Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Dpy30

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7474 KiB  
Article
Photophysical Properties and Metal Ion Sensing of a Pyrene-Based Liquid Crystalline Dimer
by Mihaela Homocianu and Elena Perju
Int. J. Mol. Sci. 2025, 26(6), 2566; https://doi.org/10.3390/ijms26062566 - 13 Mar 2025
Viewed by 619
Abstract
This study investigates the liquid crystalline behavior, photophysical properties, and metal ion sensing capabilities of a pyrene-based imine dimer (DPyH9). The compound exhibits monotropic nematic mesophase behavior, with a glass transition at 43 °C, as confirmed by polarized light microscopy (PLM) and differential [...] Read more.
This study investigates the liquid crystalline behavior, photophysical properties, and metal ion sensing capabilities of a pyrene-based imine dimer (DPyH9). The compound exhibits monotropic nematic mesophase behavior, with a glass transition at 43 °C, as confirmed by polarized light microscopy (PLM) and differential scanning calorimetry (DSC). Its photophysical properties, including UV-vis absorption, solvatochromic fluorescence, and acidochromism, observed through spectral shifts upon HCl addition, were systematically analyzed. Notably, DPyH9 displayed selective metal ion sensing capabilities towards Sn2+ and Cu2+ with binding constants of 4.51 × 106 M−1 and 4.03 × 107 M−1 and detection limits of 1.61 × 10−5 M (Sn2+) and 4.73 × 10−5 M (Cu2+). Fluorescence titrations revealed distinct responses: Sn2+ induced an initial quenching and an enhancement at higher concentrations, while Cu2+ caused significant fluorescence quenching. These results therefore highlight DPyH9 as a potential candidate for sensing applications and optoelectronic devices. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
Comprehensive Analysis of Methylome and Transcriptome to Identify Potential Genes Regulating Porcine Testis Development
by Yue Feng, Yu Zhang, Junjing Wu, Mu Qiao, Jiawei Zhou, Zhong Xu, Zipeng Li, Hua Sun, Xianwen Peng and Shuqi Mei
Int. J. Mol. Sci. 2024, 25(16), 9105; https://doi.org/10.3390/ijms25169105 - 22 Aug 2024
Cited by 2 | Viewed by 1497
Abstract
DNA methylation plays a critical role in regulating gene expression during testicular development. However, few studies report on candidate genes related to the DNA methylation regulation of porcine testicular development. This study examined the differentially expressed genes (DEGs) and their methylation levels in [...] Read more.
DNA methylation plays a critical role in regulating gene expression during testicular development. However, few studies report on candidate genes related to the DNA methylation regulation of porcine testicular development. This study examined the differentially expressed genes (DEGs) and their methylation levels in testicular tissues from pigs at 60 days of age (60 d) and 180 days of age (180 d) using RNA-Seq and whole genome bisulfite sequencing (WGBS). It was determined that DNA methylation primarily occurs in the cytosine–guanine (CG) context, and the analysis identified 106,282 differentially methylated regions (DMRs) corresponding to 12,385 differentially methylated genes (DMGs). Further integrated analysis of RNA-Seq and WGBS data revealed 1083 DMGs negatively correlated with the expression of DEGs. GO analysis showed that these genes were significantly enriched in spermatogenesis, germ cell development, and spermatid differentiation. The screening of enriched genes revealed that hyper-methylation repressed ADAM30, ADAM3A, DPY19L2, H2BC1, MAK, RPL10L, SPATA16, and YBX2, while hypo-methylation elevated CACNA1I, CADM1, CTNNB1, JAM2, and PAFAH1B3 expression. Additionally, the methylation status of the key genes ADAM3A, ADAM30, YBX2, JAM2, PAFAH1B3, and CTNNB1 was detected by bisulfite sequencing PCR (BSP). This study offers insights into the epigenetic regulation mechanisms underlying porcine testicular development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 678 KiB  
Article
CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo
by Alfredo Pauciullo, Giustino Gaspa, Yi Zhang, Qingyou Liu and Gianfranco Cosenza
Animals 2024, 14(10), 1414; https://doi.org/10.3390/ani14101414 - 9 May 2024
Cited by 4 | Viewed by 1945
Abstract
The search for DNA polymorphisms useful for the genetic improvement of dairy farm animals has spanned more than 40 years, yielding relevant findings in cattle for milk traits, where the best combination of alleles for dairy processing has been found in casein genes [...] Read more.
The search for DNA polymorphisms useful for the genetic improvement of dairy farm animals has spanned more than 40 years, yielding relevant findings in cattle for milk traits, where the best combination of alleles for dairy processing has been found in casein genes and in DGAT1. Nowadays, similar results have not yet been reached in river buffaloes, despite the availability of advanced genomic technologies and accurate phenotype records. The aim of the present study was to investigate and validate the effect of four single nucleotide polymorphisms (SNP) in the CSN1S1, CSN3, SCD and LPL genes on seven milk traits in a larger buffalo population. These SNPs have previously been reported to be associated with, or affect, dairy traits in smaller populations often belonging to one farm. A total of 800 buffaloes were genotyped. The following traits were individually recorded, monthly, throughout each whole lactation period from 2010 to 2021: daily milk yield (dMY, kg), protein yield (dPY, kg) and fat yield (dFY, kg), fat and protein contents (dFP, % and dPP, %), somatic cell count (SCC, 103 cell/mL) and urea (mg/dL). A total of 15,742 individual milk test day records (2496 lactations) were available for 680 buffalo cows, with 3.6 ± 1.7 parities (from 1 to 13) and an average of 6.1 ± 1.2 test day records per lactation. Three out four SNPs in the CSN1S1, CSN3 and LPL genes were associated with at least one of analyzed traits. In particular, the CSN1S1 (AJ005430:c.578C>T) gave favorable associations with all yield traits (dMY, p = 0.022; dPY, p = 0.014; dFY, p = 0.029) and somatic cell score (SCS, p = 0.032). The CSN3 (HQ677596: c.536C>T) was positively associated with SCS (p = 0.005) and milk urea (p = 0.04). Favorable effects on daily milk yield (dMY, p = 0.028), fat (dFP, p = 0.027) and protein (dPP, p = 0.050) percentages were observed for the LPL. Conversely, the SCD did not show any association with milk traits. This is the first example of a confirmation study carried out in the Mediterranean river buffalo for genes of economic interest in the dairy field, and it represents a very important indication for the preselection of young bulls destined for breeding programs aimed at more sustainable dairy production. Full article
Show Figures

