Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = DGDG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 658 KiB  
Article
Modulations of Photosynthetic Membrane Lipids and Fatty Acids in Response to High Light in Brown Algae (Undaria pinnatifida)
by Natalia V. Zhukova and Irina M. Yakovleva
Plants 2025, 14(12), 1818; https://doi.org/10.3390/plants14121818 - 13 Jun 2025
Viewed by 408
Abstract
Light is a source of energy for photosynthesis and hence promotes the regulation of multiple physiological and metabolic processes in photoautotrophic organisms. Understanding how brown macrophytes adjust the physical and biochemical properties of photosynthetic membranes in response to high-irradiance environments has received little [...] Read more.
Light is a source of energy for photosynthesis and hence promotes the regulation of multiple physiological and metabolic processes in photoautotrophic organisms. Understanding how brown macrophytes adjust the physical and biochemical properties of photosynthetic membranes in response to high-irradiance environments has received little attention so far. Particularly, it concerns the lipid flexibility of thylakoid membranes. We examined the lipid classes, fatty acid (FA) profiles, chloroplast ultrastructure, and photosynthetic performance of the brown macroalga Undaria pinnatifida after long-term exposure to high light (HL) and moderate light (ML) intensities, at 400 and 270 µmol photons m−2 s−1, respectively. U. pinnatifida responded to HL with a reduction in the level of thylakoid membrane lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG), while the character of lipid modulations was specific. The content of storage lipids, triacylglycerols enriched in n-3 polyunsaturated fatty acids (PUFAs), increased under HL. The general response to long-term HL for the studied thylakoid membrane lipids, but not for SQDG, was the remodeling of FA composition towards increasing the percentages of saturated and monounsaturated acyl groups over PUFAs, suggesting a photoprotective strategy against the intensification of lipid peroxidation. In all, we showed that remodeling in photosynthetic membrane lipids accompanied by structural changes in chloroplasts and modulations in photosynthetic performance augmented the ability of U. pinnatifida to counteract high-intensity light, thereby contributing to its survival potential under suboptimal irradiance conditions. Full article
(This article belongs to the Special Issue Mechanisms of Algae Adapting to Environmental Changes)
Show Figures

Figure 1

50 pages, 7741 KiB  
Article
X-Ray Crystal and Cryo-Electron Microscopy Structure Analysis Unravels How the Unique Thylakoid Lipid Composition Is Utilized by Cytochrome b6f for Driving Reversible Proteins’ Reorganization During State Transitions
by Radka Vladkova
Membranes 2025, 15(5), 143; https://doi.org/10.3390/membranes15050143 - 8 May 2025
Viewed by 1237
Abstract
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease [...] Read more.
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease its hydrophobic thickness (dP) in parallel with the reduction or oxidation of the PQ pool induced by changes in light quality. This property appears to be the long-sought biophysical driver behind the reorganizations of membrane proteins during STs. This study decisively advances the hydrophobic mismatch (HMM) model for cytb6f-driven STs by thoroughly analyzing thirteen X-ray crystal and eight cryo-electron microscopy cytb6f structures. It uncovers the lipid nanoenvironments that cytb6f, with different hydrophobic thicknesses, selectively attracts. Under optimal, stationary conditions for photosynthesis in low light, when there is hydrophobic matching between the hydrophobic thicknesses of cytb6f dP and that of the bulk thylakoid lipid phase dL, dP = dL, cytb6f predominantly binds to anionic lipids—several phosphatidylglycerol (PG) molecules and one sulfoquinovosyldiacylglycerol (SQDG) molecule. Upon the induction of the transition to State 2, when dP increases and induces a positive HMM (dP > dL), the neutral, non-bilayer-forming lipid monogalactosyldiacylglycerol (MGDG) replaces some of the bound PGs. Upon the induction of the transition to State 1, when dP decreases and induces a negative HMM (dP < dL), PGs and SQDG detach from their binding sites, and two neutral, bilayer-forming lipids such as digalactosyldiacylglycerol (DGDG) occupy two sites. Additionally, this research uncovers two lipid-mediated signaling pathways from Chla to the center of flexibility, the Phe/Tyr124fg-loop-suIV residue—one of which involves β-carotene. This study identifies two novel types of lipid raft-like nanodomains that are devoid of typical components, such as sphingomyelin and cholesterol. These findings firmly validate the HMM model and underscore the STs as the first recognized functional process that fully utilizes the unique and evolutionarily conserved composition of just four thylakoid lipid classes. This research contributes to our understanding of membrane dynamics in general and STs in particular. It introduces a novel and simple approach for reversible protein reorganization driven purely by biophysical mechanisms, with promising implications for various membrane-based applications. Full article
Show Figures

