Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = Cyclin G2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6989 KB  
Article
FAM64A Potentiates Bladder Carcinoma Tumorigenesis and Metastasis Through PI3K/mTORC2/AKT Pathway Activation
by Tao Zhu, Cen Liufu, Cong Yin, Jinqing He, Junhua Luo, Bentao Shi and Yan Wang
Cancers 2026, 18(3), 540; https://doi.org/10.3390/cancers18030540 - 6 Feb 2026
Abstract
Background: FAM64A is highly expressed in various cancers (e.g., breast cancer, ovarian cancer), indicating that it promotes tumorigenesis and progression by facilitating epithelial–mesenchymal transition. In the genitourinary system, dihydrotestosterone promotes the expression of FAM64A by binding of the androgen receptor to the FAM64A [...] Read more.
Background: FAM64A is highly expressed in various cancers (e.g., breast cancer, ovarian cancer), indicating that it promotes tumorigenesis and progression by facilitating epithelial–mesenchymal transition. In the genitourinary system, dihydrotestosterone promotes the expression of FAM64A by binding of the androgen receptor to the FAM64A promoter, thereby enhancing the proliferation, migration, and cell cycle progression of androgen-dependent prostate cancer cell lines. However, its specific role in the initiation and progression of bladder cancer remains unclear. FAM64A overexpression has been observed in cancers such as breast and prostate; however, its role in bladder cancer (BLCA) is less understood. Muscle-invasive BLCA (MIBC) has a poor prognosis, with five-year survival rates below 50%. This study explores FAM64A’s molecular mechanisms and therapeutic potential in BLCA. Methods: FAM64A expression was analyzed using TCGA data and clinical BLCA tissues. Functional assays (CCK-8, wound-healing, Transwell) assessed proliferation, migration, and invasion following FAM64A modulation. Western blotting was used to evaluate EMT markers (Vimentin, Slug) and proteins involved in the PI3K/AKT pathway. Bioinformatics (TCGA/GTEx) identified FAM64A-correlated genes, followed by KEGG pathway analysis. Taselisib (PI3K/AKT inhibitor) validated pathway involvement. Results: FAM64A was upregulated in BLCA and correlated with advanced tumor stage, T-stage, and grade. Knockdown suppressed proliferation, migration, and invasion, while overexpression exacerbated these effects. FAM64A promoted G2/M progression (via Cyclin B1/Ki67) and EMT (via Vimentin/Slug). KEGG analysis linked FAM64A to the PI3K/mTORC2/AKT signaling pathway. Taselisib reversed FAM64A-induced EMT and malignant phenotypes. Conclusions: FAM64A drives BLCA progression via PI3K/mTORC2/AKT-mediated EMT, serving as a potential prognostic biomarker and therapeutic target for metastatic BLCA. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

