Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,540)

Search Parameters:
Keywords = Daqing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 538 KB  
Article
Effects of Different Nitrogen Fertilizer Rates on Spring Maize Yield and Soil Nitrogen Balance Under Straw Returning Conditions of Cold Regions
by Jinghong Ji, Shuangquan Liu, Xiaoyu Hao, Yu Zheng, Yue Zhao, Yuqi Xia, Zhanqiang Xing and Wei Guo
Plants 2025, 14(19), 3087; https://doi.org/10.3390/plants14193087 - 7 Oct 2025
Abstract
Under the condition of straw returning to the field, appropriate nitrogen fertilizer application is one of the key factors used to improve crop yield and ensure environmental safety. Therefore, an experiment with different rates of nitrogen fertilization was conducted with a randomized block [...] Read more.
Under the condition of straw returning to the field, appropriate nitrogen fertilizer application is one of the key factors used to improve crop yield and ensure environmental safety. Therefore, an experiment with different rates of nitrogen fertilization was conducted with a randomized block design in Harbin, China. The straw was deeply plowed back into the field after harvest in the autumn. The nitrogen application rates were 0, 75, 150, 180, 225, and 300 kg·ha−1. The purpose of this study is to clarify the appropriate amount of nitrogen fertilizer under the condition of straw returning to the field and to provide technical support for high-yield and high-efficiency maize in cold regions. The results indicated that the yield of maize first increased and then stabilized as the amount of nitrogen fertilizer increased, while the economic benefits first increased and then decreased. When the nitrogen application rate exceeds 225 kg·ha−1 or is lower than 150 kg·ha−1, the economic benefits significantly decrease. When high-nitrogen fertilizer rates of 225 kg·ha−1 and 300 kg·ha−1 were applied, the residual nitrate nitrogen in the soil was increased by 2.1 times and 2.3 times, respectively, compared to before sowing. With the increase in the nitrogen application rate, the nitrogen fertilizer utilization efficiency and agronomic efficiency decreased, and the apparent nitrogen loss and nitrogen surplus significantly increased. Comprehensively considering the maize yield, benefits, and environmental risk factors the suitable nitrogen application rate was in a range of 170.2 kg·ha−1 to 178.2 kg·ha−1 in the first year and 150.0 kg·ha−1 to 171.3 kg·ha−1 in the second year. This work provides a theoretical basis and technical support for the rational application of nitrogen fertilizer and high-yield and high-efficiency spring maize under the condition of straw returning to the field. Full article
10 pages, 1174 KB  
Article
Global Solutions to Rasmussen’s Problem by Homotopy Renormalization Method
by Bing Guan, Xianjun Wang, Xiaofei Fu, Shuangqing Chen and Shibin Li
Symmetry 2025, 17(10), 1674; https://doi.org/10.3390/sym17101674 - 7 Oct 2025
Abstract
In this study, we employ the homotopy renormalization (HTR) method to analytically investigate Rasmussen’s problem, which characterizes the viscous fluid motion between a pair of infinitely large, coaxially rotating disks. The original set of nonlinear ordinary differential equations is reformulated within a homotopy-based [...] Read more.
In this study, we employ the homotopy renormalization (HTR) method to analytically investigate Rasmussen’s problem, which characterizes the viscous fluid motion between a pair of infinitely large, coaxially rotating disks. The original set of nonlinear ordinary differential equations is reformulated within a homotopy-based framework, allowing us to construct global asymptotic approximations with closed-form expressions. The HTR method overcomes the limitations of traditional perturbation and renormalization techniques, and avoids the need for asymptotic matching. In addition, the analytic expressions allow for direct estimation of flow parameters such as boundary layer thickness. These results demonstrate the effectiveness of the HTR method in asymptotic analysis and highlight its potential for broader applications in nonlinear fluid dynamics. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 29903 KB  
Article
Analyzing Spatiotemporal Patterns of Cultivated Land by Integrating Aggregation Degree and Omnidirectional Connectivity: A Case Study of Daqing City, China
by Yanhong Hang, Zhuocheng Zhang and Xiaoming Li
Land 2025, 14(10), 2000; https://doi.org/10.3390/land14102000 - 6 Oct 2025
Abstract
The spatial configuration of cultivated land is crucial for modern agricultural production; therefore, research on cultivated land aggregation and spatial connectivity holds significant importance for enhancing agricultural production efficiency and ensuring food security. This study selected Daqing City, China, as the research area [...] Read more.
The spatial configuration of cultivated land is crucial for modern agricultural production; therefore, research on cultivated land aggregation and spatial connectivity holds significant importance for enhancing agricultural production efficiency and ensuring food security. This study selected Daqing City, China, as the research area and constructed a three-level nested framework of “patch–local–regional” scales. The aggregation degree was calculated through landscape pattern indices and the MSPA model, and connectivity was evaluated using the Omniscape algorithm based on circuit theory to explore the spatiotemporal evolution patterns of cultivated land configuration and analyze their spatial correlations, proposing classified optimization strategies. The results indicate the following: (1) the spatiotemporal distribution characteristics of cultivated land aggregation in Daqing City exhibit a spatial pattern of “high in the north and south, low in the middle,” with an overall declining trend from 2000 to 2020; (2) high-connectivity areas are primarily distributed in Lindian County in the north and Zhaozhou and Zhaoyuan Counties in the south, while low-connectivity areas are concentrated in the central urban area and surrounding regions; (3) the aggregation degree and connectivity demonstrate positive spatial correlation, with the Global Moran’s index increasing from 0.358 in 2000 to 0.413 in 2020; and (4) based on the aggregation degree and connectivity characteristics, the study area can be classified into four types: scattered imbalance–isolated dysfunction, regular imbalance–connected dysfunction, scattered improvement–connected optimization, and regular improvement–connected optimization. This study provides new research perspectives for cultivated land protection. The proposed multi-scale aggregation–connectivity research method and classification system offer important reference value for the efficient utilization and management optimization of cultivated land. Full article
(This article belongs to the Special Issue Spatiotemporal Dynamics and Utilization Trend of Farmland)
Show Figures