Figure 1

14 pages, 3696 KiB  
Article
Epidermal and Blood Vessel Barrier Functions of Glucosylceramides and Digalactosyldiacylglycerols Isolated from Yellow Strawberry Guava
by Akari Yoneda, Shogo Takeda, Kenchi Miyasaka, Yoshiaki Manse, Toshio Morikawa and Hiroshi Shimoda
Processes 2024, 12(7), 1421; https://doi.org/10.3390/pr12071421 - 8 Jul 2024
Viewed by 1378
Abstract
Strawberry guava is the fruit of Psidium littorale, which grows in tropical regions. Few studies have examined the hydrophobic compounds and biological activities of this fruit. Therefore, we purified lipophilic compounds of strawberry guava and examined their effects on epidermal and blood [...] Read more.
Strawberry guava is the fruit of Psidium littorale, which grows in tropical regions. Few studies have examined the hydrophobic compounds and biological activities of this fruit. Therefore, we purified lipophilic compounds of strawberry guava and examined their effects on epidermal and blood vessel barrier functions as well as their anti-melanogenic activity. Lipophilic compounds were isolated by silica gel column chromatography followed by reversed-phase HPLC with MeOH from an EtOH extract of the fruit. Isolated compounds were identified by comparing NMR and MS spectra with those of reference values. The effects of these compounds on epidermal barrier function were evaluated by measuring transepidermal water loss (TEWL) using reconstructed human epidermal keratinocytes (RHEKs). Blood vessel barrier function was examined using dye permeability through human umbilical vein endothelial cell (HUVEC) layers. Anti-melanogenic activity was assessed by theophylline-induced melanogenesis in B16 melanoma cells. We isolated six glucosylceramides (GlcCers) and three digalactosyldiacylglycerols (DGDGs). Only GlcCer[t18:1(8Z)/23:0] significantly lowered TEWL in RHEKs, while GlcCer[t18:1(8Z)/24:0] induced a slight reduction. Regarding the permeability of the HUVEC layer, GlcCer[d18:2(4E,8Z)/16:0] and DGDG (1,2-dilinolenoyl-3-digalactosylglycerol) significantly suppressed dye permeability and this effect was accompanied by the expression of VE-cadherin, which facilitates cell-to-cell adhesion. GlcCers and DGDGs did not exhibit anti-melanogenic activity. Therefore, strawberry guava containing specific GlcCers and DGDGs may promote epidermal and blood vessel barrier functions. Full article
(This article belongs to the Topic Purification of Plant Extracts)
Show Figures

