Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (632)

Search Parameters:
Keywords = DNA kits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 464 KiB  
Article
The Use of Self-Sampling Devices via a Smartphone Application to Encourage Participation in Cervical Cancer Screening: A Pilot Study
by Francesco Plotti, Fernando Ficarola, Giuseppina Fais, Carlo De Cicco Nardone, Roberto Montera, Daniela Luvero, Gianna Barbara Cundari, Alice Avian, Elisabetta Riva, Santina Castriciano, Silvia Angeletti, Massimo Ciccozzi, Roberto Angioli and Corrado Terranova
J. Clin. Med. 2025, 14(15), 5569; https://doi.org/10.3390/jcm14155569 - 7 Aug 2025
Abstract
Background: Cervical cancer ranks among the most prevalent tumors in low-income countries, with the Pap test as one of the primary screening tools. The Pap smear detects abnormal cells, the CLART test identifies specific HPV genotypes, and HPV self-sampling allows for self-collected HPV [...] Read more.
Background: Cervical cancer ranks among the most prevalent tumors in low-income countries, with the Pap test as one of the primary screening tools. The Pap smear detects abnormal cells, the CLART test identifies specific HPV genotypes, and HPV self-sampling allows for self-collected HPV testing. This study aimed to evaluate the feasibility of the first smartphone-based health device for home-collection HPV testing. Methods: Enrolled patients during the gynecological examination underwent three different samplings: Pap smear, HPV DNA genotyping test CLART, and vaginal HPV-Selfy swab. Each patient received a kit including an activation code, vaginal swab, and instructions. After performing the self-sample, patients returned the kit to our laboratory. Both the samples collected by the gynecologist and those collected by the patients themselves were analyzed. Results: A total of 277 patients were enrolled, with 226 self-collected swabs received for analysis. The assay yielded valid results for both self-collected and clinician-collected swabs in 190 patients. When comparing these results with paired clinician-taken vaginal swabs, we observed an agreement of 95.2% (Cohen’s Kappa: 0.845). We report an agreement of 93.7% (Cohen’s Kappa: 0.798). Conclusions: The study demonstrated the feasibility of HPV-Selfy as a complementary tool in cervical cancer screening, especially where adherence to traditional surveillance is low. Full article
(This article belongs to the Special Issue Recent Advances in Gynecological Cancer)
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China
by Shilong Feng, Xu Wang, Liangmin Huang, Jiaqiao Wang, Lin Lin, Jun Li, Guangjie Dai, Qianwen Cai, Haoqi Xu, Yapeng Hui and Fenfen Ji
Biology 2025, 14(8), 988; https://doi.org/10.3390/biology14080988 - 4 Aug 2025
Viewed by 218
Abstract
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the [...] Read more.
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the total species. Among the identified species, there were ten non-native fish species. Compared with the TSM, the eDNA detected 13 additional fish species, including two additional non-native fish species—Gambusia affinis (Baird and Girard, 1853) and Micropterus salmoides (Lacepède, 1802). In addition, the relative abundance of fish from both methods revealed that tilapia was overwhelmingly dominant, accounting for 80.75% and 75.68%, respectively. Furthermore, the AS-ISK assessment revealed that all non-native fish species were classified as medium or high-risk, with five identified as high-risk species, four of which belong to tilapia. These findings demonstrated that tilapia are the dominant and high-risk invasive species in Xinglin Bay and should be prioritized for management. Population reduction through targeted harvesting of tilapia is recommended as the primary control strategy. Additionally, the study highlights the effectiveness of eDNA in monitoring fish community structure in brackish ecosystems. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

19 pages, 10865 KiB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Viewed by 195
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