18 pages, 4522 KB  
Article
Enhanced Payload Release Enables Disitamab Vedotin to Surpass Trastuzumab Emtansine and Retain Efficacy in Acquired Resistance to Clinical Anti-HER2 Therapies
by Mónica Redondo-Puente, María del Carmen Gómez-García and Atanasio Pandiella
Pharmaceutics 2026, 18(2), 208; https://doi.org/10.3390/pharmaceutics18020208 - 6 Feb 2026
Abstract
Background: Resistance to HER2-targeted therapies remains a major limitation in the treatment of HER2-positive breast cancer, where disease progression inevitably occurs in advanced stages. Development of next-generation strategies that retain activity in resistant disease is therefore a critical priority. Disitamab vedotin (RC48) is [...] Read more.
Background: Resistance to HER2-targeted therapies remains a major limitation in the treatment of HER2-positive breast cancer, where disease progression inevitably occurs in advanced stages. Development of next-generation strategies that retain activity in resistant disease is therefore a critical priority. Disitamab vedotin (RC48) is a novel antibody–drug conjugate (ADC) targeting HER2 that couples a humanized anti-HER2 antibody to the potent microtubule-disrupting agent monomethyl auristatin E. Methods: We compared the activity and mechanism of action of RC48 with that of trastuzumab emtansine (T-DM1) across HER2-positive and HER2-low cellular models, including multiple sublines resistant to current HER2-targeted agents. Results: In HER2-overexpressing breast cancer cell lines, RC48 consistently demonstrated superior antiproliferative effect with respect to T-DM1. Treatment with RC48 induced G2/M arrest and apoptotic cell death, associated with increased pHistone-H3 and cyclin B1 and downregulation of Wee1, consistent with blockade of cell cycle progression in mitosis. Although RC48 and T-DM1 internalized similarly, RC48 displayed more efficient intracellular payload release, providing a mechanistic explanation for its enhanced efficacy. Notably, RC48 retained strong activity in BT474-derived sublines resistant to T-DM1, lapatinib, or neratinib, inducing cell cycle arrest, apoptosis, and caspase activation in all resistant models. In contrast, T-DM1 exhibited only partial effects in resistant cells and was completely ineffective in a T-DM1-refractory clone. Conclusions: Together, these findings identify disitamab vedotin as a potent next-generation HER2-targeting ADC with the unique capacity to overcome acquired resistance to HER2-directed therapies. RC48 represents a promising therapeutic strategy for patients with refractory HER2-positive breast cancer and warrants further clinical investigation. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

18 pages, 3248 KB  
Article
Snail1 Induced Suppression of Proliferation via EGR1, FOXO1, and CEPBγ Creates a Vulnerability for Targeting Apoptotic and Cellular Senescence Pathways
by Jack Tran, Samyukta Sundaram, Sukirti Shivpuri, Hunain Khawaja and Cynthia K. Miranti
Cancers 2026, 18(3), 510; https://doi.org/10.3390/cancers18030510 - 4 Feb 2026
Viewed by 36
Abstract
Background/Objectives: The annual ~36,000 prostate cancer (PCa) deaths represent a large clinical unmet need and a call for deeper understanding of PCa metastasis. Epithelial–mesenchymal-transition (EMT) has been used to model metastatic behaviors in numerous cancers including PCa. One hallmark of EMT is cell [...] Read more.
Background/Objectives: The annual ~36,000 prostate cancer (PCa) deaths represent a large clinical unmet need and a call for deeper understanding of PCa metastasis. Epithelial–mesenchymal-transition (EMT) has been used to model metastatic behaviors in numerous cancers including PCa. One hallmark of EMT is cell cycle suppression, but how EMT impacts PCa proliferation remains unclear primarily due to the lack of appropriate models. Methods: We transiently induced Snail1 (SNAI1) expression, an EMT driver expressed in PCa, at physiological levels in three PCa cells lines, C4-2B, 22Rv1, and DU145. We used RNA-seq, ChIP-Seq, bioinformatics, qRT-PCR, shRNA, and immunoblotting to identify mechanisms of Snail1-driven inhibition of proliferation. Results: Snail1 suppressed proliferation and G2/M cell cycle progression, without affecting cell death. Mechanistically, Snail1 upregulated expression of CEBPγ, ERG1, FOXO1, cyclin G1, p21, stress genes SESN3 and SOD3, apoptotic programmers Puma, Bax, and Noxa, and senescence-related laminB1, and downregulated Ki67, cyclins A2 and B2. ChIP-Seq data identified Snail1 direct binding to p21, cyclin B2 and G1, EGR1, and CEPBγ promoters. EGR1 induced FOXO1, and EGR1 was required for Snail1-induced SOD3 and Puma, and suppression of Caspase 3 to prevent apoptosis. The EGR1/FOXO1 axis induced BAX, Noxa, and SESN3. CEBPγ was required for Snail1 induction of Lamin B1 to block Snail1-induced senescence. Conclusions: We identified three new major downstream targets of Snail1 that improve our understanding of the role of EMT in limiting stress signaling, apoptosis, and senescence during cell cycle suppression to create a vulnerability for therapeutic targeting. Full article
(This article belongs to the Special Issue The Impact of Treatment Resistance in Prostate Cancer)
Show Figures