Graphical abstract

16 pages, 2487 KiB  
Article
OsMGD1-Mediated Membrane Lipid Remodeling Improves Salt Tolerance in Rice
by Shasha Li, Lei Hui, Jingchong Li, Yuan Xi, Jili Xu, Linglong Wang and Lina Yin
Plants 2024, 13(11), 1474; https://doi.org/10.3390/plants13111474 - 27 May 2024
Viewed by 1917
Abstract
Salt stress severely reduces photosynthetic efficiency, resulting in adverse effects on crop growth and yield production. Two key thylakoid membrane lipid components, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were perturbed under salt stress. MGDG synthase 1 (MGD1) is one of the key enzymes for [...] Read more.
Salt stress severely reduces photosynthetic efficiency, resulting in adverse effects on crop growth and yield production. Two key thylakoid membrane lipid components, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were perturbed under salt stress. MGDG synthase 1 (MGD1) is one of the key enzymes for the synthesis of these galactolipids. To investigate the function of OsMGD1 in response to salt stress, the OsMGD1 overexpression (OE) and RNA interference (Ri) rice lines, and a wild type (WT), were used. Compared with WT, the OE lines showed higher chlorophyll content and biomass under salt stress. Besides this, the OE plants showed improved photosynthetic performance, including light absorption, energy transfer, and carbon fixation. Notably, the net photosynthetic rate and effective quantum yield of photosystem II in the OE lines increased by 27.5% and 25.8%, respectively, compared to the WT. Further analysis showed that the overexpression of OsMGD1 alleviated the negative effects of salt stress on photosynthetic membranes and oxidative defense by adjusting membrane lipid composition and fatty acid levels. In summary, OsMGD1-mediated membrane lipid remodeling enhanced salt tolerance in rice by maintaining membrane stability and optimizing photosynthetic efficiency. Full article
(This article belongs to the Special Issue Mechanism of Drought and Salinity Tolerance in Crops)
Show Figures

Figure 1

13 pages, 1454 KiB  
Article
Jasmonates and Ethylene Shape Floridoside Synthesis during Carposporogenesis in the Red Seaweed Grateloupia imbricata
by Pilar Garcia-Jimenez, Diana del Rosario-Santana and Rafael R. Robaina
Mar. Drugs 2024, 22(3), 115; https://doi.org/10.3390/md22030115 - 28 Feb 2024
Cited by 2 | Viewed by 2335
Abstract
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis [...] Read more.
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages—namely, fertile, fertilized, and fertile—under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Figure 1

14 pages, 5340 KiB  
Article
Preliminary Analysis, Combined with Omics of Chilling Injury Mechanism of Peach Fruits with Different Cold Sensitivities during Postharvest Cold Storage
by Wenduo Zhan, Yan Wang, Wenyi Duan, Ang Li, Yule Miao, Hongmei Wang, Junren Meng, Hui Liu, Liang Niu, Lei Pan, Shihang Sun, Guochao Cui, Zhiqiang Wang and Wenfang Zeng
Horticulturae 2024, 10(1), 46; https://doi.org/10.3390/horticulturae10010046 - 2 Jan 2024
Cited by 5 | Viewed by 2171
Abstract
The storage of peach fruits at 4–5 °C can easily lead to chilling injury and greatly reduce the quality and commercial value of peach fruits. In this study, two kinds of peach fruits (CX and CM) were selected to analyze the mechanisms of [...] Read more.
The storage of peach fruits at 4–5 °C can easily lead to chilling injury and greatly reduce the quality and commercial value of peach fruits. In this study, two kinds of peach fruits (CX and CM) were selected to analyze the mechanisms of chilling injury in fruits with different chilling sensitivity by means of their lipidomic, transcriptome, and dynamic changes in plant hormones. We found that the ethylene, abscisic acid (ABA), and lipid contents changed differently between CX and CM. The ABA and dilactosyl diacylglycerol (DGDG) contents significantly increased after refrigeration in CM fruit, leading to strong cold resistance. However, low temperatures induced a greater accumulation of ethylene, phospholipids, and ABA-GE in CX fruit than in CM fruit, eventually leading to more severe CI symptoms in CX fruit. Additionally, a transcriptional regulatory network for CM and CX fruits during cold storage was constructed, providing a new theoretical reference for the cultivation of cold-resistant peach cultivars and the development of postharvest preservation technology. Full article
(This article belongs to the Special Issue Responses to Abiotic Stresses in Horticultural Crops)
Show Figures