Figure 1

15 pages, 4930 KB  
Article
The TBXT Gene and Brachyury Protein Are Differentially Expressed During the Early Embryonic Development of Hu and Hulunbuir Sheep
by Daqing Wang, Yifan Zhao, Guifang Cao, Jiajia Zhang and Caiyun Wang
Life 2025, 15(10), 1560; https://doi.org/10.3390/life15101560 - 5 Oct 2025
Abstract
In this study, SweAMI FISH fluorescence in situ hybridization and immunofluorescence were used to analyze the spatiotemporal expression characteristics of the TBXT gene and Brachyury protein in 16-day-old Hulunbuir sheep embryos and 19-day-old Hu sheep embryos and to explore their regulatory effects on [...] Read more.
In this study, SweAMI FISH fluorescence in situ hybridization and immunofluorescence were used to analyze the spatiotemporal expression characteristics of the TBXT gene and Brachyury protein in 16-day-old Hulunbuir sheep embryos and 19-day-old Hu sheep embryos and to explore their regulatory effects on the development of sheep tails and related organs. The study showed the following: At 16 days of embryonic age, the TBXT gene was concentratedly expressed in the heart, somites, neural tube, and mesonephros of both sheep breeds; at 19 days of embryonic age, it was concentratedly expressed in the limb ectoderm and tail bud of Hulunbuir sheep, and in the midgut and tail bud of Hu sheep. At 16 days of embryonic age, the BRACHYURY protein was concentratedly expressed in the neural tube, somites, brain vesicles, and mesonephros of both sheep breeds; at 19 days of embryonic age, it was concentratedly expressed in the heart and hindgut of Hulunbuir sheep, and in the tail bud and hindgut of Hu sheep. In summary, this shows that there are differences in the temporal and spatial expressions of the TBXT gene and BRACHYURY protein between the two sheep breeds. There are also site-specific and time-specific differences in the regulation of the above genes and proteins during tail and related organ development between the two breeds, which confirms that the molecular regulation pathways of tail and related organ development are different between the two breeds. This study provides an experimental basis for screening molecular markers related to goat tail development and breed improvement. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