Graphical abstract

17 pages, 2002 KB  
Article
Panobinostat Potentiates the Antitumor Efficacy of 5-Fluorouracil in Gastric Cancer by Suppressing Thymidylate Synthase Expression
by Sooyeon Park, Nayeon Kim and Changwon Yang
Int. J. Mol. Sci. 2026, 27(3), 1516; https://doi.org/10.3390/ijms27031516 - 3 Feb 2026
Viewed by 116
Abstract
Resistance to 5-fluorouracil (5-FU), a cornerstone chemotherapy for gastric cancer (GC), is a major clinical obstacle, often driven by the upregulation of its target enzyme, thymidylate synthase (TS). In this study, we investigated the potential of the pan-histone deacetylase inhibitor (HDACi) panobinostat to [...] Read more.
Resistance to 5-fluorouracil (5-FU), a cornerstone chemotherapy for gastric cancer (GC), is a major clinical obstacle, often driven by the upregulation of its target enzyme, thymidylate synthase (TS). In this study, we investigated the potential of the pan-histone deacetylase inhibitor (HDACi) panobinostat to synergize with 5-FU. In GC cell lines, panobinostat treatment alone suppressed cell viability, clonogenicity, and migration, and this was associated with the induction of G1-phase cell cycle arrest and mitochondria-mediated apoptosis. Crucially, Panobinostat acted synergistically with 5-FU, leading to enhanced cytotoxicity. Mechanistically, 5-FU treatment alone induced a compensatory upregulation of TS protein, a known resistance mechanism. Panobinostat not only suppressed basal TS expression but, more importantly, abrogated this 5-FU-induced upregulation. Furthermore, panobinostat downregulated a network of oncogenes and cell cycle regulators, including c-Myc and key cyclins. These findings indicate that panobinostat can enhance 5-FU cytotoxicity by targeting TS expression and reprogramming oncogenic transcriptional networks, supporting its potential as a complementary strategy for overcoming fluoropyrimidine resistance in GC therapy. Full article
(This article belongs to the Special Issue Molecular Targets in Gastrointestinal Diseases)
18 pages, 12875 KB  
Article
Concise Synthesis and Biological Evaluation of a Phorbazole Analogue-B1 Identifies a Multi-Kinase Inhibitor with Anti-AML Activity
by Xiang Chen, Liting Zhang, Jinqi Huang, Mingzhi Su, Yuewei Guo and Xin Jin
Mar. Drugs 2026, 24(2), 63; https://doi.org/10.3390/md24020063 - 2 Feb 2026
Viewed by 124
Abstract
Phorbazoles are bioactive marine alkaloids whose development is hampered by limited supply. We report a concise synthesis of the deschloro-phorbazole core via an optimized iodine-catalyzed oxazole annulation (56% yield). This route enabled efficient access to the scaffold and the preparation of analog B1 [...] Read more.
Phorbazoles are bioactive marine alkaloids whose development is hampered by limited supply. We report a concise synthesis of the deschloro-phorbazole core via an optimized iodine-catalyzed oxazole annulation (56% yield). This route enabled efficient access to the scaffold and the preparation of analog B1. B1 showed nanomolar cytotoxicity (IC50 = 0.04 µM) against MV4-11 leukemia cells by inducing G0/G1 arrest (via cyclin D1/CDK6 downregulation) and apoptosis. As a multi-kinase inhibitor, B1 also potently inhibited endothelial network formation and migration, demonstrating anti-angiogenic activity. This work provides an efficient synthetic strategy and identifies B1 as a promising dual-function anticancer lead compound. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

