, with the lowest pH but the highest conductivity. It is the least variable in terms of individual architecture. The value of the Fv/Fm ratio in Drosera is low (0.616 ± 0.137). The highest photosynthetic efficiency is achieved by D. rotundifolia (0.677 ± 0.111). It is significant for all substrates, indicating its high phenotypic plasticity. The other species have lower and similar Fv/Fm values (D. intermedia, 0.571 ± 0.118; D. anglica, 0.543 ± 0.154). Due to its very low photosynthetic efficiency, D. anglica avoids competition by occupying highly hydrated habitats. D. intermedia has adapted to the occupation of highly variable habitats in terms of hydration, while D. rotundifolia is primarily adapted to variable light conditions. Full article
(This article belongs to the Special Issue Carnivorous Plant Biology: From Gene to Traps)
Show Figures

Figure 1

11 pages, 3314 KiB  
Article
Water Cannot Activate Traps of the Carnivorous Sundew Plant Drosera capensis: On the Trail of Darwin’s 150-Years-Old Mystery
by Andrej Pavlovič, Ondřej Vrobel and Petr Tarkowski
Plants 2023, 12(9), 1820; https://doi.org/10.3390/plants12091820 - 28 Apr 2023
Cited by 5 | Viewed by 2901
Abstract
In his famous book Insectivorous plants, Charles Darwin observed that the bending response of tentacles in the carnivorous sundew plant Drosera rotundifolia was not triggered by a drop of water, but rather the application of many dissolved chemicals or mechanical stimulation. In [...] Read more.
In his famous book Insectivorous plants, Charles Darwin observed that the bending response of tentacles in the carnivorous sundew plant Drosera rotundifolia was not triggered by a drop of water, but rather the application of many dissolved chemicals or mechanical stimulation. In this study, we tried to reveal this 150-years-old mystery using methods not available in his time. We measured electrical signals, phytohormone tissue level, enzyme activities and an abundance of digestive enzyme aspartic protease droserasin in response to different stimuli (water drop, ammonia, mechanostimulation, chitin, insect prey) in Cape sundew (Drosera capensis). Drops of water induced the lowest number of action potentials (APs) in the tentacle head, and accumulation of jasmonates in the trap was not significantly different from control plants. On the other hand, all other stimuli significantly increased jasmonate accumulation; the highest was found after the application of insect prey. Drops of water also did not induce proteolytic activity and an abundance of aspartic protease droserasin in contrast to other stimuli. We found that the tentacles of sundew plants are not responsive to water drops due to an inactive jasmonic acid signalling pathway, important for the induction of significant digestive enzyme activities. Full article
(This article belongs to the Special Issue Plant Signaling, Behavior and Communication)
Show Figures

Figure 1

20 pages, 2869 KiB  
Review
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites
by Magdalena Wójciak, Marcin Feldo, Piotr Stolarczyk and Bartosz J. Płachno
Molecules 2023, 28(5), 2155; https://doi.org/10.3390/molecules28052155 - 24 Feb 2023
Cited by 14 | Viewed by 5934
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. [...] Read more.
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase. Full article
(This article belongs to the Special Issue Plant Metabolites: Accumulation, Profiling and Bioactivity)
Show Figures

Figure 1

57 pages, 10155 KiB  
Article
Small Leaves, Big Diversity: Citizen Science and Taxonomic Revision Triples Species Number in the Carnivorous Drosera microphylla Complex (D. Section Ergaleium, Droseraceae)
by Thilo Krueger, Alastair Robinson, Greg Bourke and Andreas Fleischmann
Biology 2023, 12(1), 141; https://doi.org/10.3390/biology12010141 - 16 Jan 2023
Cited by 11 | Viewed by 13222
Abstract
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over [...] Read more.
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over two decades, detailed studies of both Australian and European herbaria and consideration of both crucial contributions by citizen scientists and social media observations, nine species of the D. microphylla complex are here described and illustrated, including four new species: D. atrata, D. hortiorum, D. koikyennuruff, and D. reflexa. The identities of the previously described infraspecific taxa D. calycina var. minor and D. microphylla var. macropetala are clarified. Both are here lectotypified, reinstated, and elevated to species rank. A replacement name, D. rubricalyx, is provided for the former taxon. Key morphological characters distinguishing the species of this complex include the presence or absence of axillary leaves, lamina shape, petal colour, filament shape, and style length. A detailed identification key, comparison figures, and a distribution map are provided. Six of the nine species are recommended for inclusion on the Priority Flora List under the Conservation Codes for Western Australian Flora and Fauna. Full article
(This article belongs to the Special Issue Advances in Plant Taxonomy and Systematics)
Show Figures

