Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,301)

Search Parameters:
Keywords = DSC analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1638 KB  
Article
To Study the Impact of Ultrasound-Assisted Antisolvent Crystallization on Aprepitant Crystal Habits
by Aditya Pandhare, Londhe Sachin Bhimrao, Ashish Kumar Agrawal and Dinesh Kumar
Crystals 2026, 16(2), 96; https://doi.org/10.3390/cryst16020096 (registering DOI) - 29 Jan 2026
Abstract
Aprepitant (APT), an antiemetic drug used for chemotherapy-induced nausea and vomiting (CINV), exhibits poor compressibility, solubility, and micromeritic properties. Crystal habit modification was studied using solvent evaporation, conventional antisolvent crystallization (APT_AS), cooling crystallization (APT_CC), and the advanced sonocrystallization technique (APT_SN). Morphological analysis of [...] Read more.
Aprepitant (APT), an antiemetic drug used for chemotherapy-induced nausea and vomiting (CINV), exhibits poor compressibility, solubility, and micromeritic properties. Crystal habit modification was studied using solvent evaporation, conventional antisolvent crystallization (APT_AS), cooling crystallization (APT_CC), and the advanced sonocrystallization technique (APT_SN). Morphological analysis of the sonocrystallized crystals revealed small, platy crystals exhibiting an aspect ratio of 1.35 ± 0.04 and a span value of 1.06. The APT_SN showed improved micromeritics as compared to APT_AS (1.59 ± 0.03) and APT_CC (1.48 ± 0.04) (antisolvent-crystallized APT and cooling crystallized APT, respectively). All modified crystals exhibited a plate-shaped crystal habit with no agglomeration. The angle of repose, Carr’s index, and Hausner’s ratio exhibit that the APT_SN showed improvement in powder properties. Solid-state characterization using differential scanning calorimetry (DSC), Powder X-ray Diffraction Spectroscopy (PXRD), and Thermogravimetric Analysis (TGA) proved no change in polymorph. Contact angle-driven wettability was as follows: APT > APT_AS > APT_SN > APT_CC, and the results were corroborated by X-ray photon spectroscopy (XPS) and intrinsic dissolution profiles. The XPS studies revealed a decrease in the surface polar component of APT_SN, resulting in reduced wettability. APT_SN showed the highest tensile strength at 20 kg/cm2 among all other crystals. All the modified crystals exhibited a reduced IDR profile, resulting from a reduction in the polar component at the surface. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

18 pages, 4545 KB  
Article
3D Medical Image Segmentation with 3D Modelling
by Mária Ždímalová, Kristína Boratková, Viliam Sitár, Ľudovít Sebö, Viera Lehotská and Michal Trnka
Bioengineering 2026, 13(2), 160; https://doi.org/10.3390/bioengineering13020160 - 29 Jan 2026
Abstract
Background/Objectives: The segmentation of three-dimensional radiological images constitutes a fundamental task in medical image processing for isolating tumors from complex datasets in computed tomography or magnetic resonance imaging. Precise visualization, volumetry, and treatment monitoring are enabled, which are critical for oncology diagnostics and [...] Read more.
Background/Objectives: The segmentation of three-dimensional radiological images constitutes a fundamental task in medical image processing for isolating tumors from complex datasets in computed tomography or magnetic resonance imaging. Precise visualization, volumetry, and treatment monitoring are enabled, which are critical for oncology diagnostics and planning. Volumetric analysis surpasses standard criteria by detecting subtle tumor changes, thereby aiding adaptive therapies. The objective of this study was to develop an enhanced, interactive Graphcut algorithm for 3D DICOM segmentation, specifically designed to improve boundary accuracy and 3D modeling of breast and brain tumors in datasets with heterogeneous tissue intensities. Methods: The standard Graphcut algorithm was augmented with a clustering mechanism (utilizing k = 2–5 clusters) to refine boundary detection in tissues with varying intensities. DICOM datasets were processed into 3D volumes using pixel spacing and slice thickness metadata. User-defined seeds were utilized for tumor and background initialization, constrained by bounding boxes. The method was implemented in Python 3.13 using the PyMaxflow library for graph optimization and pydicom for data transformation. Results: The proposed segmentation method outperformed standard thresholding and region growing techniques, demonstrating reduced noise sensitivity and improved boundary definition. An average Dice Similarity Coefficient (DSC) of 0.92 ± 0.07 was achieved for brain tumors and 0.90 ± 0.05 for breast tumors. These results were found to be comparable to state-of-the-art deep learning benchmarks (typically ranging from 0.84 to 0.95), achieved without the need for extensive pre-training. Boundary edge errors were reduced by a mean of 7.5% through the integration of clustering. Therapeutic changes were quantified accurately (e.g., a reduction from 22,106 mm3 to 14,270 mm3 post-treatment) with an average processing time of 12–15 s per stack. Conclusions: An efficient, precise 3D tumor segmentation tool suitable for diagnostics and planning is presented. This approach is demonstrated to be a robust, data-efficient alternative to deep learning, particularly advantageous in clinical settings where the large annotated datasets required for training neural networks are unavailable. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

