Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = Dominant White

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3283 KiB  
Article
Light-Driven Optimization of Exopolysaccharide and Indole-3-Acetic Acid Production in Thermotolerant Cyanobacteria
by Antonio Zuorro, Roberto Lavecchia, Karen A. Moncada-Jacome, Janet B. García-Martínez and Andrés F. Barajas-Solano
Sci 2025, 7(3), 108; https://doi.org/10.3390/sci7030108 - 3 Aug 2025
Viewed by 166
Abstract
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic [...] Read more.
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic acid (IAA). Six strains from hot-spring environments were screened under varying blue:red (B:R) LED ratios and full-spectrum illumination. Hapalosiphon sp. UFPS_002 outperformed all others, reaching ~290 mg L−1 EPS and 28 µg mL−1 IAA in the initial screen. Response-surface methodology was then used to optimize light intensity and photoperiod. EPS peaked at 281.4 mg L−1 under a B:R ratio of 1:5 LED, 85 µmol m−2 s−1, and a 14.5 h light cycle, whereas IAA was maximized at 34.4 µg mL−1 under cool-white LEDs at a similar irradiance. The quadratic models exhibited excellent predictive power (R2 > 0.98) and a non-significant lack of fit, confirming the light regime as the dominant driver of metabolite yield. These results demonstrate that precise photonic tuning can selectively steer carbon flux toward either EPS or IAA, providing an energy-efficient strategy to upscale thermotolerant cyanobacteria for climate-resilient biofertilizers, bioplastics precursors, and other high-value bioproducts. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 206
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 230
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

22 pages, 5960 KiB  
Article
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Viewed by 278
Abstract
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after [...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape. Full article
Show Figures

Figure 1

18 pages, 2100 KiB  
Article
Spatial Patterning and Growth of Naturally Regenerated Eastern White Pine in a Northern Hardwood Silviculture Experiment
by David A. Kromholz, Christopher R. Webster and Michael D. Hyslop
Forests 2025, 16(8), 1235; https://doi.org/10.3390/f16081235 - 26 Jul 2025
Viewed by 222
Abstract
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is [...] Read more.
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is often uncommon in contemporary hardwood stands. To gain insights into the potential utility of hardwood management strategies for simultaneously regenerating white pine, we leveraged a northern hardwood silvicultural experiment with scattered overstory pine. Seven growing seasons post-harvest, we conducted a complete census of white pine regeneration (height ≥ 30 cm) and mapped their locations and the locations of potential seed trees. Pine regeneration was sparse and strongly spatially aggregated, with most clusters falling within potential seed shadows of overstory pines. New recruits were found to have the highest density in a scarified portion of the study area leeward of potential seed trees. Low regeneration densities within treatment units, strong spatial aggregation, and the spatial arrangement of potential seed trees precluded generalizable inferences regarding the utility of specific treatment combinations. Nevertheless, our results underscore the critical importance of residual overstory pines as seed sources and highlight the challenges associated with realizing their potential in managed northern hardwoods. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2557 KiB  
Article
Surveillance of Salmonella Serovars in the Food Chain in Poland: A Five-Year Review (2016–2020)
by Ewelina Skrzypiec, Magdalena Skarżyńska, Magdalena Zając, Renata Kwit, Anna Lalak, Aleksandra Śmiałowska-Węglińska, Emilia Mikos-Wojewoda, Paulina Pasim, Weronika Koza, Dominika Wojdat, Inga Bona, Dominika Pastuszka, Sylwia Hudzik-Pałosz and Dariusz Wasyl
Pathogens 2025, 14(7), 712; https://doi.org/10.3390/pathogens14070712 - 18 Jul 2025
Viewed by 303
Abstract
(1) Background: Understanding the distribution of Salmonella serovars in food, animals, and their environments is crucial for identifying infection sources and monitoring pathogen prevalence in the food chain. This study analysed Salmonella serovars in Poland from 2016 to 2020, focusing on their epidemiological [...] Read more.
(1) Background: Understanding the distribution of Salmonella serovars in food, animals, and their environments is crucial for identifying infection sources and monitoring pathogen prevalence in the food chain. This study analysed Salmonella serovars in Poland from 2016 to 2020, focusing on their epidemiological significance. (2) Methods: Isolation of Salmonella was carried out following PN-EN ISO 6579 standards, and serotyping was performed using the White–Kauffmann–Le Minor scheme. A total of 7104 isolates were collected from food-producing animals, their environments, food of animal origin, feedingstuffs, and fertilisers. (3) Results: A total of 175 serovars were identified, with S. Enteritidis (n = 2905; 40.9%), S. Infantis (n = 1167; 16.4%), and S. Typhimurium (n = 360; 5.1%) being the most prevalent. Species-specific patterns were observed: S. Enteritidis dominated in chickens, ducks, and cattle; S. Kentucky in turkeys; S. Typhimurium in geese; and monophasic S. Typhimurium in pigs. S. Enteritidis and S. Infantis were most frequent in food of animal origin, especially broiler meat. In feedingstuffs, S. Agona was predominant, while fertilisers mostly contained S. Derby and S. Infantis. (4) Conclusions: The study highlights the source-dependent variety of Salmonella serovars and the importance of serotyping in tracing infection routes and preventing the spread of pathogens. Identifying the most common serovars supports the development of targeted preventive measures, including improved biosecurity, hygiene, and management practices to enhance food safety. Full article
Show Figures