18 pages, 3968 KiB  
Article
Design, Development, and Clinical Validation of a Novel Kit for Cell-Free DNA Extraction
by Ekin Çelik, Hande Güner, Gizem Kayalı, Haktan Bagis Erdem, Taha Bahsi and Hasan Huseyin Kazan
Diagnostics 2025, 15(15), 1897; https://doi.org/10.3390/diagnostics15151897 - 29 Jul 2025
Viewed by 312
Abstract
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, [...] Read more.
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, and reproducibility. Methods: We developed and optimized SafeCAP 2.0, a novel magnetic bead-based cfDNA extraction kit, focusing on efficient recovery, minimal genomic DNA contamination, and PCR compatibility. Optimization involved systematic evaluation of magnetic bead chemistry, buffer composition, and reagent volumes. Performance was benchmarked against a commercial reference kit (Apostle MiniMax) using spiked oligonucleotides and plasma from patients with stage IV NSCLC. Results: The optimized protocol demonstrated superior recovery with a limit of detection (LoD) as low as 0.3 pg/µL and a limit of quantification (LoQ) of 1 pg/μL with no detectable PCR inhibition. In comparative studies, SafeCAP 2.0 showed equivalent or improved performance over the commercial kit. Clinical validation using 47 patient plasma samples confirmed robust cfDNA recovery and fragment integrity. Conclusions: SafeCAP 2.0 offers a cost-effective, high-performance solution for cfDNA extraction in both research and clinical workflows. Its design and validation address key pre-analytical barriers, supporting integration into routine diagnostics and precision medicine platforms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 1694 KiB  
Article
The Role of MLPA in Detecting Syndromic Submicroscopic Copy Number Variations in Normal QF-PCR Miscarriage Specimens
by Gabriela Popescu-Hobeanu, Mihai-Gabriel Cucu, Alexandru Calotă-Dobrescu, Luminița Dragotă, Anca-Lelia Riza, Ioana Streață, Răzvan Mihail Pleșea, Ciprian Laurențiu Pătru, Cristina Maria Comănescu, Ștefania Tudorache, Dominic Iliescu and Florin Burada
Genes 2025, 16(8), 867; https://doi.org/10.3390/genes16080867 - 24 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while [...] Read more.
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while a significantly lower rate is found in late pregnancy loss. Multiplex ligation-dependent probe amplification (MLPA) can detect small changes within a gene with precise breakpoints at the level of a single exon. The aim of our study was to identify the rate of copy number variations (CNVs) in spontaneous pregnancy loss samples after having previously tested them via quantitative fluorescence PCR (QF-PCR), with no abnormal findings. Methods: DNA was extracted from product-of-conception tissue samples, followed by the use of an MLPA kit for the detection of 31 microdeletion/microduplication syndromes (SALSA® MLPA® Probemix P245 Microdeletion Syndromes-1A, MRC-Holland, Amsterdam, The Netherlands). Results: A total of 11 (13.1%) out of the 84 successfully tested samples showed CNVs. Duplications accounted for 9.5% of the analyzed samples (eight cases), while heterozygous or hemizygous deletions were present in three cases (3.6%). Among all the detected CNVs, only three were certainly pathogenic (3.6%), with two deletions associated with DiGeorge-2 syndrome and Rett syndrome, respectively, and a 2q23.1 microduplication syndrome, all detected in early pregnancy loss samples. For the remaining cases, additional genetic tests (e.g., aCGH/SNP microarray) are required to establish CNV size and gene content and therefore their pathogenicity. Conclusions: MLPA assays seem to have limited value in detecting supplementary chromosomal abnormalities in miscarriages. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1973 KiB  
Article
Exploring the Microbiome of Diabetic Foot Ulcers: A Focus on Cases with a Clinical Worse Outcome
by Laura Soldevila-Boixader, Anna Carrera-Salinas, Isabel Mur, Laura Morata, Alba Rivera, Jordi Bosch, Abelardo Montero-Saez, Jéssica Martínez Castillejo, Natividad Benito, Sara Martí and Oscar Murillo
Antibiotics 2025, 14(7), 724; https://doi.org/10.3390/antibiotics14070724 - 18 Jul 2025
Viewed by 361
Abstract
Background/Objectives: We evaluated the diabetic foot ulcer (DFU) microbiome in clinical situations identified as risk factors for a worse outcome and explored the roles of the most abundant microorganisms. Methods: A prospective multicenter cohort of diabetic patients with DFU were followed [...] Read more.
Background/Objectives: We evaluated the diabetic foot ulcer (DFU) microbiome in clinical situations identified as risk factors for a worse outcome and explored the roles of the most abundant microorganisms. Methods: A prospective multicenter cohort of diabetic patients with DFU were followed up for 6 months. We obtained a DFU tissue biopsy for microbiome analysis at the baseline visit. Genomic DNA was extracted (QIAamp DNA Mini Kit, Qiagen, Hilden, Germany) and quantified (QuantiFluor dsDNA System, Promega, Madison, WI, USA), with analysis of bacterial communities focusing on relative abundances (RA) and on alpha and beta diversity. Results: Overall, 59 DFUs were analyzed. DFUs of long duration (≥4 weeks) presented a higher RA of Gammaproteobacteria compared with ulcers of short duration (p = 0.02). Non-infected DFUs had a higher proportion of Actinobacteriota phyla than infected DFUs and, particularly, a higher RA of Corynebacterium genera (means ± SD: 0.063 ± 0.14 vs. 0.028 ± 0.13, respectively; p = 0.03). Regarding the pathogenic role of Staphylococcus aureus, DFUs with low S. aureus bacterial loads (<106 CFU/mL) compared with those with high loads (≥106 CFU/mL) showed a higher Corynebacterium RA (0.045 ± 0.08 vs. 0.003 ± 0.01, respectively; p = 0.01). Conclusions: In clinical situations associated with poor DFU outcomes, we observed a predominance of Gammaproteobacteria in the microbiome of long-duration ulcers and a higher RA of Corynebacterium in non-infected DFUs. An inverse relationship between the predominance of Corynebacterium and the S. aureus bacterial load in DFUs was also noted, which may suggest these commensals have a modulatory role. Further studies should explore the clinical utility of microbiome analysis for DFUs. Full article
Show Figures