22 pages, 4115 KB  
Article
Specific Impact of the Layered Nanomodifiers, Graphene Nanoplates, and Na+ Montmorillonite on Thermal Degradation of Polylactic Acid: Mechanism and Kinetics
by Sergey Lomakin, Elena Koverzanova, Sergey Usachev, Natalia Shilkina, Anatoliy Khvatov, Natalia Erina, Svetlana Rogovina, Olga Kuznetsova, Valentina Siracusa, Alexander Berlin and Alexey Iordanskii
Polymers 2026, 18(3), 347; https://doi.org/10.3390/polym18030347 - 28 Jan 2026
Abstract
The aim of this study is to investigate the impact of layered nanomodifiers with distinct chemical structure and morphology, namely graphene nanoplates (GnP) and sodium montmorillonite (Na-MMT), on thermal degradation of polylactic acid (PLA). The exploration was performed with thermogravimetric analysis (TGA), differential [...] Read more.
The aim of this study is to investigate the impact of layered nanomodifiers with distinct chemical structure and morphology, namely graphene nanoplates (GnP) and sodium montmorillonite (Na-MMT), on thermal degradation of polylactic acid (PLA). The exploration was performed with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and pyrolytic gas chromatography–mass spectrometry (PyGCMS). The findings revealed a catalytic effect of Na-MMT on PLA thermal destabilization, manifested in accelerated degradation and the notable change in the composition of pyrolysis products. In contrast, the incorporation of graphene nanoplates into the PLA matrix induced a “barrier effect”: it imposed diffusion limitations on the emission of volatile degradation products during pyrolysis, which enhanced the thermal stability of the PLA/GnP composite and led to quantitative alterations in the distribution of major pyrolysis products. To elucidate the underlying degradation pathways, authors proposed a model kinetic analysis of thermal degradation for both PLA/GnP and PLA/Na-MMT composites. The analysis clearly distinguished the mechanistic differences between the two systems: while Na-MMT promotes catalytic decomposition, GnP primarily acts as the physical barrier retarding mass transport and delaying the thermal degradation development. Good alignment of theoretical model–kinetic predictions with Pyrolysis–GC/MS observations confirms the robustness of the suggested kinetic modeling method. Full article
(This article belongs to the Special Issue Degradation and Stability of Polymer-Based Systems: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2846 KB  
Article
Valorization of Plant Biomass Through the Synthesis of Lignin-Based Hydrogels for Drug Delivery
by Natalia Cárdenas-Vargas, Nazish Jabeen, Jose Huerta-Recasens, Francisco Pérez-Pla, Clara M. Gómez, Maurice N. Collins, Leire Ruiz-Rubio, Rafael Muñoz-Espí and Mario Culebras
Gels 2026, 12(2), 104; https://doi.org/10.3390/gels12020104 - 27 Jan 2026
Viewed by 68
Abstract
This study focuses on obtaining lignin-based hydrogels from pruning residues of orange trees in the Safor region (Valencia) using an alkaline extraction method. The structural analysis of the obtained lignin was carried out using Fourier-transform infrared spectroscopy (FTIR), which revealed the characteristic functional [...] Read more.
This study focuses on obtaining lignin-based hydrogels from pruning residues of orange trees in the Safor region (Valencia) using an alkaline extraction method. The structural analysis of the obtained lignin was carried out using Fourier-transform infrared spectroscopy (FTIR), which revealed the characteristic functional groups of lignin, as well as its structural monolignols: syringyl and guaiacyl. The thermal properties were analyzed using differential scanning calorimetry (DSC) and thermogravimetric analysis. The DSC thermogram revealed a relatively low glass transition temperature (Tg) of 67 °C, which may be attributed to partial lignin chain degradation during alkaline extraction. Soda lignin was obtained at 190 °C with an approximate yield of 10.8% relative to the initial biomass and subsequently used to synthesize poly(vinyl alcohol) (PVA)-based hydrogels for ibuprofen encapsulation. Finally, the release experiments of the encapsulated ibuprofen were carried out in an aqueous phosphate buffer medium (pH = 7) at room temperature. A multi-curve response analysis (MCR) algorithm using the Korsmeyer–Peppas (KP) concentration model was used to analyze the release curves, which concluded that the drug and water-soluble lignin fraction (SLF) were released at different rates. For both components, a good correlation was obtained between the measured responses and those provided by the KP model. The release profile indicated that approximately 87% of the initial ibuprofen load was released from the hydrogel within 5 h, highlighting the promising potential of lignin-based hydrogels for drug delivery applications. Full article
(This article belongs to the Special Issue Design and Optimization of Pharmaceutical Gels (2nd Edition))
Show Figures