Figure 1

18 pages, 1974 KiB  
Article
Polar Lipids of Marine Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Mitigate the LPS-Induced Pro-Inflammatory Response in Macrophages
by Tiago Conde, Bruno Neves, Daniela Couto, Tânia Melo, Diana Lopes, Rita Pais, Joana Batista, Helena Cardoso, Joana Laranjeira Silva, Pedro Domingues and M. Rosário Domingues
Mar. Drugs 2023, 21(12), 629; https://doi.org/10.3390/md21120629 - 6 Dec 2023
Cited by 11 | Viewed by 3147
Abstract
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated [...] Read more.
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases. Full article
(This article belongs to the Special Issue Marine Lipids 2023)
Show Figures

Figure 1

14 pages, 4021 KiB  
Article
Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in Brassica napus
by Wei Gong, Wenling Chen, Qiang Gao, Lei Qian, Xueyuan Yuan, Shaohua Tang and Yueyun Hong
Int. J. Mol. Sci. 2023, 24(22), 16111; https://doi.org/10.3390/ijms242216111 - 9 Nov 2023
Cited by 4 | Viewed by 1754
Abstract
Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by [...] Read more.
Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3533 KiB  
Article
Changes in Polar Lipid Composition in Balsam Fir during Seasonal Cold Acclimation and Relationship to Needle Abscission
by Mason T. MacDonald, Rajasekaran R. Lada, Gaye E. MacDonald, Claude D. Caldwell and Chibuike C. Udenigwe
Int. J. Mol. Sci. 2023, 24(21), 15702; https://doi.org/10.3390/ijms242115702 - 28 Oct 2023
Cited by 3 | Viewed by 1390
Abstract
Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were [...] Read more.
Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at −5, −15, −25, −35, and −45 °C. Lipids were extracted and analyzed using mass spectrometry while postharvest needle abscission was determined gravimetrically. Cold tolerance and needle retention each significantly (p < 0.001) improved throughout autumn in balsam fir. There were concurrent increases in DGDG, PC, PG, PE, and PA throughout autumn as well as a decrease in MGDG. Those same lipids were strongly related to cold tolerance, though MGDG had the strongest relationship (R2 = 55.0% and 42.7% from membrane injury and chlorophyll fluorescence, respectively). There was a similar, albeit weaker, relationship between MGDG:DGDG and needle retention (R2 = 24.3%). Generally, a decrease in MGDG:DGDG ratio resulted in better cold tolerance and higher needle retention in balsam fir, possibly due to increased membrane stability. This study confirms the degree of cold acclimation in Nova Scotian balsam fir and presents practical significance to industry by identifying the timing of peak needle retention. It is suggested that MGDG:DGDG might be a beneficial tool for screening balsam fir genotypes with higher needle retention characteristics. Full article
(This article belongs to the Special Issue Abiotic Stresses in Plants: From Molecules to Environment)
Show Figures