Figure 1

16 pages, 4911 KiB  
Article
Tazarotene-Induced Gene 3 (TIG3) Induces Apoptosis in Melanoma Cells Through the Modulation of Inhibitors of Apoptosis Proteins
by Chun-Hua Wang, Lu-Kai Wang and Fu-Ming Tsai
Biomedicines 2025, 13(7), 1749; https://doi.org/10.3390/biomedicines13071749 - 17 Jul 2025
Viewed by 354
Abstract
Background/Objectives: Retinoic acid has been shown to inhibit melanoma progression; however, its underlying mechanisms remain unclear. In this study, we investigated the role of the retinoic acid-inducible gene TIG3 in regulating melanoma cell growth, as well as elucidating its involvement in apoptosis. Methods: [...] Read more.
Background/Objectives: Retinoic acid has been shown to inhibit melanoma progression; however, its underlying mechanisms remain unclear. In this study, we investigated the role of the retinoic acid-inducible gene TIG3 in regulating melanoma cell growth, as well as elucidating its involvement in apoptosis. Methods: The expression of TIG3 in melanoma tissues was analyzed using a cDNA microarray. Cell viability and cell death were measured using the WST-1 and LDH assay kits, respectively. The gene expression changes that were induced by TIG3 were identified through RNA sequencing, while apoptosis-related pathways were examined using a human apoptosis protein array. The protein expression levels were further validated using Western blot analysis. Results: TIG3 expression was significantly downregulated in melanoma tissues. The overexpression of TIG3 in melanoma cells led to reduced cell viability and increased cell death. TIG3 suppressed the expression of several apoptosis-regulating proteins, including PON2, Fas, cIAP-1, Claspin, Clusterin, HTRA2, and Livin, while promoting the expression of cleaved Caspase-3. Supplementation with cIAP-1, HTRA2, or Livin partially reversed TIG3-induced Caspase-3 expression and cell death. Conclusions: Our findings suggest that TIG3 may contribute to the anti-melanoma effects of retinoic acid, with IAP family proteins playing a key role in the TIG3-mediated regulation of melanoma cell survival. Full article
(This article belongs to the Special Issue Molecular Research and New Therapy in Melanoma)
Show Figures