17 pages, 3345 KB  
Article
Covalently Immobilized Mitomycin C on Polypropylene Sutures Creates a Non-Releasing Bioactive Interface That Modulates Vascular Smooth Muscle Cell Fate and Prevents Intimal Hyperplasia
by Tzu-Yen Huang, Wei-Chieh Chiu, Ko-Shao Chen, Ya-Jyun Liang, Pin-Yuan Chen, Yao-Chang Wang and Feng-Huei Lin
Int. J. Mol. Sci. 2026, 27(3), 1328; https://doi.org/10.3390/ijms27031328 - 29 Jan 2026
Viewed by 150
Abstract
Intimal hyperplasia (IH) at vascular anastomosis sites arises from endothelial injury, thrombin activation, and the subsequent proliferation and phenotypic modulation of vascular smooth muscle cells (VSMCs). Existing clinically used systemic pharmacologic regimens (e.g., antiplatelet/anticoagulant therapy) and reported local material-based strategies in the literature [...] Read more.
Intimal hyperplasia (IH) at vascular anastomosis sites arises from endothelial injury, thrombin activation, and the subsequent proliferation and phenotypic modulation of vascular smooth muscle cells (VSMCs). Existing clinically used systemic pharmacologic regimens (e.g., antiplatelet/anticoagulant therapy) and reported local material-based strategies in the literature (e.g., drug-eluting sutures, hydrogels, or coatings) largely rely on drug release, which can result in burst kinetics, finite duration, and off-target/systemic exposure. We developed a covalently immobilized, non-releasing biointerface in which mitomycin C (MMC) is stably anchored onto polypropylene sutures via low-pressure, non-thermal acetic-acid plasma (AAP) activation. AAP functionalization introduced reactive oxygen-containing groups on polypropylene, enabling amide-bond immobilization of MMC while preserving suture mechanics. Anchored MMC exhibited potent contact-mediated regulation of VSMC fate, reducing metabolic activity to 81% of control, suppressing G2/M progression, and inducing a dominant sub-G1 apoptotic population (66.3%), consistent with MMC-induced DNA crosslinking, p21 upregulation, and cyclin B1–CDK1 inhibition. In vivo, in a rat infrarenal aortic anastomosis model (male Wistar rats, 10–12 weeks, 300–350 g), MMC-anchored sutures markedly reduced arterial wall thickening and α-SMA and PCNA accumulation at 4 and 12 weeks, without overt evidence of systemic toxicity. Notably, no measurable MMC release was detected under the tested conditions, supporting that the observed bioactivity is consistent with an interface-confined mechanism rather than bulk diffusion. This work establishes a non-releasing suture-based platform that delivers sustained molecular regulation of vascular healing through interface-confined control of VSMC behavior. Covalent drug anchoring transforms a clinically used suture into an active therapeutic interface, providing a promising strategy to prevent pathological vascular remodeling and anastomotic IH. Full article
Show Figures

