Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Design for Deconstruction (DfD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8648 KB  
Article
Sustainability Assessment of Demountable and Reconfigurable Steel Structures
by Adrián Ouro Miguélez, Félix Fernández Abalde, Manuel Cabaleiro Núñez and Fernando Nunes Cavalheiro
Buildings 2025, 15(20), 3651; https://doi.org/10.3390/buildings15203651 (registering DOI) - 10 Oct 2025
Abstract
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. [...] Read more.
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. Such practices conflict with the principles of the circular economy, in which reusability is preferable to recycling. This paper presents a life cycle sustainability assessment (life cycle cost, LCC, and life cycle assessment, LCA) applied to six structural typologies: (a) welded IPE profiles, (b) bolted IPE profiles, (c) welded tubular profiles, (d) bolted tubular profiles, (e) clamped IPE profiles with demountable joints, and (f) flanged tubular profiles with demountable joints. The assessment integrates structural calculations with an updatable database of costs, operation times, and service lives, providing a systematic framework for evaluating both economic and environmental performance in medium-load industrial structures (0.5–9.8 kN/m2). Application to nine representative case studies demonstrated that demountable clamped and flanged joints become economically competitive after three life cycles, and after only two life cycles under high-load conditions (9.8 kN/m2). The findings indicate relative cost savings of up to 75% in optimized configurations and carbon-footprint reductions of approximately 50% after three cycles. These results provide quantitative evidence of the long-term advantages of demountable and reconfigurable steel structures. Their capacity for repeated reuse without loss of performance supports sustainable design strategies, reduces environmental impacts, and advances circular economy principles, making them an attractive option for modern industrial facilities subject to frequent modifications. Full article
Show Figures

Figure 1

22 pages, 20072 KB  
Review
Analyzing Joinery for Furniture Designed for Disassembly
by Maciej Sydor and Kacper Stańczyk
J. Manuf. Mater. Process. 2025, 9(5), 162; https://doi.org/10.3390/jmmp9050162 - 15 May 2025
Cited by 2 | Viewed by 2406
Abstract
End-users can design personalized furnishing products using remote web-based CAD systems. However, if these designs fail to incorporate design for disassembly (DfD) principles, the furniture’s subsequent repair, reconfiguration, recycling, and disposal can be significantly hindered. To address this drawback, this study supports DfD, [...] Read more.
End-users can design personalized furnishing products using remote web-based CAD systems. However, if these designs fail to incorporate design for disassembly (DfD) principles, the furniture’s subsequent repair, reconfiguration, recycling, and disposal can be significantly hindered. To address this drawback, this study supports DfD, a strategy that enables the creation of easily repairable, reusable, and recyclable furniture to reduce waste and environmental impact. Consequently, this review aims to classify and evaluate available furniture joinery systems for their suitability within DfD frameworks, ultimately promoting their implementation within CAD environments. To this end, various solutions were evaluated, including traditional joints, dowel/biscuit, hammered, directly screwed, snap-on, expandable, and cam/bolt fasteners. Based on a literature review and practical observations, the analyzed joinery systems were categorized into non-disassemblable, conditionally disassemblable, and fully disassemblable categories. Only the fully disassemblable solutions effectively align with DfD principles. The study postulates a preference for expandable and cam/bolt fasteners in furniture designs, noting that although snap-on fasteners can potentially support DfD, this outcome is not always ensured. To guarantee that the designed furniture adheres to the DfD principles, the following eight furniture design guidelines were formulated: develop web-accessible disassembly instructions, prioritize access to fast-wearing components, prioritize modularity, standardize parts in modules, label components, enable independent component removal, use materials that withstand repeated disassembly, and employ fully disassemblable joints. Full article
Show Figures