Figure 1

29 pages, 1610 KiB  
Review
Tyrosine Kinase Inhibitors for Gastrointestinal Stromal Tumor After Imatinib Resistance
by Xian-Hao Xiao, Qian-Shi Zhang, Ji-Yuan Hu, Yin-Xu Zhang and He Song
Pharmaceutics 2025, 17(7), 923; https://doi.org/10.3390/pharmaceutics17070923 - 17 Jul 2025
Viewed by 527
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by activating mutations in KIT (CD117) and platelet-derived growth factor receptor alpha (PDGFRA). The introduction of tyrosine kinase inhibitors (TKIs), especially imatinib, has significantly transformed GIST treatment. [...] Read more.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by activating mutations in KIT (CD117) and platelet-derived growth factor receptor alpha (PDGFRA). The introduction of tyrosine kinase inhibitors (TKIs), especially imatinib, has significantly transformed GIST treatment. However, the emergence of both primary and secondary resistance to imatinib presents ongoing therapeutic challenges. This review comprehensively explores the mechanisms underlying imatinib resistance and evaluates subsequent TKI therapies. Sunitinib, regorafenib, and ripretinib are currently approved as standard second-, third-, and fourth-line therapies, each demonstrating efficacy against distinct mutational profiles. Avapritinib, notably effective against PDGFRA D842V mutations, represents a milestone for previously untreatable subgroups. Several alternative agents—such as nilotinib, masitinib, sorafenib, dovitinib, pazopanib, and ponatinib—have shown varying degrees of success in refractory cases or specific genotypes. Investigational compounds, including crenolanib, bezuclastinib, famitinib, motesanib, midostaurin, IDRX-42, and olverembatinib, are under development to address resistant or wild-type GISTs. Despite progress, long-term efficacy remains limited due to evolving resistance. Future strategies include precision medicine approaches such as ctDNA-guided therapy, rational drug combinations, and novel drug delivery systems to optimize bioavailability and reduce toxicity. Ongoing research will be crucial for refining treatment sequencing and expanding therapeutic options, especially for rare GIST subtypes. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy, 2nd Edition)
Show Figures