Figure 1

21 pages, 1661 KB  
Article
Impact of Selected Metal Oxides on the Thermodynamics of Solid Rocket Propellant Combustion
by Kinga Janowska, Sylwia Waśkiewicz, Paweł Skóra, Lukasz Hawelek, Piotr Prasuła, Tomasz Jarosz and Agnieszka Stolarczyk
Molecules 2026, 31(3), 436; https://doi.org/10.3390/molecules31030436 - 27 Jan 2026
Viewed by 44
Abstract
A series of catalytic oxides (Fe2O3, CuO, ZnO, and Cu2O) were investigated as prospective additives shaping the thermal features of a model solid rocket propellant (SRP) formulation utilising ammonium nitrate as the oxidising agent. An extensive investigation [...] Read more.
A series of catalytic oxides (Fe2O3, CuO, ZnO, and Cu2O) were investigated as prospective additives shaping the thermal features of a model solid rocket propellant (SRP) formulation utilising ammonium nitrate as the oxidising agent. An extensive investigation of the thermal behaviour (DSC and ignition/explosion temperature studies) of the model and catalyst-bearing SRP formulations was conducted, providing insights into both the thermodynamics and mechanism of combustion of these systems. XRD analysis of post-combustion residues was used to validate the mechanistic claims, as well as to provide information about the behaviour of copper oxides in the SRP system. In addition, the linear combustion velocity was experimentally determined, and the power output was estimated from density, linear combustion velocity and DSC data, in order to assess the potential motor performance of the tested formulations. The obtained results show that the utilisation of metal oxides significantly improves the combustion performance of ammonium nitrate-based SRP formulations relative to the unmodified ammonium nitrate-based propellants. Full article
(This article belongs to the Special Issue Advances in Energetic Materials and Associated Detection Methods)
Show Figures