Figure 1

16 pages, 32599 KiB  
Article
The Connection Between Lipid Metabolism in the Heart and Liver of Wuzhishan Pigs
by Yuwei Ren, Feng Wang, Ruiping Sun, Xinli Zheng, Yanning Lin and Zhe Chao
Biomolecules 2025, 15(7), 1024; https://doi.org/10.3390/biom15071024 - 16 Jul 2025
Viewed by 286
Abstract
Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In [...] Read more.
Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In this study, we detected gene expression, blood biochemical parameters, and metabolic profiles of hearts and livers of WZS and Large White (LW) pigs, and analyzed correlations between metabolites. The results showed that the fatty acid metabolic process was present in both the heart and liver, and was more dominant in the liver. Although the expression of lipid absorption-related genes of CYP7A1 increased in the liver, CEBPB levels increased in both the liver and heart; the fatty acid beta-oxidation genes RXRA and ACSS2 also showed increased expression. The quantity of metabolites related to lipid synthesis decreased in the liver, heart, and blood for WZS pigs compared to that of LW pigs, indicating a balance of lipid synthesis and breakdown for WZS pigs. Moreover, the lipid metabolites in the liver and heart exhibited strong correlations with each other and showed similar correlations to blood biochemical parameters, respectively. This study declared the balance of lipid metabolism in both the heart and liver, and identified their connections for WZS pigs. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 1617 KiB  
Article
Genomic Analysis of Reproductive Trait Divergence in Duroc and Yorkshire Pigs: A Comparison of Mixed Models and Selective Sweep Detection
by Changyi Chen, Yu He, Juan Ke, Xiaoran Zhang, Junwen Fei, Boxing Sun, Hao Sun and Chunyan Bai
Vet. Sci. 2025, 12(7), 657; https://doi.org/10.3390/vetsci12070657 - 11 Jul 2025
Viewed by 364
Abstract
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data [...] Read more.
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data of 3917 Duroc and 3217 Yorkshire pigs were analyzed. The first principal component (PC1) was used as a simulated phenotype to capture population-level variance. Additive and dominant genetic effects were partitioned and evaluated by using the combination of the linear mixed models (LMM) and ADDO’s algorithm (LMM + ADDO). In parallel, selective sweep signals were detected using fixation index (FST) and nucleotide diversity (θπ) analyses. A comparative assessment was then conducted between the LMM + ADDO and the selective sweep analysis results. Significant loci were annotated using quantitative trait loci (QTL) databases and the Ensembl genome browser. (2) Results: There are 39040 SNPs retained after quality control. Using the LMM + ADDO framework with PC1 as a simulated phenotype, a total of 632 significant SNPs and 184 candidate genes were identified. Notably, 587 SNPs and 171 genes were uniquely detected by the LMM + ADDO method and not among loci detected by the top 5% of FST and θπ values. Key candidate genes associated with litter size included HSPG2, KAT6B, SAMD8, and LRMDA, while DLGAP1, MYOM1, and VTI1A were associated with teat number traits. (3) Conclusions: This study demonstrates the power of integrating additive and dominant effect modeling with population genetics approaches for the detection of genomic regions under selection. The findings provide novel insights into the genetic architecture of reproductive traits in pigs and have practical implications for understanding the inheritance of complex traits. Full article
(This article belongs to the Special Issue Future Perspectives in Pig Reproductive Biotechnology)
Show Figures