Figure 1

17 pages, 1876 KiB  
Article
Seroprevalence and Molecular Analysis of Bovine Leukemia Virus in Kazakhstan
by Saltanat Mamanova, Ainur Nurpeisova, Elvira Bashenova, Saira Kaimoldina, Vladimir Kirpichenko, Perizat Akshalova, Aiken Karabassova, Malik Yussupov, Akzhigit Mashzhan, Dauriya Tazhbayeva, Zhandos Abay, Marzena Rola-Luszczak, Jacek Kuzmak, Raikhan Nissanova and Markhabat Kassenov
Viruses 2025, 17(7), 956; https://doi.org/10.3390/v17070956 - 7 Jul 2025
Viewed by 456
Abstract
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics [...] Read more.
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics to assess prevalence and characterize viral genotypes (2024). A total of 433,537 serum samples were screened by agar gel immunodiffusion (AGID), revealing an overall seroprevalence of 5.87%, with the highest rates observed in the North Kazakhstan, Kostanay, and East Kazakhstan regions. In 2024, a targeted analysis of 3736 serum and 536 whole blood samples across 17 regions was performed using AGID, ELISA, real-time PCR, and nested PCR. ELISA demonstrated higher sensitivity than AGID (10.4% vs. 8.2%), confirmed by statistical correlation (r = 0.97, p < 0.001) and a Wilcoxon signed-rank test (p = 0.026). Real-time PCR detected BLV DNA in 4.7% of samples, with the highest positivity in the East Kazakhstan and Abai regions, confirming active viral circulation. Validation of a domestically developed AGID diagnostic kit showed full concordance with commercial assays (IDEXX, IDvet), supporting its use in national surveillance programs. These findings highlight the endemic status of BLV in Kazakhstan. Molecular analysis of sequenced isolates revealed the presence of genotype G-7, consistent with strains circulating in neighboring countries. Together, these results underscore the importance of integrated serological and molecular approaches for effective monitoring and control. Full article
(This article belongs to the Special Issue Viral Diseases of Domestic Animals)
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process
by Luiz Gustavo Bach, Gabriela Zarpelon Anhalt Braga, Márcia Cristina Bedutti, Layza Mylena Pardinho Dias, Emanoelli Aparecida Rodrigues dos Santos, Leonardo Ereno Tadielo, Evelyn Cristine da Silva, Jhennifer Arruda Schmiedt, Virgínia Farias Alves, Elaine Cristina Pereira De Martinis, Fábio Sossai Possebon, Vinicius Cunha Barcellos and Luciano dos Santos Bersot
Foods 2025, 14(13), 2387; https://doi.org/10.3390/foods14132387 - 6 Jul 2025
Viewed by 426
Abstract
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, [...] Read more.
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, n = 50) slaughterhouses. The swab samples were used to prepare culture plates to recover viable and culturable cells. The grown plates were washed, and the total DNA of the cell suspension was extracted with a commercial kit. Sequencing of the total DNA extracted from cultures was targeted at the V3 and V4 regions of the 16S rRNA. DNA reads were analyzed by QIIME2 software, with results expressed in relative frequency (%RF). Alpha and beta diversity indexes were analyzed considering the spots of sample collection, type of industry, surfaces (smooth or modular), and materials (polypropylene, stainless steel, or polyurethane). The results showed that in the poultry slaughterhouse, the most abundant genera were Acinetobacter (27.4%), Staphylococcus (7.7%), and Pseudomonas (5.3%), while for the fish slaughterhouse, there was a higher abundance of Staphylococcus (27.7%), Acinetobacter (17.2%), and Bacillus (12.5%). Surface characteristics influenced the microbial diversity, with Acinetobacter spp. dominating modular surfaces and Staphylococcus spp. prevailing on smooth surfaces. The results obtained indicate there is an important resident microbiota that persists even after hygiene processes, and surface-specific cleaning strategies should be developed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 1561 KiB  
Article
Evaluation of Commercially Available Kits for Parallel DNA and microRNA Isolation Suitable for Epigenetic Analyses from Cell-Free Saliva and Salivary Extracellular Vesicles
by Iqra Yousaf, Ulrike Kegler, Manuela Hofner and Christa Noehammer
Int. J. Mol. Sci. 2025, 26(13), 6365; https://doi.org/10.3390/ijms26136365 - 2 Jul 2025
Viewed by 456
Abstract
Circulating cell-free nucleic acids (NAs), in particular plasma-derived cell-free DNA, have evolved into promising clinical analytes for prenatal diagnostics, cancer analysis, and cancer surveillance and therapy monitoring. Nevertheless, salivary extracellular and extracellular vesicle (EV)-derived DNA and microRNA have recently gained attention as potential [...] Read more.
Circulating cell-free nucleic acids (NAs), in particular plasma-derived cell-free DNA, have evolved into promising clinical analytes for prenatal diagnostics, cancer analysis, and cancer surveillance and therapy monitoring. Nevertheless, salivary extracellular and extracellular vesicle (EV)-derived DNA and microRNA have recently gained attention as potential non-invasive biomarkers for a variety of diseases, including cancer, cardiovascular, autoimmune, and infectious diseases. Our goal in this study was therefore to evaluate and optimize commercially available approaches for cell-free nucleic acid isolation, focusing specifically on DNA and miRNA present in cell-free saliva or saliva-derived EVs. Along these lines, we investigated various commercially available kits, which enable parallel isolation of cell-free DNA and RNA in separate fractions from cell-free saliva and salivary EVs, respectively, and compared them to single analyte extraction kits. The efficiency of all tested nucleic acid extraction methods was determined by comparing DNA and RNA fluorescence spectroscopy measurements and quantitative PCR values obtained from a selection of different DNA- and microRNA targets. We found the Norgen Plasma/Serum RNA/DNA Purification Mini kit in combination with the miRCURY exosome isolation kit to work best in our hands and to provide the highest yields of EV-derived nucleic acids. Having tested and identified effective protocols for isolating salivary extracellular nucleic acids, we present with this comparison study, among others, a sound basis for future circulating small nucleic acid and epigenetic biomarker research aiming for early disease diagnosis, prognosis, and prediction from cell-free saliva, representing an easy-to-collect and readily available diagnostic fluid. Full article
Show Figures