Figure 1

15 pages, 3954 KiB  
Article
Oxygen Exposure and Tolerance Shapes the Cell Wall-Associated Lipids of the Skin Commensal Cutibacterium acnes
by Iuliana Popa, David Touboul, Tilde Andersson, Eduardo Fuentes-Lemus, Cyrille Santerre, Michael J. Davies and Rolf Lood
Microorganisms 2023, 11(9), 2260; https://doi.org/10.3390/microorganisms11092260 - 8 Sep 2023
Cited by 2 | Viewed by 2280
Abstract
Cutibacterium acnes is one of the most abundant bacteria on the skin. Being exposed to oxygen and oxic stress, the secretion of the bacterial antioxidant protein RoxP ensures an endogenous antioxidant system for the preservation of skin health. To investigate the impact of [...] Read more.
Cutibacterium acnes is one of the most abundant bacteria on the skin. Being exposed to oxygen and oxic stress, the secretion of the bacterial antioxidant protein RoxP ensures an endogenous antioxidant system for the preservation of skin health. To investigate the impact of the antioxidant RoxP on oxidation of the bacteria, wildtype and an isogenic roxp mutant were cultured in anaerobic and oxic conditions. The carbonylated status of proteins were recorded, as were the most significant modifications in a relative intensity of free fatty acids (FFA) and lipids containing fatty acids (FA), such as di- (DG) and triglycerides (TG), di- (DGDG) and sulfoquinozyldiacylglycerol (SQDG) and ceramides. Concerning the fatty acid types, it was observed that the free fatty acids contained mainly C12:0–C26:0 in hydroxy and acylated forms, the DG contained mainly C29:0–C37:0, the TG contained mainly C19:0–C33:0, and the DGDG/SQDGs contained very long fatty acids (C29:0–C37:0) demonstrating the interdependence of de novo synthesis of lipids and RoxP. The area of DGDG peaks (924.52, 929.56 and 930.58) were affected by bacterial growth conditions, with the exception of m/z 910.61. Moreover, the FFA unsaturation is wider in the SQDG species (C30:0 to C36:6) than in DG, TG or free FFA species. It could be concluded that both environmental oxidative statuses, as well as the prevalence of bacterial antioxidant systems, significantly shape the lipidome of C. acnes. Full article
(This article belongs to the Special Issue Human Skin Microbiota, 2nd Edition)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
RNA-Seq Identified Putative Genes Conferring Photosynthesis and Root Development of Melon under Salt Stress
by Tai Liu, Sikandar Amanullah, Huichun Xu, Peng Gao, Zhiqiang Du, Xixi Hu, Mo Han, Ye Che, Ling Zhang, Guochao Qi and Di Wang
Genes 2023, 14(9), 1728; https://doi.org/10.3390/genes14091728 - 29 Aug 2023
Cited by 4 | Viewed by 1958
Abstract
Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance [...] Read more.
Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target. Full article
(This article belongs to the Special Issue Abiotic Stress in Land Plants: Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1916 KiB  
Article
Lipidome Profiling of Phosphorus Deficiency-Tolerant Rice Cultivars Reveals Remodeling of Membrane Lipids as a Mechanism of Low P Tolerance
by Soichiro Honda, Yumiko Yamazaki, Takumi Mukada, Weiguo Cheng, Masaru Chuba, Yozo Okazaki, Kazuki Saito, Akira Oikawa, Hayato Maruyama, Jun Wasaki, Tadao Wagatsuma and Keitaro Tawaraya
Plants 2023, 12(6), 1365; https://doi.org/10.3390/plants12061365 - 18 Mar 2023
Cited by 4 | Viewed by 2057
Abstract
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice [...] Read more.
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (−P) and 8 (+P) mg P L−1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under −P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in −P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

15 pages, 2185 KiB  
Article
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties
by Ramona Mihaela Ciubotaru, Mar Garcia-Aloy, Domenico Masuero, Pietro Franceschi, Luca Zulini, Marco Stefanini, Michael Oberhuber, Peter Robatscher, Giulia Chitarrini and Urska Vrhovsek
Int. J. Mol. Sci. 2023, 24(4), 4072; https://doi.org/10.3390/ijms24044072 - 17 Feb 2023
Cited by 4 | Viewed by 2579
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes’ defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, [...] Read more.
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes’ defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), “Kishmish vatkhana” (Ren1), F26P92 (Ren3; Ren9), and “Teroldego” (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for “Kishmish vatkhana”. Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes. Full article
(This article belongs to the Special Issue Function and Metabolism of Plant Lipids)
Show Figures