12 pages, 1340 KB  
Article
Research on Well Depth Tracking Calculation Method Based on Branching Parallel Neural Networks
by Weikai Liu, Baoquan Ma and Xiaolei Yu
Processes 2025, 13(10), 3147; https://doi.org/10.3390/pr13103147 - 30 Sep 2025
Abstract
Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field [...] Read more.
Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field example. After analyzing and correcting the quality of the logging data collected on site by using DBSCAN (a density clustering algorithm), five parameters of WOB, rotating speed, displacement, pump pressure, and torque are selected to predict and calculate the downhole mechanical ROP. Adjust the structure of a traditional artificial BP neural network and design a multi-branch parallel neural network, change the basic architecture of the original hierarchical operation, make full use of the operation efficiency of a computer to realize parallel operation, and adopt the method of point-to-point depth comparison when evaluating the well depth tracking effect. The results indicate that the MAE and mechanical drilling rate evaluation values obtained were 1.18 and 0.873, respectively. The multi-branch parallel neural network achieved a 66.55% improvement in MAE compared to the original BP neural network, while the R2 evaluation method showed a 61.82% increase. The average point-by-point comparison error in the example calculation was 0.012 m, with a maximum error of 0.268 m. This result can serve as a fundamental basis for judging changes in well depth during the drilling process. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

17 pages, 4081 KB  
Article
A Novel Method to Determine the Grain Size and Structural Heterogeneity of Fine-Grained Sedimentary Rocks
by Fang Zeng, Shansi Tian, Hongli Dong, Zhentao Dong, Bo Liu and Haiyang Liu
Fractal Fract. 2025, 9(10), 642; https://doi.org/10.3390/fractalfract9100642 - 30 Sep 2025
Abstract
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry [...] Read more.
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry data indicates strong methodological reliability (absolute errors ranging from −5% to 3%), especially for particle sizes greater than 0.039 mm. The methodology reveals substantial internal heterogeneity within Es3 laminated shale samples from the Shahejie Formation (Bohai Bay Basin), distinctly identifying coarser siliceous laminae (grain size >0.039 mm, Φ < 8 based on Udden-Wentworth classification) indicative of high-energy depositional environments, and finer-grained clay-rich laminae (grain size <0.039 mm, Φ > 8) representing low-energy conditions. Conversely, massive mudstones exhibit comparatively homogeneous grain size distributions. Additionally, a multifractal analysis (Multifractal method) based on the S50bi/S50si ratio further quantifies spatial heterogeneity and pore-structure complexity, significantly enhancing facies differentiation and reservoir characterization capabilities. This method significantly improves facies differentiation ability, provides reliable constraints for shale oil reservoir characterization, and has important reference value for the exploration and development of the Bohai Bay Basin and similar petroliferous basins. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

16 pages, 2992 KB  
Article
The Prediction of Oil and Water Content in Tight Oil Fluid: A Case Study of the Gaotaizi Oil Reservoir in Songliao Basin
by Junhui Li, Jie Li, Xiuli Fu, Junwen Li, Shuangfang Lu, Zhong Chu and Nengwu Zhou
Energies 2025, 18(19), 5186; https://doi.org/10.3390/en18195186 - 30 Sep 2025
Abstract
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the [...] Read more.
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the oil proportion in the produced fluid from each block within the Gaotaizi oil reservoir of the Songliao Basin and elucidates the reasons for its variation across different blocks. The production of pure oil in a vertical well area was attributed to the reservoir fluid exhibiting high bound water saturation, resulting in oil being the primary movable phase. In the testing and extended areas, variations in oil saturation combined with the pore size distribution governing oil and water occupancy are likely responsible for the differing oil-water ratios observed in the produced fluid. Specifically, a higher oil-to-water ratio (7:3) was produced in the testing area, while the extended area yielded a lower oil-to-water ratio (3:7). Furthermore, the model predicts an oil-to-water ratio of 4:6 for the produced fluid in the Fangxing area. To enhance oil production in the extended area, narrowing the fracture interval is proposed. However, this measure may not prove effective in other blocks. Full article
Show Figures

