Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = DPL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9876 KiB  
Article
Laser-Induced Ablation of Hemp Seed-Derived Biomaterials for Transdermal Drug Delivery
by Alexandru Cocean, Georgiana Cocean, Silvia Garofalide, Nicanor Cimpoesu, Daniel Alexa, Iuliana Cocean and Silviu Gurlui
Int. J. Mol. Sci. 2025, 26(16), 7852; https://doi.org/10.3390/ijms26167852 - 14 Aug 2025
Viewed by 260
Abstract
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct [...] Read more.
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct absorption into the bloodstream, and its ability to bypass hepatic metabolism. The thin films obtained via pulsed laser deposition consist of micro- and nanoparticles capable of migrating through skin pores upon contact. This study investigates the interaction of phenolic compounds in hemp seeds with pulsed laser beams. The main goal is to achieve the ablation and deposition of these compounds as thin films suitable for TDD applications. The other key objective is optimizing laser energy to enhance the industrial feasibility of this method. Thin layers were deposited on glass and hemp fabric using dual pulsed laser (DPL) ablation on a compressed hemp seed target held in a stainless steel ring. The target was irradiated for 30 min with two synchronized pulsed laser beams, each with parameters of 30 mJ, 532 nm, pulse width of 10 ns, and a repetition rate of 10 Hz. Each beam had an angle of incidence with the target surface of 45°, and the angle between the two beams was also 45°. To improve laser absorption, two approaches were used: (1) HS-DPL/glass and HS-DPL/hemp fabric, in which a portion of the stainless steel ring was included in the irradiated area, and (2) HST-DPL/glass and HST-DPL/hemp fabric—hemp seeds were mixed with turmeric powder, which is known to improve laser interaction and biocompatibility. The FTIR and Micro-FTIR spectroscopy (ATR) performed on thin films compared to the target material confirmed the presence of hemp-derived phenolic compounds, including tetrahydrocannabinol (THC), cannabidiol (CBD), ferulic acid, and coumaric acid, along with other functional groups such as amides. The ATR spectra have been validated against Gaussian 6 numerical simulations. Scanning electron microscopy (SEM) and substance transfer tests revealed the microgranular structure of thin films. Through the analyzes carried out, the following were highlighted: spherical structures (0.3–2 μm) for HS-DPL/glass, HS-DPL/hemp fabric, HST-DPL/glass, and HST-DPL/hemp fabric; larger spherical structures (8–13 μm) for HS-DPL/glass and HST-DPL/glass; angular, amorphous-like structures (~3.5 μm) for HS-DPL/glass; and crystalline-like structures (0.6–1.3 μm) for HST-DPL/glass. Microparticle transfer from thin films on the hemp fabric to the filter paper at a human body temperature (37 °C) confirmed their suitability for TDD applications, aligning with the “whole plant medicine” or “entourage effect” concept. Granular, composite, thin films were successfully developed, capable of releasing microparticles upon contact with a surface whose temperature is 37 °C, specific to the human body. Each of the microparticles in the thin films obtained with the DPL technique contains phenolic compounds (cannabinoids and phenolic acids) comparable to those in hemp seeds, effectively acting as “microseeds.” The obtained films are viable for TDD applications, while the DPL technique ensures industrial scalability due to its low laser energy requirements. Full article
Show Figures

Figure 1

31 pages, 874 KiB  
Article
Integrating Digital Personalised Learning into Early-Grade Classroom Practice: A Teacher–Researcher Design-Based Research Partnership in Kenya
by Rebecca Daltry, Jessica Hinks, Chen Sun, Louis Major, Mary Otieno and Kevin Otieno
Educ. Sci. 2025, 15(6), 698; https://doi.org/10.3390/educsci15060698 - 4 Jun 2025
Viewed by 759
Abstract
Although growing evidence suggests that digital personalised learning (DPL) has the potential to enhance learning outcomes, there is little research about the effective implementation and integration of DPL into the classroom. The aim of this study is to investigate the pedagogical implications of [...] Read more.
Although growing evidence suggests that digital personalised learning (DPL) has the potential to enhance learning outcomes, there is little research about the effective implementation and integration of DPL into the classroom. The aim of this study is to investigate the pedagogical implications of integrating a DPL tool into Kenyan early-grade classrooms to bridge the gap between theory and practice. This paper reports on systematic, design-based research conducted over three years, featuring five phases, each testing iterations to specific aspects of DPL implementation. The findings demonstrate that the pedagogic dimensions of classroom-integrated DPL are pivotal to its effective uptake and implementation. A key research contribution is the identification of a distinct gap between theoretical and practical conceptualisations of DPL, with teachers focused primarily on curriculum alignment and classroom management. The analysis also identified teachers’ central role in the process of personalisation, nuancing existing DPL frameworks by exploring interactions between the digital and classroom environments, as well as highlighting important considerations around access and equality. Recommendations include the co-design of DPL with teachers, drawing on their pedagogical perspectives to enhance integrative approaches. Full article
(This article belongs to the Special Issue Embedding Mobile Technologies in the Classroom)
Show Figures