Graphical abstract

20 pages, 3020 KB  
Article
Structural, Swelling, and In Vitro Digestion Behavior of DEGDA-Crosslinked Semi-IPN Dextran/Inulin Hydrogels
by Tamara Erceg, Miloš Radosavljević, Ružica Tomičić, Vladimir Pavlović, Milorad Miljić, Aleksandra Cvetanović Kljakić and Aleksandra Torbica
Gels 2026, 12(2), 103; https://doi.org/10.3390/gels12020103 - 26 Jan 2026
Viewed by 125
Abstract
In this study, semi-interpenetrating polymer network (semi-IPN) hydrogels based on methacrylated dextran and native inulin were designed as biodegradable carriers for the colon-specific delivery of uracil as a model antitumor compound. The hydrogels were synthesized via free-radical polymerization, using diethylene glycol diacrylate (DEGDA) [...] Read more.
In this study, semi-interpenetrating polymer network (semi-IPN) hydrogels based on methacrylated dextran and native inulin were designed as biodegradable carriers for the colon-specific delivery of uracil as a model antitumor compound. The hydrogels were synthesized via free-radical polymerization, using diethylene glycol diacrylate (DEGDA) as a crosslinking agent at varying concentrations (5, 7.5, and 10 wt%), and their structural, thermal, and biological properties were systematically evaluated. Fourier transform infrared spectroscopy (FTIR) confirmed successful crosslinking and physical incorporation of uracil through hydrogen bonding. Concurrently, differential scanning calorimetry (DSC) revealed an increase in glass transition temperature (Tg) with increasing crosslinking density (149, 153, and 156 °C, respectively). Swelling studies demonstrated relaxation-controlled, first-order swelling kinetics under physiological conditions (pH 7.4, 37 °C) and high gel fraction values (84.75, 91.34, and 94.90%, respectively), indicating stable network formation. SEM analysis revealed that the hydrogel morphology strongly depended on crosslinking density and drug incorporation, with increasing crosslinker content leading to a more compact and wrinkled structure. Uracil loading further modified the microstructure, promoting the formation of discrete crystalline domains within the semi-IPN hydrogels, indicative of physical drug entrapment. All formulations exhibited high encapsulation efficiencies (>86%), which increased with increasing crosslinker content, consistent with the observed gel fraction values. Simulated in vitro gastrointestinal digestion showed negligible drug release under gastric conditions and controlled release in the intestinal phase, primarily governed by crosslinking density. Antimicrobial assessment against Escherichia coli and Staphylococcus epidermidis, used as an initial or indirect indicator of cytotoxic potential, revealed no inhibitory activity, suggesting low biological reactivity at the screening level. Overall, the results indicate that DEGDA-crosslinked dextran/inulin semi-interpenetrating (semi-IPN) hydrogels represent promising carriers for colon-targeted antitumor drug delivery. Full article
(This article belongs to the Special Issue Biopolymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

17 pages, 7796 KB  
Article
Molecular Design Strategies of Nucleating Agents with Synergistic Effects for Upcycling Polyethylene Terephthalate
by Xinyu Hao, Tianjiao Zhao, Fuhua Lin, Meizhen Wang, Dingyi Ning, Wenju Cui, Yuanjian Ye, Jun Luo and Bo Wang
Molecules 2026, 31(3), 414; https://doi.org/10.3390/molecules31030414 - 26 Jan 2026
Viewed by 110
Abstract
The nucleating agents with different alkyl chain lengths sodium 4-[(benzyl)amino] benzoate (SAB-Be), sodium 4-[(heptanoyl)amino] benzoate (SAB-7C), and sodium 4-[(stearoyl)amino] benzoate (SAB-18C) were synthesized via chemical to improve the crystallization and mechanical properties of recycled polyethylene terephthalate (rPET) that had been damaged during mechanical [...] Read more.
The nucleating agents with different alkyl chain lengths sodium 4-[(benzyl)amino] benzoate (SAB-Be), sodium 4-[(heptanoyl)amino] benzoate (SAB-7C), and sodium 4-[(stearoyl)amino] benzoate (SAB-18C) were synthesized via chemical to improve the crystallization and mechanical properties of recycled polyethylene terephthalate (rPET) that had been damaged during mechanical recycling. The rPET/nucleating agent blends were prepared by melt blending. The molecular structure and thermal stability of the nucleating agents were characterized using the utilization of fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The differential scanning calorimetry (DSC) results showed that the crystallization properties of the rPET had been improved. In addition, the glass transition temperatures (Tg) of rPET, rPET/SAB-Be, rPET/SAB-7C, and rPET/SAB-18C were 80.3 ± 0.3 °C, 80.4 ± 0.9 °C, 77.0 ± 1.2 °C, and 69.7 ± 0.9 °C, respectively, demonstrating that the length of the alkyl chain in the nucleating agents was essentially proportional to the lubrication effect on rPET. Meanwhile, the rheological properties also supported the conclusion. The isothermal thermodynamic analysis indicated that the compatibility between nucleating agents and rPET was related to the length of the alkyl chain in the nucleating agents. The scanning electron microscopy (SEM) results of the fracture surfaces of the rPET/nucleating agent blends showed that the longer the alkyl chain in the nucleating agent, the greater the compatibility with rPET. Furthermore, the rPET/SAB-18C exhibited the best mechanical properties of the samples used in this research, with flexural strength and impact strength increased by 5.1% and 58.9%, respectively, compared to rPET. Overall, this work provided the new approach for rPET upcycling by combining molecular design strategies. Full article
Show Figures