Figure 1

24 pages, 6146 KB  
Article
Research on Capacity Prediction and Interpretability of Dense Gas Pressure Based on Ensemble Learning
by Xuanyu Liu, Zhiwei Yu, Chao Zhou, Yu Wang and Yujie Bai
Processes 2025, 13(10), 3132; https://doi.org/10.3390/pr13103132 - 29 Sep 2025
Abstract
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing [...] Read more.
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing the internal prediction mechanisms. This lack of transparency reduces the credibility and practical utility of such models. To address the challenges of poor performance and low trustworthiness of “black-box” machine learning models, this study explores a data-driven approach to “black-box” predictive modeling by integrating ensemble learning with interpretability methods. The results indicate the following: The post-fracturing productivity prediction model for tight-gas reservoirs developed in this study, based on ensemble learning, achieves a goodness of fit of 0.923, representing a 26.09% improvement compared to the best-performing individual machine learning model. The stacking ensemble model predicts post-fracturing productivity for horizontal wells more accurately and effectively mitigates the prediction biases of individual machine learning models. An interpretability method for the “black-box” ensemble learning-based productivity prediction model was established, revealing the ranked importance of factors influencing post-fracturing productivity: reservoir properties, controllable operational parameters, and rock mechanics. This ranking aligns with the results of orthogonal experiments from mechanism-driven numerical models, providing mutual validation and enhancing the credibility of the ensemble learning-based productivity prediction model. In conclusion, this study integrates mechanistic numerical models and data-driven models to explore the influence of various factors on post-fracturing productivity. The cross-validation of results from both approaches underscores the reliability of the findings, offering theoretical and methodological support for the design of fracturing schemes and the iterative advancement of fracturing technologies in tight-gas reservoirs. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

22 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2017 KB  
Article
The Density Function of the Stochastic SIQR Model with a Two-Parameters Mean-Reverting Process
by Huina Zhang, Zhiming Ni, Daqing Jiang and Jianguo Sun
Axioms 2025, 14(10), 732; https://doi.org/10.3390/axioms14100732 - 28 Sep 2025
Abstract
This study develops a stochastic SIQR epidemic model with mean-reverting Ornstein–Uhlenbeck (OU) processes for both transmission rate β(t) and quarantine release rate k(t); this is distinct from existing non-white-noise stochastic epidemic models, most of which focus [...] Read more.
This study develops a stochastic SIQR epidemic model with mean-reverting Ornstein–Uhlenbeck (OU) processes for both transmission rate β(t) and quarantine release rate k(t); this is distinct from existing non-white-noise stochastic epidemic models, most of which focus on single-parameter perturbation or only stability analysis. It synchronously embeds OU dynamics into two core epidemic parameters to capture asynchronous fluctuations between infection spread and control measures. It adopts a rare measure solution framework to derive rigorous infection extinction conditions, linking OU’s ergodicity to long-term β+(t) averages. It obtains the explicit probability density function of the four-dimensional SIQR system, filling the gap of lacking quantifiable density dynamics in prior studies. Simulations validate that R0d<1 ensures almost sure extinction, while R0e>1 leads to stable stochastic persistence. Full article
(This article belongs to the Special Issue Advances in Dynamical Systems and Control, 2nd Edition)
Show Figures