Figure 1

24 pages, 5754 KiB  
Article
Mechanical and Ultrasonic Evaluation of Epoxy-Based Polymer Mortar Reinforced with Discrete Fibers
by Eyad Alsuhaibani
Polymers 2025, 17(9), 1250; https://doi.org/10.3390/polym17091250 - 4 May 2025
Cited by 1 | Viewed by 563
Abstract
This research investigates the ultrasonic pulse velocity (UPV) and mechanical performance of epoxy-based polymer mortar (PM) reinforced with discrete fiber types to enhance structural behavior and promote sustainable construction practices. Four fiber types, polypropylene (PPF), natural date palm leaf fiber (DPL), glass fiber [...] Read more.
This research investigates the ultrasonic pulse velocity (UPV) and mechanical performance of epoxy-based polymer mortar (PM) reinforced with discrete fiber types to enhance structural behavior and promote sustainable construction practices. Four fiber types, polypropylene (PPF), natural date palm leaf fiber (DPL), glass fiber (GF), and carbon fiber (CF), were incorporated at varying volume fractions (0.5%, 1.0%, and 1.5%) into PM matrices. A total of thirteen mixtures, including a fiber-free control, were prepared. UPV testing was conducted prior to mechanical testing to evaluate internal quality and homogeneity, followed by compressive and flexural strength tests to assess structural performance. The results demonstrated that fiber type and dosage significantly influenced fiber-reinforced PM (FRPM) behavior. UPV values showed strong positive correlations with compressive strength for PPF, DPL, and CF, confirming UPV’s role as a non-destructive quality indicator. GF at 0.5% yielded the highest compressive strength (54.4 MPa), while CF and GF at 1.5% provided the greatest flexural enhancements (15 MPa), indicating improved ductility and energy absorption. Quadratic regression models were developed to predict strength responses as functions of fiber dosage. Although statistical significance was not achieved due to limited sample size, models for PPF and CF exhibited strong predictive reliability. Natural fibers such as DPL demonstrated moderate performance while offering environmental advantages through local renewability and low embodied energy. The study concludes that low fiber dosages, particularly 0.5%, enhance mechanical performance and material efficiency in FRPMs. The findings underscore the potential of FRPM as a durable and sustainable alternative to traditional cementitious materials. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

20 pages, 7081 KiB  
Article
The Influence of Pathological Extracellular Matrix on the Biological Properties of Stem Cells: Possible Hints for Cell Transplantation Therapies in Spinal Cord Injury
by Giuseppe Alastra, Corinne Quadalti, Vito Antonio Baldassarro, Alessandro Giuliani, Luciana Giardino and Laura Calzà
Int. J. Mol. Sci. 2025, 26(9), 3969; https://doi.org/10.3390/ijms26093969 - 23 Apr 2025
Viewed by 629
Abstract
Traumatic spinal cord injury (SCI) initiates a cascade of events, including persistent inflammation, which contributes to secondary injury. At a molecular level, the lesion is characterized by an altered microenvironment with changes in extracellular matrix (ECM) composition and organization, identified as a potential [...] Read more.
Traumatic spinal cord injury (SCI) initiates a cascade of events, including persistent inflammation, which contributes to secondary injury. At a molecular level, the lesion is characterized by an altered microenvironment with changes in extracellular matrix (ECM) composition and organization, identified as a potential obstacle for effective stem cell-based cell therapies. We investigated the interactions between decellularized intact and injured rat spinal cords and rat embryonic (RESCs) and neural stem cells (NSCs) at 2 and 47 days post-lesion (dpl). Decellularized ECM was used to generate 2D coating and 3D gel in vitro platforms for cell seeding. Results showed that the 2dpl 2D coating exerted a significant negative effect on the viability of both cell types, while the 47dpl 2D coating maintained RESC pluripotency. NSCs cultured on the 2dpl 2D coating for seven days showed a severe impairment in cell growth, while maintaining a cluster formation potential and differentiation marker expression comparable to normal ECM for astrocytic and oligodendroglial lineages. Notably, when NSCs are grown in 47dpl 3D gel, the lineage turns dramatically toward an astroglial lineage. These results clearly show the detrimental effects of the SCI ECM microenvironment on stem cells, advancing the understanding of potential timings suitable for effective SCI cell-based therapies. Full article
Show Figures