Graphical abstract

19 pages, 11499 KB  
Article
A Novel Plasticization Mechanism in Poly(Lactic Acid)/PolyEthyleneGlycol Blends: From Tg Depression to a Structured Melt State
by Nawel Mechernene, Lina Benkraled, Assia Zennaki, Khadidja Arabeche, Abdelkader Berrayah, Lahcene Mechernene, Amina Bouriche, Sid Ahmed Benabdellah, Zohra Bouberka, Ana Barrera and Ulrich Maschke
Polymers 2026, 18(3), 317; https://doi.org/10.3390/polym18030317 - 24 Jan 2026
Viewed by 169
Abstract
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of [...] Read more.
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of PLA remain insufficiently understood. This study presents a comprehensive analysis of PLA plasticized with 0–20 wt% PEG 4000, employing differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and rheology. DSC confirmed excellent miscibility and a significant glass transition temperature (Tg) depression exceeding 19 °C for the highest concentration. A complex, non-monotonic evolution of crystallinity was observed, associated with the formation of different crystalline forms (α′ and α). Critically, DMA revealed that the material’s thermo-mechanical response is dominated by its thermal history: while the plasticizing effect is masked in highly crystalline, as-cast films, it is unequivocally demonstrated in quenched amorphous samples. The core finding emerges from a targeted rheological investigation. An anomalous increase in melt viscosity and elasticity at intermediate PEG concentrations (5–15 wt%), observed at 180 °C, was systematically shown to vanish at 190 °C and in amorphous samples. This proves that the anomaly stems from residual crystalline domains (α′ precursors) persisting near the melting point, not from a transient molecular network. These results establish that PEG 4000 is a highly effective PLA plasticizer whose impact is profoundly mediated by processing-induced crystallinity. This work provides essential guidelines for tailoring PLA properties by controlling thermal history to optimize flexibility and processability for advanced applications, specifically in melt-processing for flexible packaging. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