Figure 1

15 pages, 16114 KiB  
Article
C. elegans Hemidesmosomes Sense Collagen Damage to Trigger Innate Immune Response in the Epidermis
by Yi Zhu, Wenna Li, Yifang Dong, Chujie Xia and Rong Fu
Cells 2023, 12(18), 2223; https://doi.org/10.3390/cells12182223 - 6 Sep 2023
Cited by 3 | Viewed by 2538
Abstract
The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans [...] Read more.
The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans epidermis as the model to address this question. The C. elegans epidermis is covered with a collagen-rich cuticle exoskeleton and can produce antimicrobial peptides (AMPs) against invading pathogens or physical injury. Through an RNAi screen against collagen-encoding genes, we found that except the previously reported six DPY collagens and the BLI-1 collagen, the majority of collagens tested appear unable to trigger epidermal immune defense when damaged. Further investigation suggests that the six DPY collagens form a specific substructure, which regulates the interaction between BLI-1 and the hemidesmosome receptor MUP-4. The separation of BLI-1 with MUP-4 caused by collagen damage leads to the detachment of the STAT transcription factor-like protein STA-2 from hemidesmosomes and the induction of AMPs. Our findings uncover the mechanism how collagens are organized into a damage sensor and how the epidermis senses collagen damage to mount an immune defense. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: Cell Biology and Physiology)
Show Figures

