Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Hydrological Model
2.3. The Long Short-Term Memory Network
2.4. Differentiable Parameter Learning
2.5. The Empirical Function Method
2.6. The Evaluation Metrics
3. Results
3.1. The Accuracy of Streamflow Estimation
3.2. The Spatiotemporal Variation Characteristics of parX1
3.3. Model Performance in ET Estimation
4. Discussion
4.1. The Spatial Variability of parX1
4.2. The Limitation of This Study
5. Conclusions
- (1)
- The dPL of static and dynamic parameter networks achieved good performance for streamflow estimation. The six scenarios of the dynamic parameter network significantly outperformed the static parameter network. It was demonstrated that time-varying parameters can enhance the accuracy of streamflow estimation compared to time-invariant parameters.
- (2)
- There were differences in streamflow estimation among the dynamic parameter network driven by distinct input features in humid and arid catchments. In humid catchments, simultaneously incorporating all five factors, including PET, P, T, SM, and the NDVI, achieved optimal streamflow simulation. In arid catchments, it was preferable to introduce PET, T, and the NDVI separately for improved performance.
- (3)
- The dPL outperformed the empirical fm in both streamflow and intermediate variable (ET) estimation. parX1 generated by both the dynamic parameter network and the empirical fm showed significant spatiotemporal variation. However, parX1 estimated by the dynamic parameter networks showed obvious spatial clustering across 671 catchments within the United States compared to that estimated by the empirical fm. The time-varying parX1 showed a periodic change and had a negative correlation with PET, T, and the NDVI. The spatial variation of parX1 was more susceptible to P and SM in the central and eastern catchments.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bergström, S.; Rapporter, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; SMHI: Norrköping, Sweden, 1976; Volume 7. [Google Scholar]
- Seibert, J.; Vis, M.J.P. Teaching Hydrological Modeling with a User-Friendly Catchment-Runoff-Model Software Package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a Parsimonious Model for Streamflow Simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Zhao, R. The Xinanjiang Model Applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Qi, W.; Chen, J.; Li, L.; Xu, C.; Li, J.; Xiang, Y.; Zhang, S. A Framework to Regionalize Conceptual Model Parameters for Global Hydrological Modeling. Hydrol. Earth Syst. Sci. Discuss. 2020, 2020, 1–28. [Google Scholar] [CrossRef]
- Reichert, P.; Ma, K.; Höge, M.; Fenicia, F.; Baity-jesi, M.; Feng, D.; Shen, C. Metamorphic Testing of Machine Learning and Conceptual Hydrologic Models. Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–37. [Google Scholar] [CrossRef]
- Arsenault, R.; Martel, J.L.; Brunet, F.; Brissette, F.; Mai, J. Continuous Streamflow Prediction in Ungauged Basins: Long Short-Term Memory Neural Networks Clearly Outperform Traditional Hydrological Models. Hydrol. Earth Syst. Sci. 2023, 27, 139–157. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Mendoza, P.A.; McNamara, I.; Beck, H.E.; Thurner, J.; Nauditt, A.; Ribbe, L.; Thinh, N.X. On the Selection of Precipitation Products for the Regionalisation of Hydrological Model Parameters. Hydrol. Earth Syst. Sci. 2021, 25, 5805–5837. [Google Scholar] [CrossRef]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef]