Figure 1

22 pages, 7843 KB  
Article
Integrated Transcriptome–Metabolome Analysis Reveals the Flavonoids Metabolism Mechanism of Maize Radicle in Response to Low Temperature
by Yi Dou, Wenqi Luo, Yifei Zhang, Wangshu Li, Chunyu Zhang, Yanjie Lv, Xinran Liu and Song Yu
Plants 2025, 14(19), 2988; https://doi.org/10.3390/plants14192988 - 26 Sep 2025
Abstract
The Northeast region in China is a major maize-producing area; however, low-temperature stress (TS) limits maize (Zea mays L.) seed germination, affecting population establishment and yield. In order to systematically explore the regulation mechanism of maize radicle which is highly sensitive to [...] Read more.
The Northeast region in China is a major maize-producing area; however, low-temperature stress (TS) limits maize (Zea mays L.) seed germination, affecting population establishment and yield. In order to systematically explore the regulation mechanism of maize radicle which is highly sensitive to low-temperature environment response to TS, seeds of ZD958 and DMY1 were used to investigate germination responses under 15 °C (control) and 5 °C (TS) conditions. Phenotypic, physiological, transcriptomic, and metabolomic analyses were conducted on the radicles after 48 h of TS treatment. TS caused reactive oxygen species (ROS) imbalance and oxidative damage in radicle cells, inhibiting growth and triggering antioxidant defenses. Integrated transcriptomic and metabolomic analyses revealed that flavonoid metabolism may play a pivotal role in radicle responses to TS. Compared with the control treatment, ZD958 and DMY1 under TS treatment significantly increased (p < 0.01) the total flavonoid content, total antioxidant capacity, 4-coumarate-CoA ligase activity, and dihydroflavonol 4-reductase activity by 15.99% and 16.01%, 18.41% and 18.54%, 63.54% and 31.16%, and 5.09% and 7.68%, respectively. Despite genotypic differences, both followed a shared regulatory logic of “low-temperature signal-driven—antioxidant redirection—functional synergy.” This enabled ROS scavenging, redox balance, and antioxidant barrier formation, ensuring basal metabolism and radicle development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 3309 KB  
Article
Experimental Study on the Mechanism of Steam Flooding for Heavy Oil in Pores of Different Sizes
by Dong Zhang, Li Zhang, Yan Wang, Jiyu Zhou, Peng Sun and Kuo Zhan
Processes 2025, 13(10), 3083; https://doi.org/10.3390/pr13103083 - 26 Sep 2025
Abstract
Nowadays, most of the heavy oil fields around the world have entered difficult exploiting stages, with problems regarding high viscosity and poor fluidity. However, there has been little previous research on the accurate identification and distribution of remaining oil with different levels of [...] Read more.
Nowadays, most of the heavy oil fields around the world have entered difficult exploiting stages, with problems regarding high viscosity and poor fluidity. However, there has been little previous research on the accurate identification and distribution of remaining oil with different levels of steam dryness. Therefore, this paper proposes a new nuclear magnetic resonance (NMR) interpretation method, as well as a new samples analysis method for remaining oil in the core. We conducted core displacement experiments using different methods. The nuclear magnetic resonance (NMR) tests and analysis of core thin sections after steam flooding were used to study the effect of different steam dryness levels on the migration and sedimentation mechanisms of heavy oil components. The results showed that the viscosity of crude oil and the permeability of rock cores are both sensitive to steam dryness; therefore, the improvement of steam dryness is beneficial for improving oil recovery. Heavy oil is mainly distributed in the medium pores of 10–50 μm and the small pores of 1–10 μm. However, with the decrease in steam dryness, the dynamic amount of crude oil in both medium and small pores decreases, and the bitumen in crude oil stays in the pores in the form of stars, patches, and envelopes, which leads to a decline in oil displacement efficiency. Thus, our study provides a micro-level understanding of remaining oil which lays the foundation for the further enhancement of oil recovery in heavy oilfields. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 1185 KB  
Article
Mitoquinone Can Effectively Improve the Quality of Thawed Boar Sperm
by Yingying Dong, Qian Wang, Hechuan Wang, Qing Guo, Yanbing Li and Jingchun Li
Animals 2025, 15(19), 2808; https://doi.org/10.3390/ani15192808 - 26 Sep 2025
Abstract
Boar sperm is susceptible to damage by reactive oxygen species during in vitro preservation, leading to lipid peroxidation, which changes the sperm structure and affects its quality after thawing. Exogenous antioxidants play a vital role in preventing this damage. This research aimed to [...] Read more.
Boar sperm is susceptible to damage by reactive oxygen species during in vitro preservation, leading to lipid peroxidation, which changes the sperm structure and affects its quality after thawing. Exogenous antioxidants play a vital role in preventing this damage. This research aimed to assess the impact of incorporating Mitoquinone into cryopreservation extenders on the quality and antioxidant capacity of boar sperm. Mitoquinone was added to the cryopreservation extender at varying concentrations, namely, 0, 50, 100, 150, and 200 nmol/L. Post-thawing, the sperm were examined for motility parameters, acrosome integrity, DNA integrity, mitochondrial activity, membrane integrity, and antioxidant enzyme activity. The results showed that compared with the control group, 150 nmol/L Mitoquinone could improve sperm viability after freezing and thawing and significantly reduce the malformation rate (p < 0.05). The addition of 150 nmol/L Mitoquinone led to a significant increase in the acrosome integrity, DNA integrity, mitochondrial activity, and membrane integrity of the boar sperm compared to the control group (p < 0.05). Moreover, it enhanced the antioxidant capacity of the sperm. This study demonstrated that the cryopreservation extender containing 150 nmol/L of Mitoquinone can enhance the effectiveness of semen cryopreservation. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