Figure 1

10 pages, 297 KiB  
Article
Optimizing Germination, Growth, and Antioxidant Potential of Aegopodium podagraria L. Under Different LED Light Spectra
by Birtukan Tolera Geleta and Jae-Yun Heo
Seeds 2025, 4(3), 32; https://doi.org/10.3390/seeds4030032 - 7 Jul 2025
Viewed by 270
Abstract
Aegopodium podagraria (A. podagraria) L. is a perennial herb valued for its medicinal properties but exhibits poor germination and inconsistent growth under conventional cultivation. To overcome these limitations and enhance its functional potential, this study investigated the effects of various LED [...] Read more.
Aegopodium podagraria (A. podagraria) L. is a perennial herb valued for its medicinal properties but exhibits poor germination and inconsistent growth under conventional cultivation. To overcome these limitations and enhance its functional potential, this study investigated the effects of various LED light spectra on the plant’s physiological and antioxidant responses under controlled indoor conditions. Six light treatments were applied, consisting of different red (R) and blue (B) light ratios (R100, R80:B20, R60:B40, R40:B60, and B100), along with a white-light control. Red-dominant treatments, particularly R80:B20, not only improved germination traits but also significantly promoted shoot growth and biomass accumulation. In contrast, higher proportions of blue light generally inhibited germination performance and reduced growth-related parameters compared to the white-light control. Antioxidant activity was also modulated by light quality: R80:B20 induced the highest levels of total phenolics, ferric reducing antioxidant power, and vitamin C, whereas R40:B60 maximized flavonoid content and DPPH radical scavenging activity. These results suggest that optimizing the red-to-blue light ratio can effectively enhance both the cultivation performance and biofunctional quality of A. podagraria in controlled environments. Full article
Show Figures

Figure 1

32 pages, 22279 KiB  
Article
Crafting Urban Landscapes and Monumental Infrastructure: Archaeometric Investigations of White Marble Architectural Elements from Roman Philippopolis (Bulgaria)
by Vasiliki Anevlavi, Walter Prochaska, Plamena Dakasheva, Zdravko Dimitrov and Petya Andreeva
Minerals 2025, 15(7), 704; https://doi.org/10.3390/min15070704 - 1 Jul 2025
Viewed by 354
Abstract
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and [...] Read more.
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and trade networks. The investigation examines the symbolic significance of prestigious marble in elite representation and highlights the role of quarry exploitation in the region’s economic and technological development. The Eastern Gate, a monumental ensemble integrated into the city’s urban fabric, was primarily constructed with local Rhodope marble, alongside imported materials such as Prokonnesian marble. Analytical methods included petrographic examination, chemical analysis of trace elements (Mn, Mg, Fe, Sr, Y, V, Cd, La, Ce, Yb, and U), and stable isotope analysis (δ18O, δ13C). Statistical evaluations were performed for each sample (37 in total) and compared with a comprehensive database of ancient quarry sources. The results underscore the dominance of local materials while also indicating selective use of imports, potentially linked to symbolic or functional criteria. The findings support the hypothesis of local workshop activity in the Asenovgrad/Philippopolis area and shed light on regional and long-distance marble trade during the Roman Imperial period, reflecting broader economic and cultural interconnections. Full article
(This article belongs to the Special Issue Mineralogical and Mechanical Properties of Natural Building Stone)
Show Figures