16 pages, 18592 KB  
Article
A Framework for Nuclei and Overlapping Cytoplasm Segmentation with MaskDino and Hausdorff Distance
by Baocan Zhang, Xiaolu Jiang, Wei Zhao and Shixiao Xiao
Symmetry 2026, 18(2), 218; https://doi.org/10.3390/sym18020218 - 23 Jan 2026
Viewed by 123
Abstract
Accurate segmentation of nuclei and cytoplasm in cervical cytology images plays a pivotal role in characterizing cellular morphology. The primary challenge is to precisely delineate boundaries within densely clustered cells, which is complicated by low-contrast edges and irregular morphologies. This paper introduces a [...] Read more.
Accurate segmentation of nuclei and cytoplasm in cervical cytology images plays a pivotal role in characterizing cellular morphology. The primary challenge is to precisely delineate boundaries within densely clustered cells, which is complicated by low-contrast edges and irregular morphologies. This paper introduces a novel framework combining MaskDino architecture with Hausdorff distance loss, enhanced by a two-phase training strategy. The method begins by employing MaskDino for precise nucleus segmentation. Building on this foundation, the framework then enhances cytoplasmic boundary detection in cellular clusters by incorporating a Hausdorff distance loss, with weight transfer initialization ensuring feature consistency across tasks.. The symmetry between the nucleus and cytoplasm servers as a key morphological indicator for cell assessment, and our method provides a reliable basis for such analysis. Extensive experiments demonstrate that our method achieves state-of-the-art cytoplasm segmentation results on the ISBI2014 dataset, with absolute improvements of 2.9% in DSC, 1.6% in TPRp and 2.0% in FNRo. The performance of nucleus segmentation is better than the average level. These results validate the proposed framework’s effectiveness for improving cervical cancer screening through robust cellular segmentation. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 2145 KB  
Article
Polyethylene-Based Phase Change Materials Modified with Hexagonal Boron Nitride Nanoparticles with Enhanced Thermal Stability and Thermal Conductivity
by Beata Macherzyńska, Adrianna Pitera, Katarzyna Nowicka-Dunal and Kinga Pielichowska
Materials 2026, 19(3), 455; https://doi.org/10.3390/ma19030455 - 23 Jan 2026
Viewed by 216
Abstract
Polyethylene waxes (PEWs) are considered promising mid-temperature phase change materials (PCMs). However, their low thermal conductivity limits both applicability and efficiency. One of the more interesting inorganic additives for PCMs is boron nitride (BN), which exhibits high thermal conductivity while remaining electrically insulating, [...] Read more.
Polyethylene waxes (PEWs) are considered promising mid-temperature phase change materials (PCMs). However, their low thermal conductivity limits both applicability and efficiency. One of the more interesting inorganic additives for PCMs is boron nitride (BN), which exhibits high thermal conductivity while remaining electrically insulating, excellent chemical and thermal stability, and good oxidation resistance. In this study, PEW was modified with hexagonal boron nitride (h-BN) in the range of 0.025 to 0.5 wt.%. Differential scanning calorimetry (DSC) results revealed that the addition of h-BN significantly alters the phase-transition behavior of polyethylene wax, broadens the melting and solidification temperature ranges, and reduces supercooling from 11 °C to 9 °C. Thermogravimetric analysis (TGA) showed that the incorporation of h-BN improves the thermal stability of the material. The temperature corresponding to 5% mass loss increased by about 50 °C after incorporation of more than 0.025% h-BN. The temperature of maximum mass-loss rate (TDTGmax) was shifted about 8 °C toward higher temperatures. FTIR results indicate that h-BN does not change the chemical structure of polyethylene waxes, but does affect their morphology and physical properties by increasing the thermal conductivity from 0.30 to 0.40 mW/K. These effects enable the design of composites with tunable properties for energy-storage applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