Figure 1

26 pages, 5313 KiB  
Article
Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer
by Vicente M. García-Cañizares, Alejandro González-Vidal, Antonio M. Burgos-Molina, Silvia Mercado-Sáenz, Francisco Sendra-Portero and Miguel J. Ruiz-Gómez
Appl. Sci. 2025, 15(13), 7018; https://doi.org/10.3390/app15137018 - 22 Jun 2025
Viewed by 553
Abstract
Breast, colon, and ovarian cancers are among the most prevalent malignancies worldwide, with distinct clinical features. This study aims to identify key proteins as common biomarkers for breast, colon, and ovarian cancer through protein analysis, molecular mechanisms, and patient sample validation. Data mining [...] Read more.
Breast, colon, and ovarian cancers are among the most prevalent malignancies worldwide, with distinct clinical features. This study aims to identify key proteins as common biomarkers for breast, colon, and ovarian cancer through protein analysis, molecular mechanisms, and patient sample validation. Data mining from curated databases identified 483 proteins for breast cancer, 521 for colon cancer, and 223 for ovarian cancer. Interaction network analysis revealed shared clusters involved in cancer progression, DNA repair, and cell proliferation. A core set of 27 proteins was found to be common across all three cancer types, participating in key biological processes such as DNA damage response, cell proliferation, and apoptosis. Notably, these proteins are implicated in KEGG pathways linked to multiple cancers. Differential gene expression analysis revealed significant alterations in the expressions of MSH2 and KIT across the three cancers, suggesting their potential as common biomarkers. The high expression of these proteins was associated with better survival outcomes, highlighting their potential as common biomarkers for breast, colon, and ovarian cancers. The in-silico methodology integrated various bioinformatic tools—including cluster identification, gene expression profiling, protein network visualization, and biomarker prediction—enhancing the understanding of shared molecular mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Recent Applications of Artificial Intelligence for Bioinformatics)
Show Figures

Figure 1

14 pages, 677 KiB  
Article
Usefulness of Serum as a Non-Invasive Sample for the Detection of Histoplasma capsulatum Infections: Retrospective Comparative Analysis of Different Diagnostic Techniques and Quantification of Host Biomarkers
by L. Bernal-Martínez, P. De la Cruz-Ríos, R. Viedma, S. Gago, S. Ortega-Madueño, L. Alcazar-Fuoli and M. J. Buitrago
J. Fungi 2025, 11(6), 448; https://doi.org/10.3390/jof11060448 - 12 Jun 2025
Viewed by 879
Abstract
Diagnosis of histoplasmosis is challenging. A rapid, sensitive, and specific method is essential. Serum is a non-invasive and easy sample to obtain in any hospital. The diagnostic accuracy of different techniques that use serum has been evaluated. Forty-one serum samples from patients with [...] Read more.
Diagnosis of histoplasmosis is challenging. A rapid, sensitive, and specific method is essential. Serum is a non-invasive and easy sample to obtain in any hospital. The diagnostic accuracy of different techniques that use serum has been evaluated. Forty-one serum samples from patients with proven or probable histoplasmosis were analyzed. Different diagnostic techniques based on the detection of antibodies (ID Fungal Antibody System), antigens (Histoplasma GM EIA and PlateliaTM Aspergillus Ag), and DNA (“in-house” real-time PCR (RT-PCR) were tested and compared. Additionally, the quantification of cytokines and biomarkers related to histoplasmosis was performed. Global results from 27 samples in which all the tests were performed showed that the sensitivity of the Histoplasma GM EIA kit was 87.5% in patients with disseminated infection and HIV as an underlying disease; in immunocompetent (IC) patients, it was 54.5%. The detection of Histoplasma spp. with the ID Fungal Antibody System was positive in 90.9% of IC and in 62.5% of HIV patients. The Platelia-Asp kit had a low performance in both groups of patients (37.5% in HIV and 9% in non-HIV), and, finally, RT-PCR was better in immunosuppressed patients (44% in HIV vs. 27% in non-HIV). The combination of diagnostic techniques increased the detection of Histoplasma infection in inmunosupressed patients. Overall, patient groups infected with H. capsulatum (Hc) showed higher IL-8, IL-6, IL-1β, TNF-α, and IL-18 median values compared to non-Hc-infected controls. The effectiveness of diagnostic techniques on serum samples is highly influenced by the patient’s clinical presentation and underlying condition. Consequently, a thorough assessment of the patient’s clinical presentation and disease phenotype is crucial in selecting the most suitable diagnostic method. Full article
(This article belongs to the Special Issue Fungal Infections: New Challenges and Opportunities, 3rd Edition)
Show Figures