Graphical abstract

21 pages, 2387 KiB  
Article
Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus
by Ivan Iliev, Galina Yahubyan, Elena Apostolova-Kuzova, Mariyana Gozmanova, Daniela Mollova, Iliya Iliev, Lena Ilieva, Mariana Marhova, Velizar Gochev and Vesselin Baev
Microorganisms 2025, 13(1), 160; https://doi.org/10.3390/microorganisms13010160 - 14 Jan 2025
Cited by 3 | Viewed by 1892
Abstract
Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated Levilactobacillus brevis DPL5 strain from human breast milk, focusing on its ability [...] Read more.
Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated Levilactobacillus brevis DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as Staphylococcus aureus. Employing in vitro approaches, we demonstrate L. brevis DPL5′s ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of L. brevis DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of Staphylococcus aureus, and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL−1. Higher concentrations of 69 mg·mL−1 were found to have a 99% bactericidal effect, based on the conducted probability analysis, indicating the production of bactericidal bioactive extracellular compounds capable of disrupting the biofilm formation of pathogens like S. aureus. Furthermore, genome-wide sequencing and analysis of L. brevis DPL5 with cutting-edge Nanopore technology has uncovered over 50 genes linked to probiotic activity, supporting its ability to adapt and thrive in the harsh gut environment. The genome also contains multiple biosynthetic gene clusters such as lanthipeptide class IV, Type III polyketide synthase (T3PKS), and ribosomally synthesized, and post-translationally modified peptides (RiPP-like compounds), all of which are associated with antibacterial properties. Our study paves the way for the further exploration of DPL5, setting the stage for innovative, nature-inspired solutions to combat stubborn bacterial infections. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

11 pages, 6598 KiB  
Article
Evaluation of Four Methods to Determine the Degree of Cure of Melamine-Based Direct Pressed Laminates on Particleboards: Two Improved UV Absorption Methods, the Kiton Test, and Near Infrared Spectroscopy
by Mark Meder, Carsten Mai and Dirk Lukowsky
Materials 2025, 18(1), 117; https://doi.org/10.3390/ma18010117 - 30 Dec 2024
Cited by 1 | Viewed by 993
Abstract
Despite its importance, the determination of the degree of cure of melamine-based laminates often relies on tests with limited accuracy and validity. Undercured surfaces may suffer insufficient resistance to scratching and heat as well as substandard surface quality. Overcured melamine surfaces tend to [...] Read more.
Despite its importance, the determination of the degree of cure of melamine-based laminates often relies on tests with limited accuracy and validity. Undercured surfaces may suffer insufficient resistance to scratching and heat as well as substandard surface quality. Overcured melamine surfaces tend to crack and entail the inefficient utilization of the press—the panels could have been pressed for a shorter time. Four methods to determine the degree of cure of a melamine resin coating under industrial conditions were compared: the Kiton test, the most common method in industry, Near Infrared Spectroscopy (NIR) as a modern technique that allows for inline-measurements, and two novel hydrolysis methods. Each test was conducted on the same 18 panels. Each panel differed in its resin system or its degree of cure, which was adjusted by varying the pressing duration and temperature. The four methods tested were all capable of determining the degree of cure to some extent, but their applicability, the delay between the curing of the melamine resin at the final stage of production and the availability of results, and the investment and workload differ greatly. Determining the critical overcure turned out to be the major challenge. Differentiation between slight overcure, which did not affect the cracking resistance, and severe overcure, which produced surfaces with a high tendency to cracking, was possible using the NIR-based method and the two novel hydrolysis methods but not with the widely used Kiton test. Full article
Show Figures