Figure 1

22 pages, 7916 KiB  
Article
LC-ESI-MS/MS Analysis of Sulfolipids and Galactolipids in Green and Red Lettuce (Lactuca sativa L.) as Influenced by Sulfur Nutrition
by Tania T. Körber, Tobias Sitz, Muna A. Abdalla, Karl H. Mühling and Sascha Rohn
Int. J. Mol. Sci. 2023, 24(4), 3728; https://doi.org/10.3390/ijms24043728 - 13 Feb 2023
Cited by 5 | Viewed by 2621
Abstract
Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the [...] Read more.
Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were used to identify individual thylakoid membrane lipids, which might act as markers in S nutrition (especially under stress conditions). The thylakoid membrane consists of the three glycolipid classes: monogalactosyl- (MGDG), digalactosyl- (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). All of them have two fatty acids linked, differing in chain length and degree of saturation. LC-ESI-MS/MS served as a powerful method to identify trends in the change in individual lipids and to understand strategies of the plant responding to stress. Being a good model plant, but also one of the most important fresh-cut vegetables in the world, lettuce (Lactuca sativa L.) has already been shown to respond significantly to different states of sulfur supply. The results showed a transformation of the glycolipids in lettuce plants and trends towards a higher degree of saturation of the lipids and an increased level of oxidized SQDG under S-limiting conditions. Changes in individual MGDG, DGDG, and oxidized SQDG were associated to S-related stress for the first time. Promisingly, oxidized SQDG might even serve as markers for further abiotic stress factors. Full article
Show Figures

Figure 1

20 pages, 5715 KiB  
Article
Metabolic Regulation and Lipidomic Remodeling in Relation to Spermidine-induced Stress Tolerance to High Temperature in Plants
by Zhou Li, Bizhen Cheng, Yue Zhao, Lin Luo, Yan Zhang, Guangyan Feng, Liebao Han, Yan Peng and Xinquan Zhang
Int. J. Mol. Sci. 2022, 23(20), 12247; https://doi.org/10.3390/ijms232012247 - 13 Oct 2022
Cited by 14 | Viewed by 3622
Abstract
Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants [...] Read more.
Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants were pretreated with 70 μM Spd and then subjected to high temperature (38/33 °C) stress for 20 days. To further investigate the effect of Spd on heat tolerance, transgenic Arabidopsisthaliana overexpressing a TrSAMS encoding a key enzyme involved in Spd biosynthesis was exposed to high temperature (38/33 °C) stress for 10 days. A significant increase in endogenous Spd content in white clover by exogenous application of Spd or the TrSAMS overexpression in Arabidopsisthaliana could effectively mitigate heat-induced growth retardation, oxidative damage to lipids, and declines in photochemical efficiency and cell membrane stability. Based on the analysis of metabolomics, the amino acids and vitamins metabolism, biosynthesis of secondary metabolites, and lipids metabolism were main metabolic pathways regulated by the Spd in cool-season white clover under heat stress. Further analysis of lipidomics found the TrSAMS-transgenic plants maintained relatively higher accumulations of total lipids, eight phospholipids (PC, phosphatidylcholine; PG, phosphatidylglycerol; PS, phosphatidylserine; CL, cardiolipin; LPA, lysophosphatidic acid; LPC, lyso phosphatidylcholine; LPG, lyso phosphatidylglycerol; and LPI, lyso phosphatidylinositol), one glycoglycerolipid (DGDG, digalactosyl diacylglycerol), and four sphingolipids (Cer, ceramide; CerG2GNAc1, dihexosyl N-acetylhexosyl ceramide; Hex1Cer, hexosyl ceramide; and ST, sulfatide), higher ratio of DGDG: monogalactosyl diacylglycerol (MGDG), and lower unsaturation level than wild-type Arabidopsisthaliana in response to heat stress. Spd-induced lipids accumulation and remodeling could contribute to better maintenance of membrane stability, integrity, and functionality when plants underwent a long period of heat stress. In addition, the Spd significantly up-regulated PIP2 and PA signaling pathways, which was beneficial to signal perception and transduction for stress defense. Current findings provide a novel insight into the function of Spd against heat stress through regulating lipids signaling and reprograming in plants. Full article
(This article belongs to the Topic Temperature Stress and Responses in Plants)
Show Figures

Figure 1

Back to TopTop