Figure 1

7 pages, 232 KB  
Opinion
Design for Deconstruction: Benefits, Challenges, and Outlook for Timber–Concrete Composite Floors
by Mohammad Derikvand and Gerhard Fink
Buildings 2023, 13(7), 1754; https://doi.org/10.3390/buildings13071754 - 10 Jul 2023
Cited by 10 | Viewed by 4035
Abstract
Design for deconstruction (DfD) considers the end-of-life scenario of buildings at an early design stage to ensure that these buildings (or parts of the buildings) can be deconstructed without unproportional effort and material loss. After deconstruction, the elements or materials can be used [...] Read more.
Design for deconstruction (DfD) considers the end-of-life scenario of buildings at an early design stage to ensure that these buildings (or parts of the buildings) can be deconstructed without unproportional effort and material loss. After deconstruction, the elements or materials can be used for future purposes such as reusing (preferably), remanufacturing, or recycling. This opinion paper is aimed to advocate for DfD in timber–concrete composite (TCC) floors as it represents an important contribution toward circular economy design and creates a more sustainable built environment. Different end-of-life scenarios for TCC floors according to their original design and connection type were initially explored. Existing deconstructable connection systems that could enable DfD in TCC floors were reviewed. Furthermore, potential challenges relating to the implementation of DfD in TCC floors are briefly highlighted. Finally, a discussion around the outlook and actions that might be needed to address some of the identified challenges is provided. This paper proposes directions for future developments and contributes to the understanding and promotion of DfD in TCC floors with an emphasis on deconstructable connectors that can enable material recovery and reuse as the preferred end-of-life scenario. Full article
(This article belongs to the Special Issue Adoption of Engineered Wood Products in Building Applications)
33 pages, 17562 KB  
Article
Circularity Indicators as a Design Tool for Design and Construction Strategies in Architecture
by Francesco Incelli, Luciano Cardellicchio and Massimo Rossetti
Buildings 2023, 13(7), 1706; https://doi.org/10.3390/buildings13071706 - 4 Jul 2023
Cited by 11 | Viewed by 5309
Abstract
This study addresses the challenges and barriers associated with the implementation of circular economy principles in architectural design and construction practices. It highlights the fragmented knowledge and lack of a unified approach to circular design as a major obstacle hindering the adoption of [...] Read more.
This study addresses the challenges and barriers associated with the implementation of circular economy principles in architectural design and construction practices. It highlights the fragmented knowledge and lack of a unified approach to circular design as a major obstacle hindering the adoption of circularity. The existing frameworks for assessing circularity, such as the Material Circularity Indicator (MCI) protocol and the Level(s) assessment protocol, are applied to two projects with a high degree of deconstruction to understand their applicability in the architectural design process and identify their limitations. The study emphasises the significance of considering structural connectivity and circularity strategies during the concept-design stage, advocating for the incorporation of circularity at various scales beyond the microscale of materials. Furthermore, it emphasises the need for early implementation of Design for Disassembly (DfD) strategies on circularity scoring to enable meaningful comparisons of alternative designs using circularity metrics. The findings reveal the variability of circularity indicators based on the hierarchy of disassembly and highlights an early-stage design approach to deconstruction strategies to achieve circularity in architectural design. Overall, this study upscales the significance of a comprehensive and integrated approach to circularity in architectural design practices. Full article
Show Figures

Figure 1

22 pages, 5763 KB  
Review
Removable, Reconfigurable, and Sustainable Steel Structures: A State-of-the-Art Review of Clamp-Based Steel Connections
by Manuel Cabaleiro, Borja Conde, Cristina González-Gaya and Brais Barros
Sustainability 2023, 15(10), 7808; https://doi.org/10.3390/su15107808 - 10 May 2023
Cited by 9 | Viewed by 4670
Abstract
In this review paper, first of all, an analysis of the circular economy and its application to steel structures is carried out. It highlights the need to apply the philosophy of Design for Deconstruction or Design for Disassembly (DfD) from the conception of [...] Read more.
In this review paper, first of all, an analysis of the circular economy and its application to steel structures is carried out. It highlights the need to apply the philosophy of Design for Deconstruction or Design for Disassembly (DfD) from the conception of the structure so that it can be truly reconfigurable. Then, a brief review of the different types of connections for steel structures is conducted, comparing the level of research and development of each of them and the degree of reconfiguration that is possible to obtain. Subsequently, the article focuses on the type of connection using clamps, a key point of this work and on which, to date, there are no state-of-the-art studies. It describes the types of clamps, their principle of operation, the types of connections developed with them, and the results of the different investigations that allow for calculating these types of connections. A summary is also given of how these connection types work according to the geometrical characteristics of the clamp and the bolt so that this review work can serve as a driver for the widespread use of clamp-based connections by researchers and engineers in the design and manufacturing of demountable and reconfigurable steel structures. Finally, some conclusions are given, indicating the advantages and disadvantages of this connection system and future lines of research. Full article
Show Figures