Figure 1

22 pages, 4516 KiB  
Article
First Culturing of Potential Bacterial Endophytes from the African Sahelian Crop Fonio Grown Under Abiotic Stress Conditions
by Roshan Pudasaini, Eman M. Khalaf, Dylan J. L. Brettingham and Manish N. Raizada
Bacteria 2025, 4(3), 31; https://doi.org/10.3390/bacteria4030031 - 30 Jun 2025
Viewed by 991
Abstract
In the African Sahel, fonio (Digitaria sp.) is a cereal crop that alleviates mid-season hunger before other main crops are harvested. As fonio is valued for its ability to grow under low nutrient and drought conditions, it was hypothesized that it may [...] Read more.
In the African Sahel, fonio (Digitaria sp.) is a cereal crop that alleviates mid-season hunger before other main crops are harvested. As fonio is valued for its ability to grow under low nutrient and drought conditions, it was hypothesized that it may contain endophytic bacteria that can tolerate such extreme stress. White fonio seeds were obtained from a dry environment (Mali) and a moderate rainfall environment (Guinea). Plants were grown indoors on field soil mixed with sand to mimic Sahelian soils, grown at 30 °C, and exposed to drought, optimal water, and low nitrogen stress conditions. In total, 73 cultured bacteria were classified using full-length 16S rRNA sequencing followed by searching three 16S reference databases. Selected strains were tested in vitro for tolerance to relevant abiotic stresses. Including nine isolates from seeds, the candidate root/shoot endophytes spanned 27 genera and 18–39 top-match species. Several well-known nitrogen-fixing bacteria were cultured, including Ensifer. Leaves were dominated by Bacilli (spore-formers known to withstand dry conditions). There were five root isolates of Variovorax. Leifsonia was isolated from the leaves and showed 100% sequence identity with seed isolates, suggestive of transmission from seed to shoot. In vitro experiments showed that seed isolates, including Leifsonia, survived diverse abiotic stresses relevant to the Sahel. Combined, these results suggest that white fonio hosts stress-tolerant microbiota, and points to Leifsonia as a candidate seed-to-plant transmitted endophyte, pending confirmation by future whole genome sequencing. This microbial collection serves as a starting point for long-term experiments to understand stress tolerance in this under-studied crop. Full article
Show Figures