20 pages, 5625 KB  
Article
Dynamic Changes in Microbial Communities in Oil Reservoirs Under a Long-Term Bio-Chemical Flooding Operation
by Gui-Na Qi, Guo-Jun Li, Yi-Fan Liu, Lei Zhou, Ya-Qing Ge, Jin-Feng Liu, Shi-Zhong Yang, Ji-Dong Gu and Bo-Zhong Mu
Microorganisms 2025, 13(10), 2246; https://doi.org/10.3390/microorganisms13102246 - 25 Sep 2025
Abstract
Huge amounts of water and chemicals have been injected into subsurface oil reservoirs in secondary and tertiary oil recovery processes. Although the effects of injected water and chemicals on microbial communities have been investigated, knowledge about their long-term dynamic changes in oil reservoirs [...] Read more.
Huge amounts of water and chemicals have been injected into subsurface oil reservoirs in secondary and tertiary oil recovery processes. Although the effects of injected water and chemicals on microbial communities have been investigated, knowledge about their long-term dynamic changes in oil reservoirs remains limited. To address this gap, we used 16S rRNA sequencing from cDNA and chemical analysis to track the dynamic changes in microbial communities in oil reservoirs under a long-term flooding operation over three years and five months using bio-chemical flooding in the Daqing Oilfield, China. Researchers observed dynamic changes in microbial composition and diversity during the flooding process. Long-term bio-chemical drainage leads to alterations in dominant bacterial community structure, with a decrease in methanogenic archaeal abundance. Bacterial metabolic functions remained stable, but archaeal functions changed notably. Our results indicate that the microbial community and its functions in the oil reservoirs have experienced significant dynamic changes under the long-term flooding intervention of bio-chemical flooding, which opens up a new window for further understanding the impact of injected water and chemicals on microbial community in oil reservoirs and expands our knowledge about the role of microbial community changes in reservoirs under the flooding process. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

13 pages, 985 KB  
Article
Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale
by Wei Wang, Yi Zhang, Fengke Dou, Chengyun Ma, Jianguo Chen, Tongtong Li, Hui Zhang and Wenzhen Yuan
Processes 2025, 13(10), 3059; https://doi.org/10.3390/pr13103059 - 25 Sep 2025
Abstract
To investigate the mechanism by which the rheological properties of drilling fluids affect the stability of the wellbore in brittle mud shale, this study systematically examines the influence of drilling fluids with different rheological properties on the hydration dispersion and rock strength of [...] Read more.
To investigate the mechanism by which the rheological properties of drilling fluids affect the stability of the wellbore in brittle mud shale, this study systematically examines the influence of drilling fluids with different rheological properties on the hydration dispersion and rock strength of brittle mud shale through a series of laboratory experiments, including thermal rolling tests and uniaxial compressive strength tests on core samples. The results reveal that for weakly dispersible brittle mud shale, the rheological properties of drilling fluids have a minor effect on hydration dispersion, with rolling recovery rates consistently above 90%. However, the rheological properties of drilling fluids significantly influence the strength of brittle mud shale, and this effect is coupled with multiple factors, including rock fracture intensity index, soaking time, and confining pressure. Specifically, as the viscosity of the drilling fluid increases, the reduction in rock strength decreases; for instance, at 5 MPa confining pressure with an FII of 0.46, the strength reduction after 144 h was 69.8% in distilled water (from an initial 133.2 MPa to 40.2 MPa) compared to 36.3% with 3# drilling fluid (from 133.2 MPa to 88.7 MPa, with 100 mPa·s apparent viscosity). Both increased soaking time and confining pressure exacerbate the reduction in rock strength; a 5 MPa confining pressure, for example, caused an additional 60.9% strength reduction compared to 0 MPa for highly fractured samples (FII = 0.46) in distilled water after 144 h. Rocks with higher fracture intensity indices are more significantly affected by the rheological properties of drilling fluids. Based on the experimental results, this study proposes a strength attenuation model for brittle mud shale that considers the coupled effects of fracture intensity index, soaking time, and drilling fluid rheological properties. Additionally, the mechanism by which drilling fluid rheological properties influence the strength of brittle mud shale is analyzed, providing a theoretical basis for optimizing drilling fluid rheological parameters and enhancing the stability of wellbores in brittle mud shale formations. Full article
Show Figures

Figure 1

Back to TopTop