Figure 1

30 pages, 1825 KB  
Review
Design for Manufacturing and Assembly (DfMA) and Design for Deconstruction (DfD) in the Construction Industry: Challenges, Trends and Developments
by Cheryl Lyne C. Roxas, Carluz R. Bautista, Orlean G. Dela Cruz, Rhem Leoric C. Dela Cruz, John Paul Q. De Pedro, Jonathan R. Dungca, Bernardo A. Lejano and Jason Maximino C. Ongpeng
Buildings 2023, 13(5), 1164; https://doi.org/10.3390/buildings13051164 - 28 Apr 2023
Cited by 42 | Viewed by 14126
Abstract
A building faces several challenges across its lifecycle stages. Challenges such as production inefficiency and inadequate waste management hinder advancement in the construction industry. Furthermore, the sector has emerged as one of the largest producers of waste in the world, which can lead [...] Read more.
A building faces several challenges across its lifecycle stages. Challenges such as production inefficiency and inadequate waste management hinder advancement in the construction industry. Furthermore, the sector has emerged as one of the largest producers of waste in the world, which can lead to detrimental impacts on the economy and the environment. Conventional approaches are insufficient to eradicate these concerns. Thus, practitioners have sought to implement novel methods to ameliorate the construction process. In this regard, design for manufacturing and assembly (DfMA) and design for deconstruction (DfD) have gained prominence, as studies have elucidated the methods’ unprecedented potential to wholly transform the construction process and mitigate the unwanted impacts brought about by the industry. This study identified the applications and benefits of DfMA and DfD in construction, as well as recent developments and research gaps, through a literature review, using Scopus as the primary database and MATLAB for conducting data text analytics. The current body of knowledge necessitates a further assessment of the following research gaps: (1) development of standard construction-oriented DfMA guidelines; (2) corroboration of the developed DfMA tools through practical application; (3) integration of these holistic design approaches with emerging technologies, such as additive manufacturing and digital fabrication; (4) comparison of structures constructed using DfMA and DfD with structures built with conventional approaches; (5) comprehensive application of DfD guidelines to structural systems; (6) integration of DfMA and DfD; (7) execution of sustainability assessment studies to evaluate the impact of DfMA and DfD; and (8) identification of solutions to the barriers to DfMA and DfD uptake in construction. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 5793 KB  
Article
Environmental Performance of Deconstructable Concrete Beams Made with Recycled Aggregates
by Lucas Caon Menegatti, Letícia Ikeda Castrillon Fernandez, Lucas Rosse Caldas, Marco Pepe, Francesco Pittau, Giulio Zani, Marco Carlo Rampini, Julien Michels, Romildo Dias Toledo Filho and Enzo Martinelli
Sustainability 2022, 14(18), 11457; https://doi.org/10.3390/su141811457 - 13 Sep 2022
Cited by 14 | Viewed by 2987
Abstract
The construction sector is one of the most energy-intensive and raw-material-demanding human activities and, hence, contributes a significant share of greenhouse gas emissions. As a matter of principle, making the construction sector “greener” is one of the main challenges for policy makers, private [...] Read more.
The construction sector is one of the most energy-intensive and raw-material-demanding human activities and, hence, contributes a significant share of greenhouse gas emissions. As a matter of principle, making the construction sector “greener” is one of the main challenges for policy makers, private companies and the scientific community. For this reason, one of the most promising actions is based on recycling Construction and Demolition Waste (CDW) and converting them into secondary raw materials for the construction sector itself. Moreover, the reduction of the environmental impact can be further amplified through the optimization of the production, assembly and deconstruction/reuse procedures and through the maximization of the service life. In this aim, the present work aims at analyzing the environmental performance of duly sized and designed prefabricated Decontructable and Reusable Beam (DRB) incorporating with Recycled Concrete Aggregates (RCA) assembled by means of an innovative system based on a memory®-steel prestressing technique. The environmental performance is evaluated through Life Cycle Assessment with a cradle-to-gate approach: the analysis of 16 midpoint impact categories was conducted using the methodology proposed by EN15804. In this context, three allocation scenarios for avoided impacts due to reuse (100-0, 50:50 and 0-100) were considered, and a sensitivity analysis was performed. It was verified that due to the higher amount of post-tensioning required for the innovative shape memory alloy steel bars, the DRBs present inferior environmental performance than the Ordinary Beams (ORB). However, when analyzing the reuse scenarios, it was observed that the DRB could have considerably lower impacts, depending on the type of allocation procedure adopted in LCA modeling. This study brings as the main contribution an evaluation and some design guidelines for the development of circular concrete structures based on the principles of Design for Deconstruction (DfD) and the prefabricated process. Full article
Show Figures