Figure 1

9 pages, 617 KiB  
Article
Surveillance of Antimicrobial Prescriptions in Community Pharmacies Located in Tokyo, Japan
by Kosuke Hasegawa, Tomoko Mori, Toshio Asakura, Yuriko Matsumura and Hidemasa Nakaminami
Antibiotics 2023, 12(8), 1325; https://doi.org/10.3390/antibiotics12081325 - 17 Aug 2023
Cited by 1 | Viewed by 2547
Abstract
An antimicrobial resistance (AMR) Action Plan was launched in 2016 to prevent the spread of antimicrobial-resistant bacteria in Japan. Additional support for the appropriate use of pediatric antimicrobial agents was initiated in 2018 to promote the appropriate use of antimicrobial agents in the [...] Read more.
An antimicrobial resistance (AMR) Action Plan was launched in 2016 to prevent the spread of antimicrobial-resistant bacteria in Japan. Additional support for the appropriate use of pediatric antimicrobial agents was initiated in 2018 to promote the appropriate use of antimicrobial agents in the community. To evaluate the effectiveness of the AMR Action Plan in the community, we investigated antimicrobial prescriptions in community pharmacies. Data on prescriptions for antimicrobial agents dispensed in 42 community pharmacies located in the Tama district, Tokyo, Japan, were collected between April 2013 and December 2019. In this study, we employed the DPY, which was calculated as defined daily doses (DDDs)/1000 prescriptions/year. The DPY is the number of antimicrobial agents used (potency) per 1000 antimicrobial prescriptions dispensed in pharmacies per year. The number of prescriptions for third-generation cephalosporins, fluoroquinolones, and macrolides decreased after the initiation of the AMR Action Plan; the DPYs of these antimicrobial agents decreased significantly by 31.4%, increased by 15.8%, and decreased by 23.6%, respectively (p < 0.05). The number of antimicrobial prescriptions for pediatric patients has been decreasing since 2018. Declines in the DPYs of third-generation cephalosporins, fluoroquinolones, and macrolides were higher in pediatric pharmacies than in other pharmacies. Our data suggest that the AMR Action Plan and additional support for the appropriate use of antimicrobial agents in children influenced the number of antimicrobial prescriptions in community pharmacies in Japan. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

9 pages, 3024 KiB  
Communication
Highly Efficient Solution-Processed Bluish-Green Thermally Activated Delayed Fluorescence Compounds Using Di(pyridin-3-yl)methanone as Acceptor
by Yuting He, Cheng Zhang, Hao Yan, Yongshuai Chai and Deyun Zhou
Photonics 2023, 10(4), 456; https://doi.org/10.3390/photonics10040456 - 14 Apr 2023
Cited by 1 | Viewed by 1797
Abstract
Solution-processed devices with thermally activated delayed fluorescence (TADF) compounds have gained great attention due to their low cost and high performance. Here, two solution-processable TADF emitters named ACCz-DPyM and POxCz-DPyM were synthesized by coupled 9,10-dihydro-9,9-dimethylacridine or phenoxazine modified carbazole as donor with di(pyridin-3-yl)methanone [...] Read more.
Solution-processed devices with thermally activated delayed fluorescence (TADF) compounds have gained great attention due to their low cost and high performance. Here, two solution-processable TADF emitters named ACCz-DPyM and POxCz-DPyM were synthesized by coupled 9,10-dihydro-9,9-dimethylacridine or phenoxazine modified carbazole as donor with di(pyridin-3-yl)methanone as acceptor. Both TADF compounds show same small ΔΕST of 0.04 eV and high PLQY of 66.2% and 58.2%. The devices fabricated by ACCz-DPyM and POxCz-DPyM as emitters show excellent performance as solution-processed with low turn-on voltage of 4.0 and 3.4 V, high luminance of 6209 and 3248 cd m−2 at 8 V, the maximum current efficiency of 9.9 and 15.9 cd A−1, the maximum external quantum efficiency of 6.6% and 6.5% and low efficiency roll-off. The solution-processed device based on ACCz-DPyM shows bluish-green emission. These results show that ACCz-DPyM and POxCz-DPyM are suitable for solution processing devices. Full article
(This article belongs to the Special Issue Organic and Hybrid Optoelectronic Materials and Devices)
Show Figures