Figure 1

13 pages, 1726 KiB  
Article
Microplastic Pollution in Shoreline Sediments of the Vondo Reservoir Along the Mutshindudi River, South Africa
by Thendo Mutshekwa, Samuel N. Motitsoe, Musa C. Mlambo, Lubabalo Mofu, Rabelani Mudzielwana and Lutendo Phophi
Water 2025, 17(13), 1935; https://doi.org/10.3390/w17131935 - 27 Jun 2025
Viewed by 361
Abstract
Rivers are recognized as significant pathways and transportation for microplastics (MPs), an emerging contaminant, to aquatic environments. However, there is limited evidence on how riverine reservoirs influence MPs transport. To fill this gap and provide baseline empirical data and insights to South African [...] Read more.
Rivers are recognized as significant pathways and transportation for microplastics (MPs), an emerging contaminant, to aquatic environments. However, there is limited evidence on how riverine reservoirs influence MPs transport. To fill this gap and provide baseline empirical data and insights to South African context, the current study assessed the seasonal variation in MP densities from sediments collected upstream, within the reservoir, and downstream of the Vondo Reservoir along the Mutshindudi River. We hypothesised that MP densities would be highest within the reservoir, due to the lack of constant flow that would otherwise transport accumulated particles downriver. Additionally, we expected the cool–dry season to be associated with the highest MP densities. As expected, high MP densities were observed within the reservoir (117.38–277.46 particles kg−1 dwt) when compared to the downstream (72.63–141.50 particles kg−1 dwt) and upstream (28.81–91.63 particles kg−1 dwt) sites of the reservoir. The cool–dry season (91.63–277.46 particles kg−1 dwt) exhibited the highest MP densities compared to the hot–wet season (28.81–141.50 particles kg−1 dwt). However, MP densities downstream the reservoir were higher during the hot–wet season (141.50 ± 24.34 particles kg−1 dwt) compared to the cool–dry season (72.63 ± 48.85 particles kg−1 dwt). The most dominant MP particles identified were white, transparent, and black fibres/filaments composed primarily of polypropylene (PP) and polyethylene (PE). This suggests diverse sources of MP particles. No significant correlations were found between water parameters and MP densities across sampling sites and seasons, indicating a widespread and context-independent presence of MPs. These findings contribute to MP studies in freshwater environments and further reinforce the role of sediments as sink for MPs and suggest that riverine reservoirs similar to dams can trap MPs, which may then be remobilized downstream during high-flow periods. Importantly, the results of this study can support local municipalities in implementing targeted plastic pollution mitigation strategies and public awareness campaigns, particularly because the Vondo Reservoir serves as a critical water resource for surrounding communities. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 604 KiB  
Article
The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study
by Irina A. Mednova, Ekaterina V. Mikhalitskaya, Natalia M. Vyalova, Diana Z. Paderina, Dmitry A. Petkun, Vladimir V. Tiguntsev, Elena G. Kornetova, Nikolay A. Bokhan and Svetlana A. Ivanova
Pharmaceuticals 2025, 18(7), 941; https://doi.org/10.3390/ph18070941 - 21 Jun 2025
Viewed by 462
Abstract
The life expectancy of patients with psychotic disorders is significantly shorter than that of the general population; antipsychotic-induced metabolic disorders play a significant role in reducing life expectancy. Both metabolic syndrome (MetS) and schizophrenia are multifactorial conditions. One area where the two conditions [...] Read more.
The life expectancy of patients with psychotic disorders is significantly shorter than that of the general population; antipsychotic-induced metabolic disorders play a significant role in reducing life expectancy. Both metabolic syndrome (MetS) and schizophrenia are multifactorial conditions. One area where the two conditions overlap is oxidative stress, which is present in both diseases. The glutathione-S-transferase (GST) system is a major line of defense against exogenous toxicants and oxidative damage to cells. The aim of our study was to perform an association analysis of gene polymorphisms with metabolic disorders in patients with schizophrenia treated with antipsychotic therapy. Methods: A total of 639 white patients with schizophrenia (ICD-10) from Siberia (Russia) were included in the study. Genotyping was carried out using real-time polymerase chain reaction for two single-nucleotide polymorphisms (SNPs) in the GSTP1 (rs614080 and rs1695) and one SNP in the GSTO1 (rs49252). Results: We found that rs1695*GG genotype of GSTP1 is a risk factor for the development of overweight (OR 2.36; 95% CI: 1.3–4.29; p = 0.0054). In the subgroup of patients receiving first-generation antipsychotics as basic therapy, the risk of overweight was associated with carriage of the rs1695*GG (OR 5.43; 95% CI: 2.24–13.16; p < 0.001) genotype of GSTP1 in a recessive model of inheritance. In contrast, an association of rs1695*G GSTP1 with obesity (OR: 0.42; 95% CI: 0.20–0.87; p = 0.018) was shown in the dominant model of inheritance in patients receiving second-generation antipsychotics. Conclusions: The pilot results obtained confirm the hypothesis of a violation of the antioxidant status, in particular the involvement of GSTP1, in the development of antipsychotic-induced metabolic disorders in schizophrenia. Further studies with larger samples and different ethnic groups are needed to confirm the obtained results. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Figure 1

