Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = DART1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14498 KiB  
Article
Okanin Attenuates Mitochondrial Dysfunction and Apoptosis in UVA-Induced HaCaT Cells by Mitophagy Through SIRT3 Pathway
by Fang Lu, Jiangming Zhong, Qi Zhou, Yiwei Yu, Mengdi Liang, Ying Yuan, Aowei Xie, Jin Cheng, Peng Shu and Jiejie Hao
Antioxidants 2025, 14(9), 1040; https://doi.org/10.3390/antiox14091040 (registering DOI) - 23 Aug 2025
Abstract
As the primary bioactive flavonoid in Coreopsis tinctoria, okanin has emerged as a promising antioxidant compound of substantial pharmacological interest. However, its efficacy against UVA-mediated photoaging remains unexplored. This research investigated the molecular mechanism underlying the photoprotective activity of okanin against UVA-mediated [...] Read more.
As the primary bioactive flavonoid in Coreopsis tinctoria, okanin has emerged as a promising antioxidant compound of substantial pharmacological interest. However, its efficacy against UVA-mediated photoaging remains unexplored. This research investigated the molecular mechanism underlying the photoprotective activity of okanin against UVA-mediated photoaging. Network pharmacology was employed to predict the pharmacological mechanism of Coreopsis tinctoria in skin photoaging, which was then validated through in vivo and in vitro studies. In vitro experiments indicated that treatment with okanin alleviated oxidative damage, apoptosis and mitochondrial dysfunction in HaCaT cells exposed to UVA radiation. In addition, the interaction between okanin and SIRT3 was confirmed using molecular docking, SPR and DARTS assays. However, silencing SIRT3 with siRNA abolished the promoting effects of okanin on mitophagy genes, confirming that okanin protects HaCaT cells against UVA damage through SIRT3 regulation. In in vivo, okanin enhanced the expression of SIRT3 and FOXO3a in dorsal skin, mitigating UV-mediated skin damage. Taken together, our results suggest the protective effects of okanin against UV radiation in both HaCaT cells and mice induced, at least in part, by regulating SIRT3/FOXO3a/PINK1/Parkin signaling pathway. These findings highlight the potential of okanin for use in skin care products aimed at promoting skin repair following UVA exposure. Full article
Show Figures

Figure 1

26 pages, 6649 KiB  
Article
Assessing Kernel-Driven Models’ Efficacy in Urban Thermal Radiation Directionality Modeling Using DART-Simulated Scenarios
by Xiaolin Zhu, Zhao-Liang Li and Franҫoise Nerry
Remote Sens. 2025, 17(16), 2884; https://doi.org/10.3390/rs17162884 - 19 Aug 2025
Viewed by 242
Abstract
The intensification of the urban thermal environment has brought attention to urban land surface temperature (ULST). Complex building geometry and manmade material lead to significant thermal radiation directionality (TRD) of the urban canopy, and the TRD effect directly influences the accuracy of ULST [...] Read more.
The intensification of the urban thermal environment has brought attention to urban land surface temperature (ULST). Complex building geometry and manmade material lead to significant thermal radiation directionality (TRD) of the urban canopy, and the TRD effect directly influences the accuracy of ULST retrieval algorithms. Therefore, it is essential to understand and eliminate the TRD effect to achieve high-accuracy ULST. In this context, the hemispherical brightness temperature maximum–minimum discrepancy (BTD) was quantitatively analyzed via different spectral bands, component temperature thresholds, urban geometries, and component temperature differences. Meanwhile, the DART simulations database was used to systematically evaluate 1 single-kernel- and 30 dual-kernel-driven models (KDMs), which were combined from 5 base-shape kernels (RossThick, Vinnikov, uea, RossThin, and LSF) and 6 hotspot kernels (RL, Roujean, Vinnikov, LiSparseR, LiDense, and Chen). Results show that the BTD discrepancy (ΔBTD) can reach up to 0.91 K with different band emissivities, whereas the ΔBTD is over 10 K with different component temperature differences. The building density and ratio between building heights and road widths (H/W) also exhibit their importance over urban regions. In addition, the RossThick–/Vinnikov–Roujean dual-kernel KDMs demonstrate better performance with an overall RMSE of 1.12 K. The RL-series KDMs can describe the hotspot distribution well, but the uea-series KDMs outperform at the solar principal plane (SPP) and cross-solar principal plane (CSPP). Specifically, the performance of all KDMs is sensitive to the H/W and component temperature thresholds, and urban geometry can affect the TRD RMSE with increasing H/W and a depletion of high building density. The quantitative TRD analysis and comparison provide a comprehensive reference for understanding the distribution of thermal radiation, which is also a reliable basis for developing the new TRD model over urban regions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