Figure 1

12 pages, 3985 KiB  
Article
Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge
by Xindi Liu, Wenfa Zhou, Mengyi Wang, Xingzhi Wu, Jidong Jia, Jinchong Xiao, Junyi Yang and Yinglin Song
Molecules 2022, 27(24), 9059; https://doi.org/10.3390/molecules27249059 - 19 Dec 2022
Cited by 2 | Viewed by 2095
Abstract
Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that [...] Read more.
Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that the nonlinear absorption originated from two-photon absorption (TPA) and TPA-induced excited state absorption (ESA), wherein DPyA demonstrates higher performance than DPyN. The TPA cross section of DPyA (4300 GM) is nearly 4.3 times larger than that of DPyN at 650 nm. Moreover, the different central structures modulate the intensity of ESA at 532 nm, and DPyA exhibits an excellent ESA at 532 nm with multi-pulse excitation. Meanwhile, the result of data fitting and quantum chemistry calculation shows that the enhancement of nonlinear absorption in DPyA is due to the extended π- conjugated bridge and improved delocalization of π-electrons. These all-carbon twistacenes could yield potential applications in optical power limiting (OPL) technology. Full article
(This article belongs to the Topic Recent Advances in Nonlinear Optics and Nonlinear Optical Materials)
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 7863 KiB  
Article
Self-Assembled Supramolecular Micelles Based on Multiple Hydrogen Bonding Motifs for the Encapsulation and Release of Fullerene
by Cheng-Wei Huang, Ya-Ying Chang, Chih-Chia Cheng, Meng-Ting Hung and Mohamed Gamal Mohamed
Polymers 2022, 14(22), 4923; https://doi.org/10.3390/polym14224923 - 15 Nov 2022
Cited by 4 | Viewed by 2220
Abstract
Living creatures involve several defense mechanisms, such as protecting enzymes to protect organs and cells from the invasion of free radicals. Developing antioxidant molecules and delivery systems to working with enzymes is vital. In this study, a supramolecular polymer PNI-U-DPy was used to [...] Read more.
Living creatures involve several defense mechanisms, such as protecting enzymes to protect organs and cells from the invasion of free radicals. Developing antioxidant molecules and delivery systems to working with enzymes is vital. In this study, a supramolecular polymer PNI-U-DPy was used to encapsulate C60, a well-known antioxidant that is hard to dissolve or disperse in the aqueous media. PNI-U-DPy exhibits characteristics similar to PNIPAM but could form micelles even when the environment temperature is lower than its LCST. The U-DPy moieties could utilize their strong complementary hydrogen bonding–interaction to create a physically crosslinked network within PNIPAM micelles, thus adjusting its LCST to a value near the physiological temperature. Morphological studies suggested that C60 could be effectively loaded into PNI-U-DPy micelles with a high loading capacity (29.12%), and the resulting complex PNI-C60 is stable and remains temperature responsive. A series of measurements under variable temperatures was carried out and showed that a controlled release process proceeded. Furthermore, PNI-C60 exhibits hydroxyl radicals scavenging abilities at a low dosage and could even be adjusted by temperature. It can be admitted that the micelle system can be a valuable alternative for radical scavengers and may be delivered to the desired position with good dispersibility and thermo-responsivity. It is beneficial to the search progress of scientists for drug delivery systems for chemotherapeutic treatments and biomedical applications. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites II)
Show Figures

Figure 1

18 pages, 8863 KiB  
Article
The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis
by Giulia Sibille, Anna Luganini, Stefano Sainas, Donatella Boschi, Marco Lucio Lolli and Giorgio Gribaudo
Viruses 2022, 14(10), 2281; https://doi.org/10.3390/v14102281 - 17 Oct 2022
Cited by 12 | Viewed by 2823
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting [...] Read more.
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs. Full article
(This article belongs to the Special Issue Host-Directed Therapies for HIV and RNA Respiratory Virus Infections)
Show Figures

Figure 1

11 pages, 3573 KiB  
Article
Irradiation-Induced Synthesis of Ag/ZnO Nanostructures as Surface-Enhanced Raman Scattering Sensors for Sensitive Detection of the Pesticide Acetamiprid
by Po-Tuan Chen, Yu-Chun Lu, Sripansuang Tangsuwanjinda, Ren-Jei Chung, Rajalakshmi Sakthivel and Hsin-Ming Cheng
Sensors 2022, 22(17), 6406; https://doi.org/10.3390/s22176406 - 25 Aug 2022
Cited by 3 | Viewed by 2035
Abstract
Detecting pesticides using techniques that involve simple fabrication methods and conducting the detection at very low levels are challenging. Herein, we report the detection of acetamiprid at the quadrillionth level using surface-enhanced Raman scattering (SERS). The SERS chip comprises Ag nanoparticles deposited on [...] Read more.
Detecting pesticides using techniques that involve simple fabrication methods and conducting the detection at very low levels are challenging. Herein, we report the detection of acetamiprid at the quadrillionth level using surface-enhanced Raman scattering (SERS). The SERS chip comprises Ag nanoparticles deposited on a tetrapod structure of ZnO coated onto indium tin oxide glass (denoted as Ag@ZnO-ITO). Controlled Ag decoration of ZnO occurs via irradiation-induced synthesis. The morphology of the surface plays a significant role in achieving an enhanced SERS performance for acetamiprid detection. 4,4′-Dipyridyl (DPY) is used to investigate synthesis conditions for the chip, leading to an optimal irradiation time of 60 min. Furthermore, the enhancement factor for acetamiprid on Ag@ZnO-ITO is higher than 107. These results demonstrate that SERS sensors have the potential for practical use in acetamiprid detection. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