16 pages, 330 KiB  
Article
Internalized Oppression Among Young Women of Colour in Norway: Exploring the Racialized Self
by Tiara Fernanda Aros Olmedo, Hilde Danielsen and Ronald Mayora Synnes
Genealogy 2025, 9(3), 65; https://doi.org/10.3390/genealogy9030065 - 20 Jun 2025
Viewed by 959
Abstract
This article explores the impact of internalized oppression on young women of colour in Norway, focusing on how it unfolds across individual life trajectories. Drawing on a qualitative methodology, the study is based on narrative in-depth interviews with thirteen participants aged 18 to [...] Read more.
This article explores the impact of internalized oppression on young women of colour in Norway, focusing on how it unfolds across individual life trajectories. Drawing on a qualitative methodology, the study is based on narrative in-depth interviews with thirteen participants aged 18 to 35. The findings reveal that internalized oppression, particularly related to physical appearance, emerges early in life and is often reinforced through social interactions such as bullying, exclusion, and racialized commentary. These experiences frequently convey implicit preferences for whiteness, leading to marginalization and insecurity during adolescence. In response, several participants engaged in practices of assimilation, altering their physical appearance in attempts to embody features aligned with dominant white norms. In adulthood, many of these women have developed a critical awareness of internalized oppression and are engaged in processes of decolonizing their self-perceptions through solidarity with other women of colour. Nevertheless, they continue to grapple with lingering internalized biases. This study highlights the need for further research into the life narratives and everyday experiences of racialized individuals to better understand how they navigate, resist, and unlearn internalized oppression—while also considering the gendered dimension of how such oppression works. Full article
27 pages, 4277 KiB  
Article
Probability Density Evolution and Reliability Analysis of Gear Transmission Systems Based on the Path Integration Method
by Hongchuan Cheng, Zhaoyang Shi, Guilong Fu, Yu Cui, Zhiwu Shang and Xingbao Huang
Lubricants 2025, 13(6), 275; https://doi.org/10.3390/lubricants13060275 - 19 Jun 2025
Viewed by 463
Abstract
Aimed at dealing with the problems of high reliability solution cost and low solution accuracy under random excitation, especially Gaussian white noise excitation, this paper proposes a probability density evolution and reliability analysis method for nonlinear gear transmission systems under Gaussian white noise [...] Read more.
Aimed at dealing with the problems of high reliability solution cost and low solution accuracy under random excitation, especially Gaussian white noise excitation, this paper proposes a probability density evolution and reliability analysis method for nonlinear gear transmission systems under Gaussian white noise excitation based on the path integration method. This method constructs an efficient probability density evolution framework by combining the path integration method, the Chapman–Kolmogorov equation, and the Laplace asymptotic expansion method. Based on Rice’s theory and combined with the adaptive Gauss–Legendre integration method, the transient and cumulative reliability of the system are path integration method calculated. The research results show that in the periodic response state, Gaussian white noise leads to the diffusion of probability density and peak attenuation, and the system reliability presents a two-stage attenuation characteristic. In the chaotic response state, the intrinsic dynamic instability of the system dominates the evolution of the probability density, and the reliability decreases more sharply. Verified by Monte Carlo simulation, the method proposed in this paper significantly outperforms the traditional methods in both computational efficiency and accuracy. The research reveals the coupling effect of Gaussian white noise random excitation and nonlinear dynamics, clarifies the differences in failure mechanisms of gear systems in periodic and chaotic states, and provides a theoretical basis for the dynamic reliability design and life prediction of nonlinear gear transmission systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Frictional Systems)
Show Figures

Figure 1

Back to TopTop