Graphical abstract

17 pages, 2533 KiB  
Article
Quantification of Protein Uptake by Endocytosis in Carnivorous Nepenthales
by Caroline Ivesic, Stefanie Krammer, Marianne Koller-Peroutka, Aicha Laarouchi, Daniela Gruber, Ingeborg Lang, Irene K. Lichtscheidl and Wolfram Adlassnig
Plants 2023, 12(2), 341; https://doi.org/10.3390/plants12020341 - 11 Jan 2023
Cited by 4 | Viewed by 2201
Abstract
Carnivorous plants adsorb prey-derived nutrients partly by endocytosis. This study quantifies endocytosis in Drosophyllum lusitanicum, Drosera capensis, Drosera roseana, Dionaea muscipula and Nepenthes × ventrata. Traps were exposed to 1% fluorescent-labeled albumin (FITC-BSA), and uptake was quantified repeatedly for 64 h. Formation of [...] Read more.
Carnivorous plants adsorb prey-derived nutrients partly by endocytosis. This study quantifies endocytosis in Drosophyllum lusitanicum, Drosera capensis, Drosera roseana, Dionaea muscipula and Nepenthes × ventrata. Traps were exposed to 1% fluorescent-labeled albumin (FITC-BSA), and uptake was quantified repeatedly for 64 h. Formation of vesicles started after ≤1 h in adhesive traps, but only after 16 h in species with temporary stomach (D. muscipula and N. × ventrata). In general, there are similarities in the observed species, especially in the beginning stages of endocytosis. Nonetheless, further intracellular processing of endocytotic vesicles seems to be widely different between species. Endocytotic vesicle size increased significantly over time in all species except in D. capensis. Fluorescence intensity of the endocytotic vesicles increased in all species except D. muscipula. After 64 h, estimates for FITC-BSA absorption per gland ranged from 5.9 ± 6.3 ng in D. roseana to 47.8 ± 44.3 ng in N. × ventrata, demonstrating that endocytosis substantially contributes to the adsorption of prey-derived nutrients. Full article
(This article belongs to the Special Issue Advances in Carnivorous and Parasitic Plants)
Show Figures

Figure 1

11 pages, 4043 KiB  
Article
Snatching Sundews—Analysis of Tentacle Movement in Two Species of Drosera in Terms of Response Rate, Response Time, and Speed of Movement
by Caroline Ivesic, Wolfram Adlassnig, Marianne Koller-Peroutka, Linda Kress and Ingeborg Lang
Plants 2022, 11(23), 3212; https://doi.org/10.3390/plants11233212 - 23 Nov 2022
Cited by 2 | Viewed by 3609
Abstract
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and [...] Read more.
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and electrical stimulation with respect to response rate, response time, and angular velocity of bending. Compared to D. rotundifolia, D. allantostigma responds more frequently and faster; the tentacles bend with higher angular velocity. Snap-tentacles have a lower response rate, shorter response time, and faster angular velocity. The response rates for chemical and electrical stimuli are similar, and higher than the rates for mechanical stimulus. The response time is not dependent on stimulus type. The higher motility in D. allantostigma indicates increased dependence on mechanical prey capture, and a reduced role of adhesive mucilage. The same tentacle types are present in both species and show similar motility patterns. The lower response rate of snap-tentacles might be a safety measure against accidental triggering, since the motion of snap-tentacles is irreversible and tissue destructive. Furthermore, tentacles seem to discern stimuli and respond specifically. The established model of stereotypical tentacle movement may not fully explain these observations. Full article
(This article belongs to the Special Issue Advances in Carnivorous and Parasitic Plants)
Show Figures