- Gan, Y.; Duan, Q.; Gong, W.; Tong, C.; Sun, Y.; Chu, W.; Ye, A.; Miao, C.; Di, Z. A Comprehensive Evaluation of Various Sensitivity Analysis Methods: A Case Study with a Hydrological Model. Environ. Model. Softw. 2014, 51, 269–285. [Google Scholar] [CrossRef]
- Yang, W.; Xia, R.; Chen, H.; Wang, M.; Xu, C.Y. The Impact of Calibration Conditions on the Transferability of Conceptual Hydrological Models under Stationary and Nonstationary Climatic Conditions. J. Hydrol. 2022, 613, 128310. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, T.; Lin, Q.; Singh, V.P.; Dong, X.; Chen, C.; Liu, J.; Chang, W.; Wang, G. A New Non-Stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates. Water Resour. Manag. 2022, 36, 2433–2454. [Google Scholar] [CrossRef]
- Arnaud, P.; Bouvier, C.; Cisneros, L.; Dominguez, R. Influence of Rainfall Spatial Variability on Flood Prediction. J. Hydrol. 2002, 260, 216–230. [Google Scholar] [CrossRef]
- Morozov, E.; Zavialov, P.; Zamshin, V.; Moller, O.; Frey, D.; Zuev, O.; Seliverstova, A.; Bulanov, A.; Lipinskaya, N.; Salyuk, P.; et al. Spreading of the Amazon River Plume. Russ. J. Earth Sci. 2023, 23, 1–18. [Google Scholar] [CrossRef]
- Xiong, M.; Liu, P.; Cheng, L.; Deng, C.; Gui, Z.; Zhang, X.; Liu, Y. Identifying Time-Varying Hydrological Model Parameters to Improve Simulation Efficiency by the Ensemble Kalman Filter: A Joint Assimilation of Streamflow and Actual Evapotranspiration. J. Hydrol. 2019, 568, 758–768. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological Response of a Catchment to Climate and Land Use Changes in Tropical Africa: Case Study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A Review of Paired Catchment Studies for Determining Changes in Water Yield Resulting from Alterations in Vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Blöschl, G. Time Stability of Catchment Model Parameters: Implications for Climate Impact Analyses. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P. A Time-Varying Parameter Estimation Approach Using Split-Sample Calibration Based on Dynamic Programming. Hydrol. Earth Syst. Sci. 2021, 25, 711–733. [Google Scholar] [CrossRef]
- Krapu, C.; Borsuk, M. A Differentiable Hydrology Approach for Modeling With Time-Varying Parameters. Water Resour. Res. 2022, 58, e2021WR031377. [Google Scholar] [CrossRef]
- Deng, C.; Liu, P.; Guo, S.; Li, Z.; Wang, D. Identification of Hydrological Model Parameter Variation Using Ensemble Kalman Filter. Hydrol. Earth Syst. Sci. 2016, 20, 4949–4961. [Google Scholar] [CrossRef]
- Pignotti, G.; Crawford, M.; Han, E.; Williams, M.R.; Chaubey, I. SMAP Soil Moisture Data Assimilation Impacts on Water Quality and Crop Yield Predictions in Watershed Modeling. J. Hydrol. 2023, 617, 129122. [Google Scholar] [CrossRef]
- Liu, K.; Huang, G.; Šimůnek, J.; Xu, X.; Xiong, Y.; Huang, Q. Comparison of Ensemble Data Assimilation Methods for the Estimation of Time-Varying Soil Hydraulic Parameters. J. Hydrol. 2021, 594, 125729. [Google Scholar] [CrossRef]
- Westra, S.; Thyer, M.; Leonard, M.; Kavetski, D.; Lambert, M. A Strategy for Diagnosing and Interpreting Hydrological Model Nonstationarity. Water Resour. Res. 2014, 50, 5375–5377. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, P.; Gui, Z.; Zhang, X.; Liu, W.; Cheng, L.; Xia, J. Diagnosing Structural Deficiencies of a Hydrological Model by Time-Varying Parameters. J. Hydrol. 2022, 605, 127305. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Short- and Mid-Term Forecasts of Actual Evapotranspiration with Deep Learning. J. Hydrol. 2022, 612, 128078. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; Dash, S.S.; Wei, Y.; Li, H. A Hybrid Deep Learning Framework with Physical Process Description for Simulation of Evapotranspiration. J. Hydrol. 2022, 606, 127422. [Google Scholar] [CrossRef]