12 pages, 1678 KiB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 - 31 Jul 2025
Viewed by 475
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 5551 KiB  
Article
Analysis of CO2 Concentration and Fluxes of Lisbon Portugal Using Regional CO2 Assimilation Method Based on WRF-Chem
by Jiuping Jin, Yongjian Huang, Chong Wei, Xinping Wang, Xiaojun Xu, Qianrong Gu and Mingquan Wang
Atmosphere 2025, 16(7), 847; https://doi.org/10.3390/atmos16070847 - 11 Jul 2025
Viewed by 245
Abstract
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, [...] Read more.
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil fuel CO2 emissions in an independent, objective way. The study adopted a high-spatiotemporal-resolution regional assimilation method using satellite observation data and atmospheric transport model WRF-Chem/DART to assimilate CO2 concentration and fluxes in Lisbon, a major city in Portugal. It is based on Zhang’s assimilation method, combined OCO-2 XCO2 retrieval data, ODIAC 1 km anthropogenic CO2 emissions and Ensemble Adjustment Kalman Filter Assimilation. By employing three two-way nested domains in WRF-Chem, we refined the spatial resolution of the CO2 concentrations and fluxes over Lisbon to 3 km. The spatiotemporal distribution characteristics and main driving factors of CO2 concentrations and fluxes in Lisbon and its surrounding cities and countries were analyzed in March 2020, during the period affected by COVID-19 pandemic. The results showed that the monthly average CO2 and XCO2 concentrations in Lisbon were 420.66 ppm and 413.88 ppm, respectively, and the total flux was 0.50 Tg CO2. From a wider perspective, the findings provide a scientific foundation for urban carbon emission management and policy-making. Full article
Show Figures

Figure 1

46 pages, 5911 KiB  
Article
Leveraging Prior Knowledge in Semi-Supervised Learning for Precise Target Recognition
by Guohao Xie, Zhe Chen, Yaan Li, Mingsong Chen, Feng Chen, Yuxin Zhang, Hongyan Jiang and Hongbing Qiu
Remote Sens. 2025, 17(14), 2338; https://doi.org/10.3390/rs17142338 - 8 Jul 2025
Viewed by 411
Abstract
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, [...] Read more.
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, enhanced by domain-specific prior knowledge. The architecture employs a Convolutional Block Attention Module (CBAM) for localized feature refinement, a lightweight New Transformer Encoder for global context modeling, and a novel TriFusion Block to synergize spectral–temporal–spatial features through parallel multi-branch fusion, addressing the limitations of single-modality extraction. Leveraging the mean teacher framework, DART-MT optimizes consistency regularization to exploit unlabeled data, effectively mitigating class imbalance and annotation scarcity. Evaluations on the DeepShip and ShipsEar datasets demonstrate state-of-the-art accuracy: with 10% labeled data, DART-MT achieves 96.20% (DeepShip) and 94.86% (ShipsEar), surpassing baseline models by 7.2–9.8% in low-data regimes, while reaching 98.80% (DeepShip) and 98.85% (ShipsEar) with 90% labeled data. Under varying noise conditions (−20 dB to 20 dB), the model maintained a robust performance (F1-score: 92.4–97.1%) with 40% lower variance than its competitors, and ablation studies validated each module’s contribution (TriFusion Block alone improved accuracy by 6.9%). This research advances UATR by (1) resolving multi-scale feature fusion bottlenecks, (2) demonstrating the efficacy of semi-supervised learning in marine acoustics, and (3) providing an open-source implementation for reproducibility. In future work, we will extend cross-domain adaptation to diverse oceanic environments. Full article
Show Figures

Figure 1

15 pages, 1282 KiB  
Article
Structural and Quantitative Analysis of Polyfluoroalkyl Substances (PFASs) and Para-Phenylenediamines (PPDs) by Direct Analysis in Real Time Ion Mobility Mass Spectrometry (DART-IM-MS)
by Calum Bochenek, Jack Edwards, Zhibo Liu and Chrys Wesdemiotis
Molecules 2025, 30(13), 2828; https://doi.org/10.3390/molecules30132828 - 30 Jun 2025
Viewed by 448
Abstract
Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection [...] Read more.
Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the Occupational Safety and Health Administration (OSHA). Analysis of these contaminants is currently spearheaded by mass spectrometry (MS) coupled to liquid chromatography (LC) because of their high sensitivity and separation capabilities. Although effective, a major flaw in LC-MS analysis is its large consumption of solvents and the amount of time required for each experiment. Direct analysis in real time mass spectrometry (DART-MS) is a new technique that offers high sensitivity and permits rapid analysis with little to no sample preparation. Herein, we present the qualitative and quantitative analysis of PFASs and PPDs by high-resolution DART-MS, interfaced with ion mobility (IM) and tandem mass spectrometry (MS/MS) characterization, demonstrating the utility of this multidimensional approach for the fast separation and detection of environmental contaminants. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