Figure 1

19 pages, 3286 KiB  
Article
Antibiofilm Activity of Sundew Species against Multidrug-Resistant Escherichia coli Strains
by Sandy Gerschler, Sebastian Guenther and Christian Schulze
Int. J. Mol. Sci. 2022, 23(22), 13720; https://doi.org/10.3390/ijms232213720 - 8 Nov 2022
Cited by 11 | Viewed by 2725
Abstract
Species of the genus Drosera, known for carnivorous plants, such as sundew, have been traditionally used for centuries as medicinal plants. Efficacy-determining compounds are naphthoquinones and flavonoids. Flavonoids possess a broad spectrum of bioactive properties, including biofilm inhibitory activity. Biofilms render antibiotics [...] Read more.
Species of the genus Drosera, known for carnivorous plants, such as sundew, have been traditionally used for centuries as medicinal plants. Efficacy-determining compounds are naphthoquinones and flavonoids. Flavonoids possess a broad spectrum of bioactive properties, including biofilm inhibitory activity. Biofilms render antibiotics ineffective, contributing to the current rise in antimicrobial resistance. In this study, the biofilm inhibitory activity of two European sundew species (Drosera rotundifolia and Drosera intermedia) grown agriculturally in Germany and four commercial sundew products (declared as Drosera longifolia, Drosera sp. and Drosera planta trit.) against three multidrug-resistant Escherichia coli strains was tested. The aim of the study was to comparatively investigate the biofilm inhibitory potential of sundew species extracts grown locally in northern Germany and commercial sundew products. The minimum biofilm inhibitory concentration of the European sundew species was approx. 35 µg mL−1. In comparison, commercial sundew products ranged in concentration from 75 to 140 µg mL−1. Additionally, individual compounds isolated from European sundew were tested. Among these compounds, biofilm inhibitory activity was determined for four of the eight substances, with 2″-O-galloyl hyperoside standing out for its activity (38 µg mL−1). The whole plant extracts of Drosera rotundifolia and Drosera intermedia proved to be more effective than the commercial products and the single compounds in its biofilm inhibition activity against Escherichia coli strains. Sundew extracts may serve as a potential therapeutic approach for targeting biofilm production. Full article
Show Figures

Figure 1

13 pages, 2353 KiB  
Article
Bioinspired High-Performance Bilayer, pH-Responsive Hydrogel with Superior Adhesive Property
by Shulan Jiang and Li Xia
Polymers 2022, 14(20), 4425; https://doi.org/10.3390/polym14204425 - 19 Oct 2022
Cited by 12 | Viewed by 2739
Abstract
Soft actuators have attracted extensive attention for promising applications in drug delivery, microfluidic switches, artificial muscles and flexible sensors. However, the performance of pH-responsive hydrogel actuators, such as regarding reversible bending property and adhesive property, remains to be improved. In this study, inspired [...] Read more.
Soft actuators have attracted extensive attention for promising applications in drug delivery, microfluidic switches, artificial muscles and flexible sensors. However, the performance of pH-responsive hydrogel actuators, such as regarding reversible bending property and adhesive property, remains to be improved. In this study, inspired by drosera leaves, we have fabricated high-performance bilayer, pH-responsive poly(acrylamide-acrylic acid-3-acrylamidophenylboronic acid)(P(AAm-AAc-3-AAPBA)) based on the copolymers of AAm, AAc and 3-AAPBA. The pH-sensitive actuators were fabricated by ultraviolet polymerization of the P(AAm-AAc-3-AAPBA) layer as the active actuating layer and the PAAm layer as the auxiliary actuating layer. The effects of pH, glucose concentration and content of 3-AAPBA on bending behavior of P(AAm-AAc-3-AAPBA)/PAAm bilayer actuators were discussed. By tuning the pH of media, the soft actuator could achieve fast and large-amplitude bidirectional bending behaviors. The bending orientation and bending degree can be reversibly and precisely adjusted. More importantly, P(AAm-AAc-3-AAPBA) hydrogel shows good adhesive property in polyvinyl alcohol (PVA) solution; thus, complex structures have been fabricated. In addition, the bilayer hydrogel structures have been demonstrated as soft actuators, bionic flowers and bionic manipulators. The proposed pH-responsive bilayer actuator shows great potential for drug delivery and other medical systems. Full article
(This article belongs to the Special Issue Functional Polymer Materials)
Show Figures