- Ghobadi, F.; Kang, D. Improving Long-Term Streamflow Prediction in a Poorly Gauged Basin Using Geo-Spatiotemporal Mesoscale Data and Attention-Based Deep Learning: A Comparative Study. J. Hydrol. 2022, 615, 128608. [Google Scholar] [CrossRef]
- Singh, D.; Vardhan, M.; Sahu, R.; Chatterjee, D.; Chauhan, P.; Liu, S. Machine-Learning- and Deep-Learning-Based Streamflow Prediction in a Hilly Catchment for Future Scenarios Using CMIP6 GCM Data. Hydrol. Earth Syst. Sci. 2023, 27, 1047–1075. [Google Scholar] [CrossRef]
- Razavi, S. Deep Learning, Explained: Fundamentals, Explainability, and Bridgeability to Process-Based Modelling. Environ. Model. Softw. 2021, 144, 105159. [Google Scholar] [CrossRef]
- Shu, X.; Ye, Y. Knowledge Discovery: Methods from Data Mining and Machine Learning. Soc. Sci. Res. 2023, 110, 102817. [Google Scholar] [CrossRef]
- Chen, M.; Qian, Z.; Boers, N.; Jakeman, A.J.; Kettner, A.J.; Brandt, M.; Kwan, M.P.; Batty, M.; Li, W.; Zhu, R.; et al. Iterative Integration of Deep Learning in Hybrid Earth Surface System Modelling. Nat. Rev. Earth Environ. 2023, 4, 568–581. [Google Scholar] [CrossRef]
- Tsai, W.P.; Feng, D.; Pan, M.; Beck, H.; Lawson, K.; Yang, Y.; Liu, J.; Shen, C. From Calibration to Parameter Learning: Harnessing the Scaling Effects of Big Data in Geoscientific Modeling. Nat. Commun. 2021, 12, 5988. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Appling, A.P.; Gentine, P.; Bandai, T.; Gupta, H.; Tartakovsky, A.; Baity-Jesi, M.; Fenicia, F.; Kifer, D.; Li, L.; et al. Differentiable Modeling to Unify Machine Learning and Physical Models and Advance Geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Feng, D.; Liu, J.; Lawson, K.; Shen, C. Differentiable, Learnable, Regionalized Process-Based Models With Multiphysical Outputs Can Approach State-Of-The-Art Hydrologic Prediction Accuracy. Water Resour. Res. 2022, 58, e2022WR032404. [Google Scholar] [CrossRef]
- Feng, D.; Beck, H.; Lawson, K.; Shen, C. The Suitability of Differentiable, Physics-Informed Machine Learning Hydrologic Models for Ungauged Regions and Climate Change Impact Assessment. Hydrol. Earth Syst. Sci. 2023, 27, 2357–2373. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.; Xu, C.Y.; Huo, R.; Chen, J.; Guo, S. Temporal and Spatial Transferabilities of Hydrological Models under Different Climates and Underlying Surface Conditions. J. Hydrol. 2020, 591, 125276. [Google Scholar] [CrossRef]
- De Jong, S.M.; Jetten, V.G. Estimating Spatial Patterns of Rainfall Interception from Remotely Sensed Vegetation Indices and Spectral Mixture Analysis. Int. J. Geogr. Inf. Sci. 2007, 21, 529–545. [Google Scholar] [CrossRef]
- Schoener, G.; Stone, M.C. Impact of Antecedent Soil Moisture on Runoff from a Semiarid Catchment. J. Hydrol. 2019, 569, 627–636. [Google Scholar] [CrossRef]
- Valéry, A.; Andréassian, V.; Perrin, C. “As Simple as Possible but Not Simpler”: What Is Useful in a Temperature-Based Snow-Accounting Routine? Part 2—Sensitivity Analysis of the Cemaneige Snow Accounting Routine on 380 Catchments. J. Hydrol. 2014, 517, 1176–1187. [Google Scholar] [CrossRef]
- Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS Data Set: Catchment Attributes and Meteorology for Large-Sample Studies. Hydrol. Earth Syst. Sci. 2017, 21, 5293–5313. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a Large-Sample Watershed-Scale Hydrometeorological Data Set for the Contiguous USA: Data Set Characteristics and Assessment of Regional Variability in Hydrologic Model Performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef]
- Sayre, R.; Karagulle, D.; Frye, C.; Boucher, T.; Wolff, N.H.; Breyer, S.; Wright, D.; Martin, M.; Butler, K.; Van Graafeiland, K.; et al. An Assessment of the Representation of Ecosystems in Global Protected Areas Using New Maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 2020, 21, e00860. [Google Scholar] [CrossRef]
- Yin, H.; Wang, F.; Zhang, X.; Zhang, Y.; Chen, J.; Xia, R.; Jin, J. Rainfall-Runoff Modeling Using Long Short-Term Memory Based Step-Sequence Framework. J. Hydrol. 2022, 610, 127901. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Lian, X.; Hu, X.; Bian, J.; Shi, L.; Lin, L.; Cui, Y. Enhancing Streamflow Estimation by Integrating a Data-Driven Evapotranspiration Submodel into Process-Based Hydrological Models. J. Hydrol. 2023, 621, 129603. [Google Scholar] [CrossRef]
- Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Papale, D.; Schwalm, C.; Tramontana, G.; Reichstein, M. The FLUXCOM Ensemble of Global Land-Atmosphere Energy Fluxes. Sci. Data 2019, 6, 74. [Google Scholar] [CrossRef]
- Shen, H.; Tolson, B.A.; Mai, J. Time to Update the Split-Sample Approach in Hydrological Model Calibration. Water Resour. Res. 2022, 58, e2021WR031523. [Google Scholar] [CrossRef]
- Cantoni, E.; Tramblay, Y.; Grimaldi, S.; Salamon, P.; Dakhlaoui, H.; Dezetter, A.; Thiemig, V. Hydrological Performance of the ERA5 Reanalysis for Flood Modeling in Tunisia with the LISFLOOD and GR4J Models. J. Hydrol. Reg. Stud. 2022, 42, 101169. [Google Scholar] [CrossRef]
- Le Moine, N.; Andréassian, V.; Mathevet, T. Confronting Surface- and Groundwater Balances on the La Rochefoucauld-Touvre Karstic System (Charente, France). Water Resour. Res. 2008, 44, W03403. [Google Scholar] [CrossRef]
- Oudin, L.; Perrin, C.; Mathevet, T.; Andréassian, V.; Michel, C. Impact of Biased and Randomly Corrupted Inputs on the Efficiency and the Parameters of Watershed Models. J. Hydrol. 2006, 320, 62–83. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Zhang, X.J. Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models. Water Resour. Manag. 2013, 27, 2871–2888. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Leblois, E.; Thyer, M.; Kuczera, G.; Franks, S.W. Toward a Reliable Decomposition of Predictive Uncertainty in Hydrological Modeling: Characterizing Rainfall Errors Using Conditional Simulation. Water Resour. Res. 2011, 47, W11516. [Google Scholar] [CrossRef]
- Zeng, L.; Xiong, L.; Liu, D.; Chen, J.; Kim, J.S. Improving Parameter Transferability of GR4J Model under Changing Environments Considering Nonstationarity. Water 2019, 11, 2029. [Google Scholar] [CrossRef]
- Tian, J.; Pan, Z.; Liu, P.; Feng, M.; Guo, J. Temporal Variation Scale of the Catchment Water Storage Capacity of 91 MOPEX Catchments. J. Hydrol. Reg. Stud. 2022, 44, 101236. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall—Runoff Modelling Using Long Short-Term Memory (LSTM) Networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine Learning Applied to Large-Sample Datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Wei, D.; Wang, B.; Lin, G.; Liu, D.; Dong, Z.; Liu, H.; Liu, Y. Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report. Energies 2017, 10, 406. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Zou, Y.; Lin, Z.; Li, D.; Liu, Z.C. Advancements in Artificial Neural Networks for Health Management of Energy Storage Lithium-Ion Batteries: A Comprehensive Review. J. Energy Storage 2023, 73, 109069. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Xiao, M.; Zhou, S.; Xiong, B.; Jin, Z. Medium-Long-Term Prediction of Water Level Based on an Improved Spatio-Temporal Attention Mechanism for Long Short-Term Memory Networks. J. Hydrol. 2023, 618, 129163. [Google Scholar] [CrossRef]