56 pages, 16805 KiB  
Review
Lightweight Textile and Fiber-Reinforced Composites for Soft Body Armor (SBA): Advances in Panel Design, Materials, and Testing Standards
by Mohammed Islam Tamjid, Mulat Alubel Abtew and Caroline Kopot
J. Compos. Sci. 2025, 9(7), 337; https://doi.org/10.3390/jcs9070337 - 28 Jun 2025
Viewed by 1103
Abstract
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, [...] Read more.
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, and SBA performance testing are critically examined. The paper also explores innovations in shaping and design techniques, including darting, dartless shape construction, modular assembly, and body scanning with CAD integration to create contoured and structurally stable panels with improved coverage, reduced bulk, and greater mobility. In addition, the review addresses broadly used and emerging dry textile fabrics and fiber-reinforced polymers, considering various innovations, such as 3D warp interlock weave, shear thickening fluid (STF) coating, nanomaterials, and smart composites that improve energy dissipation and impact tolerance without sacrificing flexibility. In addition, the paper also examines various emerging ballistic performance testing standards and their revisions to incorporate gender-specific standards and measures their ability to decrease trauma effects and maintain flexibility and practical protection. Finally, it identifies existing challenges and areas of future research, such as optimizing multi-layer systems, addressing fatigue behavior, and improving multi-angle and low-velocity impact performance while providing avenues for future sustainable, adaptive, and performance-optimized body armor. Full article
Show Figures

Figure 1

23 pages, 4598 KiB  
Article
Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration
by Karime Carrera Gutiérrez, Oscar Omar Morales Morales, Irene Leal-Berumen, Edmundo Berumen Nafarrate, Carlos A. Poblano-Salas, Andrés Castro Beltrán, Roberto Gómez Batres and Víctor M. Orozco Carmona
Coatings 2025, 15(7), 765; https://doi.org/10.3390/coatings15070765 - 27 Jun 2025
Viewed by 573
Abstract
Bone regeneration demands biomaterials capable of supporting tissue integration and mimicking the native piezodynamic properties of bone. In this study, hydroxyapatite–barium titanate (HA-BT) composite coatings with varying BT content (10, 30, and 50 wt%) were developed to enhance the piezoelectric response and corrosion [...] Read more.
Bone regeneration demands biomaterials capable of supporting tissue integration and mimicking the native piezodynamic properties of bone. In this study, hydroxyapatite–barium titanate (HA-BT) composite coatings with varying BT content (10, 30, and 50 wt%) were developed to enhance the piezoelectric response and corrosion resistance of Ti6Al4V implants. The coatings were synthesized via high-energy ball milling and atmospheric plasma spraying (APS). XRD analysis with Rietveld refinement confirmed the presence of HA along with secondary phases (TTCP, β-TCP, CaO). Electrochemical tests revealed lower corrosion current densities for the coatings containing ≤30% BT, indicating improved stability in physiological environments. Cytotoxicity assays (MTT) demonstrated biocompatibility across all formulations. Piezoresponse force microscopy (DART-SS-PFM) confirmed enhanced d33-eff values for the 50% BT coating (>15 pm/V); however, biological assays under low-intensity pulsed ultrasound (LIPUS) stimulation showed increased osteocalcin expression for ≤30% BT, while 50% BT induced cellular stress. Overall, HA-BT coatings with up to 30% BT exhibited optimal electrochemical stability, favorable piezoelectric performance, and enhanced biological response, underscoring their potential for orthopedic implant applications and regenerative tissue engineering. Full article
Show Figures