12 pages, 1294 KiB  
Article
Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes
by Soo Kyung Park, Yea Bean Kim, Sangsoo Kim, Chil Woo Lee, Chang Hwan Choi, Sang-Bum Kang, Tae Oh Kim, Ki Bae Bang, Jaeyoung Chun, Jae Myung Cha, Jong Pil Im, Min Suk Kim, Kwang Sung Ahn, Seon-Young Kim and Dong Il Park
J. Pers. Med. 2022, 12(6), 947; https://doi.org/10.3390/jpm12060947 - 9 Jun 2022
Cited by 12 | Viewed by 3167
Abstract
Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to [...] Read more.
Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to impute expression values as features in training machine learning models to predict a NDR. Blood samples from various IBD cohorts were used for genotyping with the Korea Biobank Array. A total of 234 patients with Crohn’s disease (CD) who received their first anti-TNF therapy were enrolled. The expression profiles of 6294 genes in whole-blood tissue imputed from the genotype data were combined with clinical parameters to train a logistic model to predict the NDR. The top two and three most significant features were genetic features (DPY19L3, GSTT1, and NUCB1), not clinical features. The logistic regression of the NDR vs. DR status in our cohort by the imputed expression levels showed that the β coefficients were positive for DPY19L3 and GSTT1, and negative for NUCB1, concordant with the known eQTL information. Machine learning models using imputed gene expression features effectively predicted NDR to anti-TNF agents in patients with CD. Full article
Show Figures