Figure 1

18 pages, 3074 KiB  
Article
Effects of Extracts and Flavonoids from Drosera rotundifolia L. on Ciliary Beat Frequency and Murine Airway Smooth Muscle
by Alexander Hake, Frank Begrow, Verena Spiegler, Nico Symma, Andreas Hensel and Martina Düfer
Molecules 2022, 27(19), 6622; https://doi.org/10.3390/molecules27196622 - 5 Oct 2022
Cited by 7 | Viewed by 3194
Abstract
Extracts from Drosera rotundifolia are traditionally used to treat cough symptoms during a common cold. The present study aimed to investigate the impact of extracts from D. rotundifolia and active compounds on the respiratory tract. Tracheal slices of C57BL/6N mice were used ex [...] Read more.
Extracts from Drosera rotundifolia are traditionally used to treat cough symptoms during a common cold. The present study aimed to investigate the impact of extracts from D. rotundifolia and active compounds on the respiratory tract. Tracheal slices of C57BL/6N mice were used ex vivo to examine effects on airway smooth muscle (ASM) and ciliary beat frequency (CBF). Phosphodiesterase (PDE) inhibition assays were carried out to test whether PDE1 or PDE4 are targeted by the active compounds. An ethanol–water extract, as well as an aqueous fraction of this extract, exerted antispasmodic properties against acetylcholine-induced contractions. In addition, contractions induced by 60 mM K+ were abrogated by the aqueous fraction. Effects on ASM could be attributed to the flavonoids quercetin, 2″-O-galloylhyperoside and hyperoside. Moreover, the Drosera extract and the aqueous fraction increased the CBF of murine tracheal slices. Quercetin and 2″-O-galloylhyperoside were identified as active compounds involved in the elevation of CBF. Both compounds inhibited PDE1A and PDE4D. The elevation of CBF was mimicked by the subtype-selective PDE inhibitor rolipram (PDE4) and by 8-methoxymethyl-IBMX. In summary, our study shows, for the first time, that a Drosera extract and its flavonoid compounds increase the CBF of murine airways while antispasmodic effects were transferred to ASM. Full article
(This article belongs to the Special Issue Bioactive Compounds: From Extraction to Biological Evaluations)
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Active Protection of Endangered Species of Peat Bog Flora (Drosera intermedia, D. anglica) in the Łęczna-Włodawa Lake District
by Joanna Sender, Monika Różańska-Boczula and Danuta Urban
Water 2022, 14(18), 2775; https://doi.org/10.3390/w14182775 - 6 Sep 2022
Cited by 4 | Viewed by 2603
Abstract
Protecting endangered plant species is crucial to maintaining biodiversity. Currently, there is a rapid decline in the populations of many moisture-loving plant species throughout Poland. These include the entire genus Drosera, so this paper attempts to determine the main reasons for the [...] Read more.
Protecting endangered plant species is crucial to maintaining biodiversity. Currently, there is a rapid decline in the populations of many moisture-loving plant species throughout Poland. These include the entire genus Drosera, so this paper attempts to determine the main reasons for the decline of Drosera intermedia and Drosera anglica in the Łęczna-Włodawa Lake District. For this purpose, the habitat conditions, climatic factors of the sites, as well as the vegetation of their current and historically abundant occurrence were compared, and it was shown that an important reason for the receding of sundews may be changes associated with rising temperatures in the study area. In the case of Drosera anglica, a clear preference was observed for colonising sites associated with the shoreline of lakes, more hydrated and almost devoid of companion plants. For Droseraintermedia, on the other hand, it was revealed that it acclimatises to mid-forest peatlands, rich in magnesium, nitrogen, phosphorus, and manganese, with moderate carbon content, medium levels of groundwater and air temperature, and low concentrations of organic matter. In addition, it was noted that sundew sites are characterised by lower diversity indices but a greater number of rare and protected species and significantly lower concentrations of iron and potassium. Full article
Show Figures

Graphical abstract

Back to TopTop