Figure 1

19 pages, 1899 KiB  
Article
Catalytic Evaluation of an Optimized Heterogeneous Composite Catalyst Derived from Fusion of Tri-Biogenic Residues
by Oyelayo Ajamu Oyedele, Simeon Olatayo Jekayinfa, Abass O. Alade and Christopher Chintua Enweremadu
Biomass 2024, 4(4), 1219-1237; https://doi.org/10.3390/biomass4040068 - 2 Dec 2024
Cited by 1 | Viewed by 1225
Abstract
This study analyzes the elemental and oxide compositions of three selected agricultural residues—Dried Pawpaw Leaves (DPL), Kola Nut Pod (KNP), and Sweet Orange Peel (SOP)—for their potential as heterogeneous catalysts. Energy Dispersive X-ray (EDX) analysis identified calcium (25%) and potassium (29%) as the [...] Read more.
This study analyzes the elemental and oxide compositions of three selected agricultural residues—Dried Pawpaw Leaves (DPL), Kola Nut Pod (KNP), and Sweet Orange Peel (SOP)—for their potential as heterogeneous catalysts. Energy Dispersive X-ray (EDX) analysis identified calcium (25%) and potassium (29%) as the primary elements in DPL and KNP, with calcium oxide (CaO) and potassium oxide (K2O) as the dominant oxides. SOP had a similar composition but lacked vanadium. Calcined residues were analyzed at temperatures ranging from 500 °C to 900 °C using X-ray Fluorescence (XRF), revealing stable silicon dioxide (SiO2) content and temperature-dependent variations in CaO and K2O, indicating their catalytic potential for transesterification processes. Scanning Electron Microscopy (SEM) showed non-uniform, spongy microstructures, enhancing the surface area and catalytic efficiency. Fourier Transform Infrared Spectroscopy (FTIR) identified functional groups essential for catalytic activity, such as hydroxyls, methyl, and carboxyl. X-ray Diffraction (XRD) confirmed the presence of crystalline phases like calcium carbonate and calcium oxide, crucial for catalytic performance. Experimental biodiesel production using a mixture of the calcined residues (33.33% each of KNPA, SOPA, and DPLA) resulted in the highest biodiesel yield at 65.3%. Model summary statistics, including R2 (0.9824) values and standard deviations (0.0026), validated the experimental design, indicating high precision and prediction accuracy. These results suggest that the selected agricultural residues, when calcined and mixed properly, can serve as effective heterogeneous catalysts, with significant implications for biodiesel production, supporting previous research on the importance of calcium in catalytic processes. Full article
Show Figures

Figure 1

21 pages, 6351 KiB  
Article
The Influence of Structure Optimization on Vortex Suppression and Energy Dissipation in the Draft Tube of Francis Turbine
by Xiaoxu Zhang, Cong Nie and Zhumei Luo
Processes 2024, 12(10), 2249; https://doi.org/10.3390/pr12102249 - 15 Oct 2024
Viewed by 1192
Abstract
Under partial load operating conditions, vortex rope generation in the draft tube of a Francis turbine is considered one of the main reasons for hydro unit vibration. In this paper, a Francis turbine HLA551-LJ-43 in the laboratory was taken as a prototype. Numerical [...] Read more.
Under partial load operating conditions, vortex rope generation in the draft tube of a Francis turbine is considered one of the main reasons for hydro unit vibration. In this paper, a Francis turbine HLA551-LJ-43 in the laboratory was taken as a prototype. Numerical simulations of the entire flow passage were carried out. Four different hydro-turbines were chosen to analyze the effect of vortex suppression, which were named the prototype turbine (N-J), the turbine with J-grooves installed on its conical section (W-J), the one with extending runner cone (C), and the one that considered the J-grooves and the extending runner cone at the same time (J+C). Under the part load conditions in which the vortex rope is easily generated (0.4–0.8 times design flow QBEP), the spectrum characteristics of pressure fluctuation, the morphology of vortex rope, and the energy dissipation based on the entropy production theory in the draft tube were studied. The results show that the three optimized structures W-J, C, and J+C could reduce the pressure pulsation in the conical section of the draft tube, weaken the eccentricity of the vortex rope, and decrease the energy losses in the runner and draft tube. It is worth mentioning that the turbine with a J+C optimized structure had the most potent effect on vortex suppression and energy dissipation. Primarily when operating in deep partial load (DPL) conditions, the efficiency of the turbine with a J+C optimized structure was increased by 13.7% compared to the prototype turbine, and the main frequency amplitude of the pressure pulsation in the draft tube was reduced to 32% of the prototype. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