Graphical abstract

15 pages, 7287 KiB  
Proceeding Paper
Re-Construction of the Small Xanten-Wardt Dart Launcher
by Michele Fratino, Luis Palmero Iglesias and Adriana Rossi
Eng. Proc. 2025, 96(1), 9; https://doi.org/10.3390/engproc2025096009 - 6 Jun 2025
Viewed by 301
Abstract
Based on the dimensions of the small Xanten catapult, this study reconstructs a full-scale model to validate its manufacturing techniques and evaluate its effectiveness. The process underscores the role of experimental archaeology: the activity facilitates a dynamic sequence of queries, guides the interpretation [...] Read more.
Based on the dimensions of the small Xanten catapult, this study reconstructs a full-scale model to validate its manufacturing techniques and evaluate its effectiveness. The process underscores the role of experimental archaeology: the activity facilitates a dynamic sequence of queries, guides the interpretation of signs—not merely physical ones—refines the perception of the cognitive model, and relies on an interdisciplinary approach and strategy. The reconstruction fosters social engagement and scientific dialogue, supporting the adoption of new strategies for knowledge transmission and cultural valorization. The conclusions of this study contribute to the debate on the causes of damage inflicted by the Roman legions on the perimeter walls of Pompeii. Full article
Show Figures

Figure 1

15 pages, 2038 KiB  
Proceeding Paper
Structural Integrity Assessment of Pompeii’s City Wall Under Roman Artillery Fire: A Finite Element Approach
by Monil Mihirbhai Thakkar, Amir Ardeshiri Lordejani and Mario Guagliano
Eng. Proc. 2025, 96(1), 7; https://doi.org/10.3390/engproc2025096007 - 6 Jun 2025
Viewed by 248
Abstract
During Sulla’s siege of Pompeii in 89 BC projectiles were launched using Roman artillery, leaving visible craters on the fortified walls. The city was later buried by the eruption in 79 AD, preserving both its architectural layout and the damaged wall surfaces, and [...] Read more.
During Sulla’s siege of Pompeii in 89 BC projectiles were launched using Roman artillery, leaving visible craters on the fortified walls. The city was later buried by the eruption in 79 AD, preserving both its architectural layout and the damaged wall surfaces, and was excavated in the early 20th century. This study focuses on simulating projectile impacts on Grey Tuff to estimate impact velocities and penetration depths, offering insights into the destructive capability of Roman weapons. Material models are developed, followed by finite element analysis. Mesh convergence, velocity calibration, and angular impact studies are performed for both ballista and dart to better understand impact mechanics and crater formation. Full article
Show Figures

Figure 1

10 pages, 2421 KiB  
Proceeding Paper
Ancient Projectile Identification Through Inverse Analysis: Case Studies from Pompeii
by Simone Palladino, Renato Zona and Vincenzo Minutolo
Eng. Proc. 2025, 96(1), 8; https://doi.org/10.3390/engproc2025096008 - 6 Jun 2025
Viewed by 252
Abstract
A straightforward method for determining the causes of impact relics left by ancient projectiles on the city walls of Pompeii is proposed based on principles of plasticity and fracture mechanics. The inverse analysis begins with the measured craters caused by spherical projectiles or [...] Read more.
A straightforward method for determining the causes of impact relics left by ancient projectiles on the city walls of Pompeii is proposed based on principles of plasticity and fracture mechanics. The inverse analysis begins with the measured craters caused by spherical projectiles or darts launched by the Roman army during the siege of 89 B.C. A Mathematica© notebook is presented, enabling the calculation of projectile impact velocity from the known dimensions of the projectiles and the mechanical properties of the wall material. Full article
Show Figures

Figure 1

12 pages, 3833 KiB  
Proceeding Paper
(Im)material Casts from the Sullan Period
by Claudio Formicola, Silvia Bertacchi and Adriana Rossi
Eng. Proc. 2025, 96(1), 5; https://doi.org/10.3390/engproc2025096005 - 4 Jun 2025
Viewed by 311
Abstract
Thanks to Pompeii’s burial under Vesuvio’s 79 AD eruption deposits, the ballistic imprints on its northern defensive perimeter are uniquely attributable to Sulla’s siege of 89 BC. These impact marks were digitally documented using integrated survey techniques and custom pipelines. The virtual casts [...] Read more.
Thanks to Pompeii’s burial under Vesuvio’s 79 AD eruption deposits, the ballistic imprints on its northern defensive perimeter are uniquely attributable to Sulla’s siege of 89 BC. These impact marks were digitally documented using integrated survey techniques and custom pipelines. The virtual casts generated—dimensionally accurate, high-resolution surface replicas—serve as key inputs for the reverse-modeling of damage craters, supporting terminal ballistics analyses. Two case studies—a stone projectile cavity and fan-shaped dart impressions—were 3D-printed at 1:1 scale. Prototype casting thus emerges as a cultural asset and rapidly updatable component of a dynamic data ecosystem, inclusive of users with disabilities. Full article
Show Figures