Graphical abstract

30 pages, 8090 KB  
Article
Mechanisms of Antiproliferative Effects of Nobiletin, Scoparone, and Tangeretin Isolated from Citrus reticulata Peel Dichloromethane Extract in Acute Myeloid Leukemia Cells
by Caterina Russo, Lutfun Nahar, Fyaz M. D. Ismail, Michele Navarra and Satyajit D. Sarker
Int. J. Mol. Sci. 2026, 27(3), 1256; https://doi.org/10.3390/ijms27031256 - 27 Jan 2026
Viewed by 138
Abstract
Citrus reticulata Blanco peel is a dominant industrial waste that was recently revalued as a source of bioactive molecules. This study explored its phytochemical and antileukemic potentials. The bioassay-guided fractionation of the dichloromethane extract yielded nobiletin, scoparone, and tangeretin, which were identified spectroscopically. [...] Read more.
Citrus reticulata Blanco peel is a dominant industrial waste that was recently revalued as a source of bioactive molecules. This study explored its phytochemical and antileukemic potentials. The bioassay-guided fractionation of the dichloromethane extract yielded nobiletin, scoparone, and tangeretin, which were identified spectroscopically. The extract, fractions, and compounds showed antiproliferative effects in both THP-1 and U937 cells, which were employed as in vitro models of acute myeloid leukemia (AML). According to cytofluorimetric analysis, the extract and fractions inhibited cell growth by both apoptosis and necrosis, whereas the single molecules induced apoptosis. This mechanism was mediated by the modulation of BAX and BCL-2 genes in both AML cell lines. Notably, each treatment drove THP-1 and U937 cells into the sub-G0 phase, together with an increase in the cell population in the G1 phase of the cell cycle, both of which were detected cytofluorimetrically. In line with these findings, the extract, fractions, and single molecules counteracted the overexpression of CYCLIN A1 in THP-1 cells while reducing the expression of CYCLIN D2 in U937 cells. Moreover, cell treatments attenuated the invasiveness of AML cells through the upregulation of TIMP-2 at the transcriptional level. Therefore, this study supports pharmaceutical interest in citrus waste for cancer management, providing evidence on its antileukemic potential in vitro. Full article
(This article belongs to the Special Issue Natural Active Substances in Human Diseases)
Show Figures

Figure 1

19 pages, 12872 KB  
Article
Cyclin D1/D2–CDK4 Drives Cell Migration by Orchestrating Cytoskeletal Dynamics Through a TGFβ–FAK–Rac1 Axis
by Ruifang Guo, Yihang Wang, Aiwen Zhang, Siwanon Jirawatnotai, Chen Chu and Lijun Liu
Int. J. Mol. Sci. 2026, 27(3), 1228; https://doi.org/10.3390/ijms27031228 - 26 Jan 2026
Viewed by 170
Abstract
Beyond their canonical role in promoting G1/S progression, the complexes formed by cyclin D and cyclin-dependent kinase (CDK) 4/6 have emerged as contributors to enhanced cell migration. However, a direct link between this complex and cytoskeletal remodeling during cell motility has remained poorly [...] Read more.
Beyond their canonical role in promoting G1/S progression, the complexes formed by cyclin D and cyclin-dependent kinase (CDK) 4/6 have emerged as contributors to enhanced cell migration. However, a direct link between this complex and cytoskeletal remodeling during cell motility has remained poorly understood. Here, we show that CDK4/6 inhibition in HeLa cells disrupts lamellipodia formation and subsequent focal adhesion assembly, leading to a reduction in cell migration and invasion. Notably, CDK4, but not CDK6, in complex with cyclin D1/D2, localizes to membrane ruffles to facilitate cytoskeletal reorganization. Mechanistically, proteomic and phosphoproteomic analyses revealed that CDK4 inhibition attenuates the transforming growth factor β (TGFβ) pathway via reduced Smad3 phosphorylation at Thr8, downregulating integrin subunits (α5, α6, and β1). Furthermore, CDK4 inhibition significantly decreased focal adhesion kinase (FAK) phosphorylation at Tyr397 and Rac1-GTP levels. Importantly, the resulting migration defect was largely restored by activation of either Rac1 or FAK. Thus, our data support a model in which cyclin D1/D2–CDK4 promotes phosphorylation of Smad3, leading to upregulation of integrin subunits, activation of FAK and Rac1, and consequent lamellipodia formation and cell migration. These findings provide direct evidence that CDK4 regulates actin cytoskeletal reorganization during cell migration and suggest that CDK4/6 inhibitors may dampen cytoskeleton-dependent tumor invasion, in addition to their antiproliferative effects. Full article
Show Figures