- Alizamir, M.; Shiri, J.; Fard, A.F.; Kim, S.; Gorgij, A.R.D.; Heddam, S.; Singh, V.P. Improving the Accuracy of Daily Solar Radiation Prediction by Climatic Data Using an Efficient Hybrid Deep Learning Model: Long Short-Term Memory (LSTM) Network Coupled with Wavelet Transform. Eng. Appl. Artif. Intell. 2023, 123, 106199. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Benchmarking a Catchment-Aware Long Short-Term Memory Network (Lstm) for Large-Scale Hydrological Modeling. Hydrol. Earth Syst. Sci. Discuss 2019, 2019, 1–32. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Groundwater Level Forecasting with Artificial Neural Networks: A Comparison of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and Non-Linear Autoregressive Networks with Exogenous Input (NARX). Hydrol. Earth Syst. Sci. 2021, 25, 1671–1687. [Google Scholar] [CrossRef]
- Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and Rainfall Forecasting by Two Long Short-Term Memory-Based Models. J. Hydrol. 2020, 583, 124296. [Google Scholar] [CrossRef]
- Capell, R.; Tetzlaff, D.; Soulsby, C. Will Catchment Characteristics Moderate the Projected Effects of Climate Change on Flow Regimes in the Scottish Highlands? Hydrol. Process. 2013, 27, 687–699. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of Four Soil Moisture Sensor Types under Field Conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Arias, M.; Notarnicola, C.; Campo-Bescós, M.Á.; Arregui, L.M.; Álvarez-Mozos, J. Evaluation of Soil Moisture Estimation Techniques Based on Sentinel-1 Observations over Wheat Fields. Agric. Water Manag. 2023, 287, 108422. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, P.; Gao, S.; Cheng, L.; Chen, J.; Zhang, X. Reducing the Uncertainty of Time-Varying Hydrological Model Parameters Using Spatial Coherence within a Hierarchical Bayesian Framework. J. Hydrol. 2019, 577, 123927. [Google Scholar] [CrossRef]
- Ouyang, W.; Lawson, K.; Feng, D.; Ye, L.; Zhang, C.; Shen, C. Continental-Scale Streamflow Modeling of Basins with Reservoirs: Towards a Coherent Deep-Learning-Based Strategy. J. Hydrol. 2021, 599, 126455. [Google Scholar] [CrossRef]
- Dakhlaoui, H.; Ruelland, D.; Tramblay, Y.; Bargaoui, Z. Evaluating the Robustness of Conceptual Rainfall-Runoff Models under Climate Variability in Northern Tunisia. J. Hydrol. 2017, 550, 201–217. [Google Scholar] [CrossRef]
- Lan, T.; Lin, K.; Liu, Z.; Cai, H. A Framework for Seasonal Variations of Hydrological Model Parameters: Impact on Model Results and Response to Dynamic Catchment Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 5859–5874. [Google Scholar] [CrossRef]
- Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H. Hydrologic Modeling in Dynamic Catchments: A Data Assimilation Approach. Water Resour. Assoc. 2016, 523, 3350–3372. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant Flood Generating Mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef]
- Feng, D.; Fang, K.; Shen, C. Enhancing Streamflow Forecast and Extracting Insights Using Long-Short Term Memory Networks With Data Integration at Continental Scales. Water Resour. Res. 2020, 56, e2019WR026793. [Google Scholar] [CrossRef]