Figure 1

1 pages, 169 KiB  
Correction
Correction: Mori et al. Involvement of DPY19L3 in Myogenic Differentiation of C2C12 Myoblasts. Molecules 2021, 26, 5685
by Kento Mori, Hongkai Sun, Kazuki Miura and Siro Simizu
Molecules 2022, 27(11), 3534; https://doi.org/10.3390/molecules27113534 - 31 May 2022
Viewed by 1102
Abstract
In the original article [...] Full article
14 pages, 2501 KiB  
Article
The Ash2l SDI Domain Is Required to Maintain the Stability and Binding of DPY30
by Mengjie Ma, Jiafeng Zhou, Zhihua Ma, Hanxue Chen, Liang Li, Lin Hou, Bin Yin, Boqin Qiang, Pengcheng Shu and Xiaozhong Peng
Cells 2022, 11(9), 1450; https://doi.org/10.3390/cells11091450 - 25 Apr 2022
Viewed by 2681
Abstract
ASH2L and DPY30 are important for the assembly and catalytic activity of the complex associated with SET1 (COMPASS), which catalyzes histone methylation and regulates gene expression. However, the regulations among COMPASS components are not fully understood. Here, we leveraged a mouse model and [...] Read more.
ASH2L and DPY30 are important for the assembly and catalytic activity of the complex associated with SET1 (COMPASS), which catalyzes histone methylation and regulates gene expression. However, the regulations among COMPASS components are not fully understood. Here, we leveraged a mouse model and cell lines to observe the outcome of Ash2l depletion and found a significant decrease in DPY30. Analyzing ASH2L ChIP-seq and RNA-seq data excluded transcriptional and translational regulation of ASH2L to DPY30. The decrease in DPY30 was further attributed to the degradation via the ubiquitin-mediated proteasomal pathway. We also verified that three amino acids in the ASH2L Sdc1 DPY30 interaction (SDI) domain are essential for the recognition and binding of DPY30. Lastly, we unexpectedly observed that overexpression of DPY30 in Ash2l-depleted cells rescued the decrease in Ccnd1 and the abnormal cell cycle, which indicates that DPY30 can participate in other complexes to regulate gene expression. Overall, our results, for the first time, reveal that the existence of DPY30 relies on the binding with ASH2L, with degradation of DPY30 via the ubiquitin-proteasome system, and they further indicate that the function of DPY30 can be independent of ASH2L. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Next Generation Plasma Proteomics Identifies High-Precision Biomarker Candidates for Ovarian Cancer
by Ulf Gyllensten, Julia Hedlund-Lindberg, Johanna Svensson, Johanna Manninen, Torbjörn Öst, Jon Ramsell, Matilda Åslin, Emma Ivansson, Marta Lomnytska, Maria Lycke, Tomas Axelsson, Ulrika Liljedahl, Jessica Nordlund, Per-Henrik Edqvist, Tobias Sjöblom, Mathias Uhlén, Karin Stålberg, Karin Sundfeldt, Mikael Åberg and Stefan Enroth
Cancers 2022, 14(7), 1757; https://doi.org/10.3390/cancers14071757 - 30 Mar 2022
Cited by 24 | Viewed by 7337
Abstract
Background: Ovarian cancer is the eighth most common cancer among women and has a 5-year survival of only 30–50%. The survival is close to 90% for patients in stage I but only 20% for patients in stage IV. The presently available biomarkers have [...] Read more.
Background: Ovarian cancer is the eighth most common cancer among women and has a 5-year survival of only 30–50%. The survival is close to 90% for patients in stage I but only 20% for patients in stage IV. The presently available biomarkers have insufficient sensitivity and specificity for early detection and there is an urgent need to identify novel biomarkers. Methods: We employed the Explore PEA technology for high-precision analysis of 1463 plasma proteins and conducted a discovery and replication study using two clinical cohorts of previously untreated patients with benign or malignant ovarian tumours (N = 111 and N = 37). Results: The discovery analysis identified 32 proteins that had significantly higher levels in malignant cases as compared to benign diagnoses, and for 28 of these, the association was replicated in the second cohort. Multivariate modelling identified three highly accurate models based on 4 to 7 proteins each for separating benign tumours from early-stage and/or late-stage ovarian cancers, all with AUCs above 0.96 in the replication cohort. We also developed a model for separating the early-stage from the late-stage achieving an AUC of 0.81 in the replication cohort. These models were based on eleven proteins in total (ALPP, CXCL8, DPY30, IL6, IL12, KRT19, PAEP, TSPAN1, SIGLEC5, VTCN1, and WFDC2), notably without MUCIN-16. The majority of the associated proteins have been connected to ovarian cancer but not identified as potential biomarkers. Conclusions: The results show the ability of using high-precision proteomics for the identification of novel plasma protein biomarker candidates for the early detection of ovarian cancer. Full article
(This article belongs to the Special Issue Ovarian Cancer Biomarkers, Diagnostic and Therapeutic Technologies)
Show Figures

Figure 1

9 pages, 2318 KiB  
Article
Involvement of DPY19L3 in Myogenic Differentiation of C2C12 Myoblasts
by Kento Mori, Hongkai Sun, Kazuki Miura and Siro Simizu
Molecules 2021, 26(18), 5685; https://doi.org/10.3390/molecules26185685 - 19 Sep 2021
Cited by 5 | Viewed by 3968 | Correction
Abstract
DPY19L3 has been identified as a C-mannosyltransferase for thrombospondin type-1 repeat domain-containing proteins. In this study, we focused on the role of DPY19L3 in the myogenic differentiation of C2C12 mouse myoblast cells. We carried out DPY19L3 gene depletion using the CRISPR/Cas9 system. [...] Read more.
DPY19L3 has been identified as a C-mannosyltransferase for thrombospondin type-1 repeat domain-containing proteins. In this study, we focused on the role of DPY19L3 in the myogenic differentiation of C2C12 mouse myoblast cells. We carried out DPY19L3 gene depletion using the CRISPR/Cas9 system. The result showed that these DPY19L3-knockout cells could not be induced for differentiation. Moreover, the phosphorylation levels of MEK/ERK and p70S6K were suppressed in the DPY19L3-knockout cells compared with that of parent cells, suggesting that the protein(s) that is(are) DPY19L3-mediated C-mannosylated and regulate(s) MEK/ERK or p70S6K signaling is(are) required for the differentiation. Full article
(This article belongs to the Special Issue New Insights into Protein Glycosylation)
Show Figures

Figure 1

Back to TopTop