11 pages, 975 KiB  
Review
Disseminated Peritoneal Leiomyomatosis—A Challenging Diagnosis-Mimicking Malignancy Scoping Review of the Last 14 Years
by Carmen Elena Bucuri, Razvan Ciortea, Andrei Mihai Malutan, Valentin Oprea, Mihai Toma, Maria Patricia Roman, Cristina Mihaela Ormindean, Ionel Nati, Viorela Suciu, Marina Simon-Dudea and Dan Mihu
Biomedicines 2024, 12(8), 1749; https://doi.org/10.3390/biomedicines12081749 - 3 Aug 2024
Cited by 5 | Viewed by 1796
Abstract
Disseminated peritoneal leiomyomatosis (DPL) is a rare condition marked by multiple leiomyomas in the peritoneal cavity, predominantly affecting women of reproductive age. Although typically benign, DPL can present significant diagnostic challenges and, in rare cases, may progress to malignancy. A primary contributing factor [...] Read more.
Disseminated peritoneal leiomyomatosis (DPL) is a rare condition marked by multiple leiomyomas in the peritoneal cavity, predominantly affecting women of reproductive age. Although typically benign, DPL can present significant diagnostic challenges and, in rare cases, may progress to malignancy. A primary contributing factor to DPL is iatrogenic, particularly due to surgical interventions such as morcellation during myomectomy. This scoping review explores the pathogenesis, epidemiology, diagnosis, and management of DPL, highlighting the crucial role of hormonal influences and iatrogenic factors. Diagnostic methods include computed tomography, ultrasound, magnetic resonance imaging, and histopathological evaluation, which are essential for assessing disease extent and guiding treatment. Management strategies encompass surgical intervention—with a focus on minimizing iatrogenic risks—conservative approaches for asymptomatic patients, and advancements in hormonal treatments. Emphasis is placed on preventing iatrogenic dissemination through refined surgical techniques and patient education. Despite its rarity, with fewer than 200 cases reported globally, understanding DPL’s clinical presentation and iatrogenic origins is vital for optimal patient outcomes. This review underscores the importance of early diagnosis, personalized treatment plans, and ongoing research to address the challenges associated with DPL. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 3382 KiB  
Article
A Two-Temperature Fractional DPL Thermoelasticity Model with an Exponential Rabotnov Kernel for a Flexible Cylinder with Changeable Properties
by Ahmed E. Abouelregal, Yazeed Alhassan, Hashem Althagafi and Faisal Alsharif
Fractal Fract. 2024, 8(4), 182; https://doi.org/10.3390/fractalfract8040182 - 22 Mar 2024
Cited by 17 | Viewed by 2008
Abstract
This article presents a new thermoelastic model that incorporates fractional-order derivatives of two-phase heat transfer as well as a two-temperature concept. The objective of this model is to improve comprehension and forecasting of heat transport processes in two-phase-lag systems by employing fractional calculus. [...] Read more.
This article presents a new thermoelastic model that incorporates fractional-order derivatives of two-phase heat transfer as well as a two-temperature concept. The objective of this model is to improve comprehension and forecasting of heat transport processes in two-phase-lag systems by employing fractional calculus. This model suggests a new generalized fractional derivative that can make different kinds of singular and non-singular fractional derivatives, depending on the kernels that are used. The non-singular kernels of the normalized sinc function and the Rabotnov fractional–exponential function are used to create the two new fractional derivatives. The thermoelastic responses of a solid cylinder with a restricted surface and exposed to a moving heat flux were examined in order to assess the correctness of the suggested model. It was considered that the cylinder’s thermal characteristics are dependent on the linear temperature change and that it is submerged in a continuous magnetic field. To solve the set of equations controlling the suggested issue, Laplace transforms were used. In addition to the reliance of thermal characteristics on temperature change, the influence of derivatives and fractional order was also studied by providing numerical values for the temperature, displacement, and stress components. This study found that the speed of the heat source and variable properties significantly impact the behavior of the variables under investigation. Meanwhile, the fractional parameter has a slight effect on non-dimensional temperature changes but plays a crucial role in altering the peak value of non-dimensional displacement and pressure. Full article
Show Figures