- Jiang, S.; Zheng, Y.; Solomatine, D. Improving AI System Awareness of Geoscience Knowledge: Symbiotic Integration of Physical Approaches and Deep Learning. Geophys. Res. Lett. 2020, 47, e2020GL088229. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, P.; Gao, S.; Xia, J.; Chen, J.; Cheng, L. Improving Hydrological Projection Performance under Contrasting Climatic Conditions Using Spatial Coherence through a Hierarchical Bayesian Regression Framework. Hydrol. Earth Syst. Sci. 2019, 23, 3405–3421. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, P.; Xu, C.Y.; Cheng, L.; Tian, J.; Cheng, S.; Xie, K. The Influence of a Prolonged Meteorological Drought on Catchment Water Storage Capacity: A Hydrological-Model Perspective. Hydrol. Earth Syst. Sci. 2020, 24, 4369–4387. [Google Scholar] [CrossRef]
- Rajib, A.; Merwade, V.; Yu, Z. Rationale and Efficacy of Assimilating Remotely Sensed Potential Evapotranspiration for Reduced Uncertainty of Hydrologic Models. Water Resour. Res. 2018, 54, 4615–4637. [Google Scholar] [CrossRef]
- Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Tang, Y.; Zhao, X. Correlation Research of Phase Angle Variation and Coating Performance by Means of Pearson’s Correlation Coefficient. Prog. Org. Coatings 2020, 139, 105459. [Google Scholar] [CrossRef]
- Haas, H.; Kalin, L.; Srivastava, P. Improved Forest Dynamics Leads to Better Hydrological Predictions in Watershed Modeling. Sci. Total Environ. 2022, 821, 153180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Y.; Ma, Q.; Wang, P.; Ge, Y.; Yu, W. A Parallel Computing-Based and Spatially Stepwise Strategy for Constraining a Semi-Distributed Hydrological Model with Streamflow Observations and Satellite-Based Evapotranspiration. J. Hydrol. 2021, 599, 126359. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, L.; Liu, T.; Li, J.; Feng, P. A Non-Stationary Standardized Streamflow Index for Hydrological Drought Using Climate and Human-Induced Indices as Covariates. Sci. Total Environ. 2020, 699, 134278. [Google Scholar] [CrossRef]
Parameters | Definition | Range |
---|---|---|
parX1 | The maximum capacity of the production store (mm) | 100–1200 |
parX2 | Groundwater exchange coefficient (mm) | −5–3 |
parX3 | One day ahead of the maximum capacity of the routing store (mm) | 20–300 |
parX4 | Time base of a unit hydrograph UH1 (days) | 1.1–2.9 |
parCTG | Snowpack cold content | 0–1 |
parKf | Degree-day factor (mm/day/°C) | 0–10 |
Case | Input Data |
---|---|
gA | Static attributes |
gZ,1 | Static attributes + PET |
gZ,2 | Static attributes + P |
gZ,3 | Static attributes + T |
gZ,4 | Static attributes + SM |
gZ,5 | Static attributes + NDVI |
gZ,6 | Static attributes + PET + P + T + SM + NDVI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, X.; Hu, X.; Shi, L.; Shao, J.; Bian, J.; Cui, Y. Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning. Water 2024, 16, 896. https://doi.org/10.3390/w16060896
Lian X, Hu X, Shi L, Shao J, Bian J, Cui Y. Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning. Water. 2024; 16(6):896. https://doi.org/10.3390/w16060896
Chicago/Turabian StyleLian, Xie, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian, and Yuanlai Cui. 2024. "Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning" Water 16, no. 6: 896. https://doi.org/10.3390/w16060896
APA StyleLian, X., Hu, X., Shi, L., Shao, J., Bian, J., & Cui, Y. (2024). Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning. Water, 16(6), 896. https://doi.org/10.3390/w16060896