Figure 1

16 pages, 5918 KiB  
Proceeding Paper
Tracing Metal Dart Impacts Through 3D Reverse Modeling on the Northern Walls of Pompeii
by Adriana Rossi and Silvia Bertacchi
Eng. Proc. 2025, 96(1), 4; https://doi.org/10.3390/engproc2025096004 - 4 Jun 2025
Viewed by 373
Abstract
This study examines the first systematic documentation of a series of small impact marks on the northern walls of Pompeii, interpreted as the result of Roman metal dart projectiles launched during the Sullan siege in 89 BC. Using high-resolution, reality-based 3D models, comparative [...] Read more.
This study examines the first systematic documentation of a series of small impact marks on the northern walls of Pompeii, interpreted as the result of Roman metal dart projectiles launched during the Sullan siege in 89 BC. Using high-resolution, reality-based 3D models, comparative analysis, and reverse modeling techniques, the research explores the hypothesis that a distinctive fan-shaped configuration of quadrangular indentations may have been produced by a repeating catapult, known as the polybolos. The integration of close-range photogrammetry, laser scanning, and digital reconstruction tools demonstrates how virtual casts and comparative modeling can contribute to archaeological interpretations of ancient projectile weaponry. Full article
Show Figures

Figure 1

13 pages, 7037 KiB  
Proceeding Paper
Ancient Science: From Effects to Ballistics Parameters
by Flavio Russo and Adriana Rossi
Eng. Proc. 2025, 96(1), 2; https://doi.org/10.3390/engproc2025096002 - 3 Jun 2025
Viewed by 305
Abstract
A well-equipped legionary army prepared to lay siege to Pompeii. Among the weapons deployed along the northern stretch of the city walls were battering rams and mobile siege towers equipped with ballistae and scorpions. The impact marks from Republican-era stone balls and dart [...] Read more.
A well-equipped legionary army prepared to lay siege to Pompeii. Among the weapons deployed along the northern stretch of the city walls were battering rams and mobile siege towers equipped with ballistae and scorpions. The impact marks from Republican-era stone balls and dart tips remain visible today between the Vesuvio and Ercolano Gates. In 2002 and 2016, the authors surveyed significant cavities using both direct and indirect methods. The collected data were then used to calculate the volume of fractured stone material. Given the hardness of the wall ashlars, ballistic parameters were quantified based on Hellenistic treatises. The results make it possible to derive dimensions for reconstructing artillery calibrated to the observed effects. Full article
Show Figures

Figure 1

13 pages, 2081 KiB  
Article
DART–Triple Quadrupole Mass Spectrometry Method for Multi-Target and Fast Detection of Adulterants in Saffron
by Linda Monaci, Anna Luparelli, William Matteo Schirinzi, Laura Quintieri and Alexandre Verdu
Metabolites 2025, 15(6), 357; https://doi.org/10.3390/metabo15060357 - 28 May 2025
Cited by 1 | Viewed by 863
Abstract
Saffron is a high-cost spice due to the specific conditions for optimal growth and because of being harvested by hand. The massive income from commercializing saffron substituted with other plant parts or low-cost spices makes this spice the main target of fraudsters. Background [...] Read more.
Saffron is a high-cost spice due to the specific conditions for optimal growth and because of being harvested by hand. The massive income from commercializing saffron substituted with other plant parts or low-cost spices makes this spice the main target of fraudsters. Background: Different methods have been developed for detecting saffron adulteration. Most of them are time consuming and complex, and in some types of analysis, the whole untargeted dataset is combined with advanced chemometric tools to differentiate authentic from non-authentic saffron. The official method, combining UV–vis spectroscopy and LC to determine the colour strength and the crocin content, is unable to detect saffron adulterants (safflower, marigold, or turmeric) added at a level lower than 20% (w/w). As a result, innovative approaches based on rapid, high-throughput methods for the identification of adulterated saffron samples are urgently demanded to counteract food frauds. Methods: This paper describes, for the first time, the development of a method combining Direct Analysis in Real Time (DART) with the triple quadrupole MS EVOQ based on the detection of specific MS/MS transitions, promoting a rapid, robust and chromatography-free method capable of monitoring safflower and turmeric adulteration in saffron. Results: The method proved to reach low LODs, allowing the determination of tiny amounts of turmeric and safflower powder in saffron as low as 3% and 5%, respectively, speeding up the whole analytical workflow and enabling us to perform 20 analyses in 10 min. Finally, the greenness of the method was also assessed according to the 0.88 score achieved by submitting it to the greenness calculator AGREE. Conclusions: Given its speed, simplicity, and robustness, this method stands out as a strong candidate for routine implementation in testing laboratories as a rapid screening tool to detect saffron adulteration with safflower or turmeric. Full article
Show Figures

Graphical abstract

Back to TopTop