Figure 1

19 pages, 8561 KiB  
Article
Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning
by Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui
Water 2024, 16(6), 896; https://doi.org/10.3390/w16060896 - 20 Mar 2024
Cited by 5 | Viewed by 2648
Abstract
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage change. This study employed differentiable parameter learning (dPL) to [...] Read more.
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage change. This study employed differentiable parameter learning (dPL) to identify the time-varying parX1 in the GR4neige across 671 catchments within the United States. We built two types of dPL, including static and dynamic parameter networks, to assess the advantages of the time-varying parameter. In the dynamic parameter network, we evaluated the impact of potential evapotranspiration (PET), precipitation (P), temperature (T), soil moisture (SM), and normalized difference vegetation index (NDVI) datasets on the performance of dPL. We then compared dPL with the empirical functional method (fm). The results demonstrated that the dynamic parameter network outperformed the static parameter network in streamflow estimation. There were differences in streamflow estimation among the dynamic parameter network driven by various input features. In humid catchments, simultaneously incorporating all five factors, including PET, P, T, SM, and the NDVI, achieved optimal streamflow simulation accuracy. In arid catchments, it was preferable to introduce PET, T, and the NDVI separately for improved performance. dPL significantly outperformed the empirical fm in estimating streamflow and uncalibrated intermediate variables, like evapotranspiration (ET). Both the derived parX1 from dPL and the empirical fm exhibited significant spatiotemporal variation across 671 catchments. Notably, compared to parX1 obtained through the empirical fm, parX1 derived from dPL exhibited a distinct spatial clustering pattern. This study highlights the potential of dPL in enhancing model accuracy and contributes to understanding the spatiotemporal variation characteristics of parX1 under the influence of climate factors, soil conditions, and vegetation change. Full article
Show Figures

Figure 1

19 pages, 6174 KiB  
Article
Hardware Efficient Direct Policy Imitation Learning for Robotic Navigation in Resource-Constrained Settings
by Vidura Sumanasena, Heshan Fernando, Daswin De Silva, Beniel Thileepan, Amila Pasan, Jayathu Samarawickrama, Evgeny Osipov and Damminda Alahakoon
Sensors 2024, 24(1), 185; https://doi.org/10.3390/s24010185 - 28 Dec 2023
Cited by 1 | Viewed by 2333
Abstract
Direct policy learning (DPL) is a widely used approach in imitation learning for time-efficient and effective convergence when training mobile robots. However, using DPL in real-world applications is not sufficiently explored due to the inherent challenges of mobilizing direct human expertise and the [...] Read more.
Direct policy learning (DPL) is a widely used approach in imitation learning for time-efficient and effective convergence when training mobile robots. However, using DPL in real-world applications is not sufficiently explored due to the inherent challenges of mobilizing direct human expertise and the difficulty of measuring comparative performance. Furthermore, autonomous systems are often resource-constrained, thereby limiting the potential application and implementation of highly effective deep learning models. In this work, we present a lightweight DPL-based approach to train mobile robots in navigational tasks. We integrated a safety policy alongside the navigational policy to safeguard the robot and the environment. The approach was evaluated in simulations and real-world settings and compared with recent work in this space. The results of these experiments and the efficient transfer from simulations to real-world settings demonstrate that our approach has improved performance compared to its hardware-intensive counterparts. We show that using the proposed methodology, the training agent achieves closer performance to the expert within the first 15 training iterations in simulation and real-world settings. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

10 pages, 3566 KiB  
Article
Development of Shape Prediction Model of Microlens Fabricated via Diffuser-Assisted Photolithography
by Ha-Min Kim, Yoo-Kyum Shin and Min-Ho Seo
Micromachines 2023, 14(12), 2171; https://doi.org/10.3390/mi14122171 - 29 Nov 2023
Cited by 2 | Viewed by 1715
Abstract
The fabrication of microlens arrays (MLAs) using diffuser-assisted photolithography (DPL) has garnered substantial recent interest owing to the exceptional capabilities of DPL in adjusting the size and shape, achieving high fill factors, enhancing productivity, and ensuring excellent reproducibility. The inherent unpredictability of light [...] Read more.
The fabrication of microlens arrays (MLAs) using diffuser-assisted photolithography (DPL) has garnered substantial recent interest owing to the exceptional capabilities of DPL in adjusting the size and shape, achieving high fill factors, enhancing productivity, and ensuring excellent reproducibility. The inherent unpredictability of light interactions within the diffuser poses challenges in accurately forecasting the final shape and dimensions of microlenses in the DPL process. Herein, we introduce a comprehensive theoretical model to forecast microlens shapes in response to varying exposure doses within a DPL framework. We establish a robust MLA fabrication method aligned with conventional DPL techniques to enable precise shape modulation. By calibrating the exposure doses meticulously, we generate diverse MLA configurations, each with a distinct shape and size. Subsequently, by utilizing the experimentally acquired data encompassing parameters such as height, radius of curvature, and angles, we develop highly precise theoretical prediction models, achieving R-squared values exceeding 95%. The subsequent validation of our model encompasses the accurate prediction of microlens shapes under specific exposure doses. The verification results exhibit average error rates of approximately 2.328%, 7.45%, and 3.16% for the height, radius of curvature, and contact angle models, respectively, all of which were well below the 10% threshold. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