19 pages, 4468 KB  
Article
Natural Bio-Sourced Additives for Bread Technology Improvement and Highly Nutritive Products
by Nicoleta Platon, Oana Cristina Pârvulescu, Vasilica Alisa Aruș, Ana Maria Georgescu, Mihaela Silion, Anca Miron, Gabriela Muntianu, Ana Maria Roșu, Petrica Iancu and Abdelkrim Azzouz
Foods 2026, 15(3), 413; https://doi.org/10.3390/foods15030413 - 23 Jan 2026
Viewed by 159
Abstract
Hydrolyzed collagen (HC) and konjac glucomannan (KGM) were used as additives in non-frozen and frozen doughs (NFDs and FDs). Both additives were characterized using specific techniques, i.e., SEM-EDX, MALDI-TOF MS, TGA, and DSC analyses. Rheological analysis of NFD samples was performed using a [...] Read more.
Hydrolyzed collagen (HC) and konjac glucomannan (KGM) were used as additives in non-frozen and frozen doughs (NFDs and FDs). Both additives were characterized using specific techniques, i.e., SEM-EDX, MALDI-TOF MS, TGA, and DSC analyses. Rheological analysis of NFD samples was performed using a Chopin Mixolab Profiler. According to a central composite design (CCD), two sets of twelve experiments were conducted to evaluate the influence of percentages of HC and KGM in the mixture of flour and both additives (cHC = 0.79–2.21% and cKGM = 0.79–2.21%) on the porosity (PO = 58.96–78.76%), humidity (HU = 42.51–45.60%), electrical conductivity (EC = 2.06–2.29 μS/cm), and pH (pH = 5.5–5.9) of bread samples prepared from NFD and FD. The freezing led to a significant decrease in PO and pH, as well as a significant increase in HU, whereas its effect on EC was not statistically significant. The highest values of response variables that were significantly affected by the process factors, i.e., POFD = 70.8%, pHFD = 5.6, and pHNFD = 5.9, were obtained in the center point runs (cHC = cKGM = 1.50%). For bread samples prepared from FD, the mold development process began approximately four days later than for those prepared from NFD. Bread samples produced from FD and NFD samples in the center point runs showed a low rate of mold formation. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 5388 KB  
Article
Alkali Cation-Directed Crystallization: Phase Formation and Thermal Behavior in A4Ge9O20 (A = Li, Na, K) Model Systems
by Elena A. Volkova, Lyubov A. Nevolina, Ekaterina Y. Kotelevskaya, Vladimir L. Kosorukov and Olga N. Koroleva
Crystals 2026, 16(2), 82; https://doi.org/10.3390/cryst16020082 - 23 Jan 2026
Viewed by 103
Abstract
The structural origin of the germanate anomaly in glasses, which involves complex Ge–O coordination environments, is frequently studied using crystalline analogs. This study aims to provide reliable spectroscopic fingerprints by performing a detailed structural and thermal analysis of crystalline A4Ge9 [...] Read more.
The structural origin of the germanate anomaly in glasses, which involves complex Ge–O coordination environments, is frequently studied using crystalline analogs. This study aims to provide reliable spectroscopic fingerprints by performing a detailed structural and thermal analysis of crystalline A4Ge9O20 model systems with A = Li, Na, K. The compounds were synthesized via melt crystallization and characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Raman spectroscopy techniques. The results demonstrate clear cation-dependent crystallization pathways. The Li-containing system predominantly forms Li2Ge7O15 in mixture with Li4Ge9O20, indicating a preference for thermodynamically stable phases. The Na-system successfully yields the target Na4Ge9O20 compound. In contrast, the K-system primarily produces the likely metastable K2Ge4O9 phase with a significant amorphous fraction, highlighting the role of kinetic limitations. This comparative study demonstrates that the size of the alkali cation is a critical factor for controlling phase formation under identical stoichiometric and thermal conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 5920 KB  
Article
Mechanical, Fatigue, and Thermal Characterization of ASA, Nylon 12, PC, and PC-ABS Manufactured by Fused Filament Fabrication (FFF)
by Ângela Rodrigues, Ricardo Branco, Margarida Franco, Rui Silva, Cândida Malça and Rui F. Martins
Polymers 2026, 18(2), 302; https://doi.org/10.3390/polym18020302 - 22 Jan 2026
Viewed by 131
Abstract
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of [...] Read more.
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of these materials is necessary to determine their suitability for demanding applications, such as those involving cyclic loading. Following previous work that studied Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol-modified (PETG) under experimental fatigue testing, this study examines the fatigue behaviour of other current 3D-printed polymeric materials, namely Acrylonitrile Styrene Acrylate (ASA), Polycarbonate (PC), Polyamide 12 (Nylon 12), and Polycarbonate–Acrylonitrile Butadiene Styrene (blend) (PC-ABS), for which fatigue data remain limited or even non-existent. The findings revealed performance differences on Tensile Strength (σR), Young’s Modulus and Ultimate Strain among tensile specimens made from these materials and characterised S-N curves for both high-cycle (HCF) and low-cycle (LCF) fatigue regimes at room temperature, with a tensile load ratio (R = 0.05). These results establish relationships among fatigue limit and quasi-static mechanical properties, namely 25% × σr for ASA (8 MPa), 7% × σr for PC (3.6 MPa), 17% × σr for Nylon 12 (7.4 MPa), and 15% × σr for PC-ABS (4.7 MPa), as well as between mechanical properties and preliminary potential biomechanical applications. Main conclusions were further supported by micro-computed tomography (micro-CT), which revealed levels of porosity in between 4% and 11%, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Full article
(This article belongs to the Special Issue Research Progress on Mechanical Behavior of Polymers, 2nd Edition)
Show Figures