Figure 1

18 pages, 5101 KB  
Article
BIM and DfMA: A Paradigm of New Opportunities
by Sepehr Abrishami and Rocío Martín-Durán
Sustainability 2021, 13(17), 9591; https://doi.org/10.3390/su13179591 - 26 Aug 2021
Cited by 30 | Viewed by 8111
Abstract
The main goal of this study is to explore the adoption of a design for manufacturing and assembly (DfMA) and building information management (BIM) approach during the whole lifecycle of assets. This approach aims to tackle issues inherent in the design of traditional [...] Read more.
The main goal of this study is to explore the adoption of a design for manufacturing and assembly (DfMA) and building information management (BIM) approach during the whole lifecycle of assets. This approach aims to tackle issues inherent in the design of traditional construction methods, such as low productivity and quality, poor predictability and building performance, and energy use, through the implementation of a BIM library of off-site components. In recent years, a renewed interest has been directed to the attempt to provide solutions to these urgent problems through the adoption of new advancements in technologies. However, while there are studies focussing on a BIM-DfMA approach, there is a lack of research regarding how this approach should be adopted during the whole lifecycle of the assets. Furthermore, to the best of our knowledge, defining an efficient way of developing a component-based BIM object library has not yet been included in any of the available studies. A mixed methodology approach has been used in this research. A conceptual framework was developed as the result of an extensive literature review to investigate new advancements in the AEC sector. Following the literature review, the framework was tested and validated through a case study based on the production and adoption of a BIM library of off-site components at the design stage of an asset. The architecture, engineering, and construction (AEC) industry has recognised the necessity of a new approach that helps to resolve the well-known issues presented in traditional methods of construction. The conceptual framework and case study proposed presents a valuable new method of construction that support the implementation of a BIM and DfMA approach, highlighting their benefits. This framework has been created using many valuable and reliable sources of information. The result of this research supports the idea of a novel new construction method that focuses on a manufacturing-digital-driven industry, with the use of DfMA in a BIM-integrated approach. This novel method will add significance and be beneficial for a wide range of aspects in the construction sector, contributing to the theoretical and practical domain. Full article
(This article belongs to the Special Issue Tolerance Management in Architecture, Engineering and Construction)
Show Figures

Figure 1

29 pages, 9240 KB  
Review
BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review
by Arghavan Akbarieh, Laddu Bhagya Jayasinghe, Danièle Waldmann and Felix Norman Teferle
Sustainability 2020, 12(7), 2670; https://doi.org/10.3390/su12072670 - 28 Mar 2020
Cited by 131 | Viewed by 15607
Abstract
This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based [...] Read more.
This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based on the conceptual landscape that was obtained from the bibliometric and scientometric analysis in the first part of the study. Seven main academic research directions concerning the BIM-based EoL domain were found, including social and cultural factors, BIM-based Design for Deconstruction (DfD), BIM-based deconstruction, BIM-based EoL within LCA, BIM-aided waste management, Material and Component Banks (M/C Banks), off-site construction, interoperability and Industry Foundation Classes (IFC). The analysis highlights research gaps in the path of raw materials to reusable materials, i.e., from the deconstruction to M/C banks to DfD-based designs and then again to deconstruction. BIM-based EoL is suffering from a lack of a global framework. The existing solutions are based on local waste management policies and case-specific sustainability criteria selection. Another drawback of these ad hoc but well-developed BIM-based EoL prototypes is their use of specific proprietary BIM tools to support their framework. This disconnection between BIM tools and EoL tools is reportedly hindering the BIM-based EoL, while no IFC classes support the EoL phase information exchange. Full article
Show Figures

Figure 1

16 pages, 6055 KB  
Article
A Demountable Connection for Low-Rise Precast Concrete Structures with DfD for Construction Sustainability-A Preliminary Test under Cyclic Loads
by Gaochuang Cai, Feng Xiong, Yong Xu, Amir Si Larbi, Yang Lu and Mikio Yoshizawa
Sustainability 2019, 11(13), 3696; https://doi.org/10.3390/su11133696 - 5 Jul 2019
Cited by 33 | Viewed by 10271
Abstract
As a demountable structure, the structure with design for deconstruction (DfD) is considered as a key contribution on the promotion of current construction sustainability by directly reusing valuable components from old structures. As a preliminary study, this paper investigated the cyclic behavior of [...] Read more.
As a demountable structure, the structure with design for deconstruction (DfD) is considered as a key contribution on the promotion of current construction sustainability by directly reusing valuable components from old structures. As a preliminary study, this paper investigated the cyclic behavior of bolted joints consisting of three reinforced concrete blocks bolted by steel bolts under axial compressive, focusing on the damage and failure modes, resistance mechanism and stiffness development of the joints. Results showed that the number of steel bolts, the tightening process of the bolts and concrete compressive strength all had a significant effect on the overall performance and capacity of the joints. The failure mode of most of tested joints was considered as fracture of stirrups and steel bolts in the tested joints. According to the investigation of this study, several recommendations on the design of the joints were provided. Full article
Show Figures