20 pages, 7063 KiB  
Article
Dual-Pulsed Laser Ablation of Oyster Shell Producing Novel Thin Layers Deposed to Saccharomyces cerevisiae
by Georgiana Cocean, Alexandru Cocean, Silvia Garofalide, Vasile Pelin, Bogdanel Silvestru Munteanu, Daniela Angelica Pricop, Iuliana Motrescu, Dan Gheorghe Dimitriu, Iuliana Cocean and Silviu Gurlui
Polymers 2023, 15(19), 3953; https://doi.org/10.3390/polym15193953 - 30 Sep 2023
Cited by 3 | Viewed by 1748
Abstract
Dual-pulsed (DPL) laser deposition using oyster shells as targets was studied in order to find out if this method can replace the use of high-power pulsed lasers. Aspects related to changes in the morphological structure of the thin layer but also to the [...] Read more.
Dual-pulsed (DPL) laser deposition using oyster shells as targets was studied in order to find out if this method can replace the use of high-power pulsed lasers. Aspects related to changes in the morphological structure of the thin layer but also to the chemical composition of the obtained thin layer were analyzed and compared with the target as well as with the thin layers obtained with a higher power pulsed laser in a single-pulsed (SPL) regime. Orthorhombic structures were noticed with Scanning Electron Microscopy for the thin film obtained in DPL mode compared to the irregular particles obtained in SPL mode. The deacetylation process during ablation was evidenced by Fourier Transform Infrared spectroscopy, resulting in chitosan-based thin films. The effect of the obtained thin films of chitosan on the cells of baker’s yeast (Saccharomyces cerevisiae) was studied. Restoration of the yeast paste into initial yeast was noticed mainly when the hemp fabric was used as support for the coating with yeas which was after that coated with chitosan thin film produced by DPL method. Full article
Show Figures

Figure 1

12 pages, 2119 KiB  
Article
Solution of a Half-Space in Generalized Thermoelastic Problem in the Context of Two Models Using the Homotopy Perturbation Method
by Nesreen Althobaiti, Sayed M. Abo-Dahab, Araby Atef Kilany and Abdelmooty M. Abd-Aalla
Axioms 2023, 12(9), 827; https://doi.org/10.3390/axioms12090827 - 28 Aug 2023
Cited by 5 | Viewed by 1138
Abstract
This paper estimated the problem of one-dimensional generalized thermoelastic half-space in medium considering two models: the Lord and Shulman (LS) model and the Dual-Phase-Lag (DPL) model. We assumed that the surface of the half-space was free from traction force and under an exponentially [...] Read more.
This paper estimated the problem of one-dimensional generalized thermoelastic half-space in medium considering two models: the Lord and Shulman (LS) model and the Dual-Phase-Lag (DPL) model. We assumed that the surface of the half-space was free from traction force and under an exponentially varying external heat source at the boundary with time. The technique of homotopy perturbation has been applied to find the approximate solution for the interactions of thermoelasticity with the applied boundary condition. The effect of a heat source that varies with the time and the free traction force are investigated for the temperature, displacement, and stress. The numerical results obtained are presented graphically to show the influence of the new external parameters. The results obtained illustrate the strong impacts on the displacement, temperature, and stress with the variations in the two models as well as the relaxation time parameter. The results show the agreement between the present results and the previous obtained results of the phenomenon and applicable, especially in biology, acoustics, engineering, and geophysics. Full article
Show Figures

Figure 1

Back to TopTop