Figure 1

16 pages, 3798 KB  
Article
Tailoring Thermal Conductivity Anisotropy in Poly(vinylidene fluoride)/Boron Nitride Nanosheet Composites via Processing-Induced Filler Orientation
by Yan-Zhou Lei and De-Xiang Sun
Polymers 2026, 18(2), 291; https://doi.org/10.3390/polym18020291 - 21 Jan 2026
Viewed by 128
Abstract
To address the thermal management challenges in electronic devices, this study systematically investigates the effects of injection molding and compression molding on the microstructure and thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet (PVDF/BNNs) composites. Using 10 μm diameter BNNs as thermal conductive fillers [...] Read more.
To address the thermal management challenges in electronic devices, this study systematically investigates the effects of injection molding and compression molding on the microstructure and thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet (PVDF/BNNs) composites. Using 10 μm diameter BNNs as thermal conductive fillers and PVDF as the matrix, the composites were characterized via scanning electron microscopy (SEM), thermal conductivity measurements, rheological analysis, X-ray diffraction (XRD), and mechanical tests. The results demonstrate that the strong shear stress in injection molding induces significant alignment of BNNs along the flow direction, leading to remarkable thermal conductivity anisotropy. At a PVDF/BNNs mass ratio of 90/10, the in-plane thermal conductivity of the injection-molded composite reaches 1.26 W/(m·K), while the through-plane conductivity is only 0.40 W/(m·K). In contrast, compression molding, which involves minimal shear, results in randomly dispersed BNNs and isotropic thermal conductivity, with both in-plane and through-plane values around 0.41 W/(m·K) at the same filler loading. Both processing methods preserve the coexistence of α- and β-crystalline phases in PVDF. However, injection molding enhances matrix crystallinity through stress-induced crystallization, yielding composites with higher density and superior tensile properties. Compression molding, due to slower cooling, leads to incomplete PVDF crystallization, as evidenced by a shoulder peak near 164 °C in differential scanning calorimetry (DSC) curves. This study elucidates the mechanism by which processing methods regulate the structure and properties of PVDF/BNNs composites, offering theoretical and practical guidance for designing high-performance thermally conductive materials. Full article
Show Figures

Figure 1

21 pages, 68333 KB  
Article
Tuning Ag/Co Metal Ion Composition to Control In Situ Nanoparticle Formation, Photochemical Behavior, and Magnetic–Dielectric Properties of UV–Cured Epoxy Diacrylate Nanocomposites
by Gonul S. Batibay, Sureyya Aydin Yuksel, Meral Aydin and Nergis Arsu
Nanomaterials 2026, 16(2), 143; https://doi.org/10.3390/nano16020143 - 21 Jan 2026
Viewed by 245
Abstract
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl [...] Read more.
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl ether acrylate (DEGEEA), and Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), which served as a Type I photoinitiator. These formulations were designed to enable the simultaneous photopolymerization and photoreduction of metal precursors at various Ag+/Co2+ ratios, resulting in nanocomposites containing in situ-formed Ag NPs, cobalt oxide NPs, and hybrid Ag–Co3O4 nanostructures. The photochemical, magnetic, and dielectric properties of the resulting nanocomposites were evaluated in comparison with those of the pure polymer using UV–Vis and Fourier Transform Infrared Spectroscopy (FT-IR), Photo-Differential Scanning Calorimetry (Photo-DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Impedance Analysis, and Vibrating Sample Magnetometry (VSM). Photo-DSC studies revealed that the highest conversion values were obtained for the BEA-Ag1Co1, BEA-Co, and BEA-Ag1Co2 samples, demonstrating that the presence of Co3O4 NPs enhances polymerization efficiency because of cobalt species participating in redox-assisted radical generation under UV irradiation, increasing the number of initiating radicals and leading to faster curing and higher final conversion. On the other hand, the Ag NPs, due to the SPR band formation at around 400 nm, compete with photoinitiator absorbance and result in a gradual decrease in conversion values. Crystal structures of the NPs were confirmed by XRD analyses. The dielectric and magnetic characteristics of the nanocomposites suggest potential applicability in energy-storage systems, electromagnetic interference mitigation, radar-absorbing materials, and related multifunctional electronic applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

Back to TopTop