Figure 1

13 pages, 6863 KB  
Article
‘Materials as a Design Tool’ Design Philosophy Applied in Three Innovative Research Pavilions Out of Sustainable Building Materials with Controlled End-Of-Life Scenarios
by Hanaa Dahy
Buildings 2019, 9(3), 64; https://doi.org/10.3390/buildings9030064 - 13 Mar 2019
Cited by 25 | Viewed by 12384
Abstract
Choosing building materials is usually the stage that follows design in the architectural design process, and is rarely used as a main input and driver for the design of the whole building’s geometries or structures. As an approach to have control over the [...] Read more.
Choosing building materials is usually the stage that follows design in the architectural design process, and is rarely used as a main input and driver for the design of the whole building’s geometries or structures. As an approach to have control over the environmental impact of the applied building materials and their after-use scenarios, an approach has been initiated by the author through a series of research studies, architectural built prototypes, and green material developments. This paper illustrates how sustainable building materials can be a main input in the design process, and how digital fabrication technologies can enable variable controlling strategies over the green materials’ properties, enabling adjustable innovative building spaces with new architectural typologies, aesthetic values, and controlled martial life cycles. Through this, a new type of design philosophy by means of applying sustainable building materials with closed life cycles is created. In this paper, three case studies of research pavilions are illustrated. The pavilions were prefabricated and constructed from newly developed sustainable building materials. The applied materials varied between structural and non-structural building materials, where each had a controlled end-of-life scenario. The application of the bio-based building materials was set as an initial design phase, and the architects here participated within two disciplines: once as designers, and additionally as green building material developers. In all three case studies, Design for Deconstruction (DfD) strategies were applied in different manners, encouraging architects to further follow such suggested approaches. Full article
(This article belongs to the Special Issue Green Building Materials)
Show Figures

Figure 1

12 pages, 818 KB  
Review
Design for Deconstruction in the Design Process: State of the Art
by Jouri Kanters
Buildings 2018, 8(11), 150; https://doi.org/10.3390/buildings8110150 - 6 Nov 2018
Cited by 86 | Viewed by 16991
Abstract
Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the [...] Read more.
Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements. Full article
Show Figures

Figure 1

20 pages, 292 KB  
Article
Analysis of Guidelines and Identification of Characteristics Influencing the Deconstruction Potential of Buildings
by Roberta Carvalho Machado, Henor Artur de Souza and Gustavo De Souza Veríssimo
Sustainability 2018, 10(8), 2604; https://doi.org/10.3390/su10082604 - 25 Jul 2018
Cited by 31 | Viewed by 5536
Abstract
Growing concerns regarding environmental preservation and the fact that the construction industry is one of the sectors with the highest rates of resource consumption and waste generation, have encouraged the adoption of deconstruction as an alternative to the demolition of buildings at the [...] Read more.
Growing concerns regarding environmental preservation and the fact that the construction industry is one of the sectors with the highest rates of resource consumption and waste generation, have encouraged the adoption of deconstruction as an alternative to the demolition of buildings at the end of their lifecycle. However, the choice of strategies to enable deconstruction requires an in-depth knowledge of how the building’s characteristics, combined with the procedures adopted in the deconstruction process, will affect the reutilization of materials and components. In this paper, characteristics relating to design for deconstruction (DfD) are identified and the influence of each characteristic on the viability of a deconstruction is analysed. A literature review is conducted to assess the guideline of DfD and to identify relevant characteristics. These characteristics are then divided into the following categories: direct influence enabling deconstruction; influence on the ease of the process; and, influence on prolonging a building’s lifecycle. A number of questions are suggested for analysing each characteristic, and these can be employed in the development of a methodology for evaluating a building’s deconstruction potential. The identification of characteristics involved in the deconstruction guidelines may assist in the optimization of projects and the planning of deconstruction processes. Full article
(This article belongs to the Special Issue Sustainable Construction and Building Materials)
Back to TopTop