Figure 1

17 pages, 8766 KiB  
Article
Analysis of Software Read Cross-Contamination in DNBSEQ Data
by Dmitry N. Konanov, Vera Y. Tereshchuk, Ignat V. Sonets, Elena V. Korneenko, Aleksandra V. Lukina-Gronskaya, Anna S. Speranskaya and Elena N. Ilina
Biology 2025, 14(6), 670; https://doi.org/10.3390/biology14060670 - 9 Jun 2025
Viewed by 628
Abstract
DNA nanoball sequencing (DNBSEQ) is one of the most rapidly developing sequencing technologies and is widely applied in genomic and transcriptomic investigations. Recently, a new PE300 sequencing option primarily recommended for amplicon analysis was released for DNBSEQ-G99 and G400 devices. Given their unprecedentedly [...] Read more.
DNA nanoball sequencing (DNBSEQ) is one of the most rapidly developing sequencing technologies and is widely applied in genomic and transcriptomic investigations. Recently, a new PE300 sequencing option primarily recommended for amplicon analysis was released for DNBSEQ-G99 and G400 devices. Given their unprecedentedly high data yield per flow cell, the new PE300 kits could be a great choice for various sequencing tasks, but we found that combining different types of DNA libraries in a single run could lead to undesired artifacts in the data. In this study, we investigate the occasional read cross-contamination that we first observed in our DNBSEQ PE300 run. The phenomenon, which we refer to as “software contamination”, is not actual contamination but primarily manifests as improper forward/reverse read pairing, improper demultiplexing, or as “digital chimeric” reads. Although rare, these artifacts were found in all runs we have analyzed, including several MGI demo datasets (both PE100 and PE150). In this study, we demonstrate that these artifacts arise primarily from the incorrect resolution of sequencing signals produced by neighboring DNA nanoballs, leading to mixing out forward and reverse reads or improper demultiplexing. The artifacts occur most frequently with read pairs where the length of insert sequence is shorter than the read length. Based on a few external NA12878 human exome sequencing data, we conclude that the total improper pairing rate in DNBSEQ data is comparable to Illumina ones. Overall, the problem only affects the analysis results when simultaneously sequenced libraries have markedly different insert size distribution or flow cell loading. Additionally, we demonstrate here that raw DNBSEQ data might contain ~2% optical duplicates, resulting from the same effect of close neighboring of DNB-sites in the flow cell. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

9 pages, 685 KiB  
Article
An Optimized In-House Protocol for Cryptococcus neoformans DNA Extraction from Whole Blood: “Comparison of Lysis Buffer and Ox-Bile Methods”
by Fredrickson B Wasswa, Kennedy Kassaza, Kirsten Nielsen and Joel Bazira
J. Fungi 2025, 11(6), 430; https://doi.org/10.3390/jof11060430 - 4 Jun 2025
Cited by 1 | Viewed by 867
Abstract
Cryptococcus neoformans (C. neoformans) is a capsulated yeast that enters the body through inhalation and migrates via the bloodstream to the central nervous system, causing cryptococcal meningitis. Diagnosis methods are culture, serology, and India ink staining, which require cerebrospinal fluid (CSF) or whole blood. [...] Read more.
Cryptococcus neoformans (C. neoformans) is a capsulated yeast that enters the body through inhalation and migrates via the bloodstream to the central nervous system, causing cryptococcal meningitis. Diagnosis methods are culture, serology, and India ink staining, which require cerebrospinal fluid (CSF) or whole blood. Molecular methods are used for epidemiological studies and require expensive commercial DNA extraction kits. This study aimed to develop an economical in-house method for extracting C. neoformans DNA from whole blood. C. neoformans cells of varying McFarland standards were spiked into expired blood, then lysed using laboratory-prepared lysis buffer and ox-bile solution, followed by organic DNA extraction. Ordinary PCR targeting the CNAG 04922 gene was performed. To determine the limit of detection, serial dilutions of C. neoformans were made, and DNA extraction was performed on other parts cultured on yeast extract peptone dextrose agar to determine colony-forming units (CFU). The lysis buffer method successfully extracted DNA from as low as the average of 62 CFU in 0.9 mL of expired blood with superior quality and high yield compared to ox-bile. The lysis buffer method yielded higher DNA quality and quantity than ox-bile and detected low concentrations of C. neoformans in expired blood. This method presents a cost-effective alternative for molecular diagnosis in resource-limited settings. Full article
(This article belongs to the Special Issue Prevention and Treatment of Cryptococcal Meningitis)
Show Figures

Figure 1

Back to TopTop