Graphical abstract

18 pages, 5094 KB  
Article
Effects of Ritonavir, Lopinavir, and Alcohol on ABC Transporters and Secretion of Bile Acid and Bilirubin in Senescent Hepatocytes
by Liting Chen, Eric Duran, Diego Headrick and Cheng Ji
Int. J. Mol. Sci. 2026, 27(3), 1189; https://doi.org/10.3390/ijms27031189 - 25 Jan 2026
Viewed by 151
Abstract
Drug- and alcohol-induced liver injury involves impaired bile acids or bilirubin secretion, but it is not known how senescence influences the secretion of hepatocytes exposed to drugs and alcohol. In this study, the toxic effects of ritonavir, lopinavir, and alcohol on hepatocyte transporters [...] Read more.
Drug- and alcohol-induced liver injury involves impaired bile acids or bilirubin secretion, but it is not known how senescence influences the secretion of hepatocytes exposed to drugs and alcohol. In this study, the toxic effects of ritonavir, lopinavir, and alcohol on hepatocyte transporters and the secretion of bile acids and bilirubin were investigated in hydrogen peroxide-induced senescent HepG2 and doxorubicin-induced senescent primary human hepatocytes. In HepG2, intracellular conjugated bilirubin increased upon senescence and extracellular conjugated bilirubin in culture medium was decreased by ritonavir and lopinavir treatment. In the primary hepatocytes, intracellular bile acids or medium bilirubin were not significantly changed upon senescence. However, intracellular bile acids were increased, and medium conjugated bilirubin were decreased in senescent primary hepatocytes treated with alcohol and the two drugs. Transcriptional expressions of adenosine triphosphate (ATP)-binding cassette (ABC) transporters (ABCB4, ABCC6, ABCB11, and ABCD3) were decreased whereas UDP-glucuronosyltransferase (UGT1A1) was increased by ritonavir and lopinavir in senescent HepG2. In senescent primary hepatocytes, expressions of ABCB11, ABCC1, ABCC2, ABCC3, ABCC4, and ABCC6 were apparently reduced whereas UGT1A1 and the cytochrome P450 enzyme CYP7A1 were markedly increased by alcohol combined with ritonavir and lopinavir. Selective ABCC6 knockdown in the primary hepatocytes altered expressions of two senescence markers, Lamin A/C and cyclin-dependent kinase inhibitor CKI (p21), increased expressions of CYP7A1 and hydroxy methyl glutaryl-CoA reductase (HMGCR), and increased intracellular bile acids. Further, anti-cholestasis agents, ursodeoxycholic acid and glycyrrhizin, significantly ameliorated the impaired secretions of bile acids and bilirubin as well as reducing intracellular lipid accumulation and cell death caused by ritonavir, lopinavir, and alcohol in the primary hepatocytes with ABCC6 knockdown. These results indicate that senescence moderately impairs the ABC transporters of hepatocytes and secretion of bile acids or bilirubin, which become worse in the presence of the drugs and alcohol but could be improved by anti-cholestasis agents. Full article
Show Figures

Figure 1

25 pages, 5025 KB  
Article
Synergistic Anticancer Activity of Annona muricata Leaf Extract and Cisplatin in 4T1 Triple-Negative Breast Cancer Cells
by Oumayma Kouki, Mohamed Montassar Lasram, Amel Abidi, Jérôme Leprince, Imen Ghzaiel, John J. Mackrill, Taoufik Ghrairi, Gérard Lizard and Olfa Masmoudi-Kouki
Cells 2026, 15(3), 213; https://doi.org/10.3390/cells15030213 - 23 Jan 2026
Viewed by 763
Abstract
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Although cisplatin is widely used in chemotherapy, its clinical efficacy is often limited by adverse effects and resistance. Thus, natural bioactive compounds are gaining attention as complementary therapeutic agents. [...] Read more.
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Although cisplatin is widely used in chemotherapy, its clinical efficacy is often limited by adverse effects and resistance. Thus, natural bioactive compounds are gaining attention as complementary therapeutic agents. This study aimed to evaluate the anti-tumor effects of Annona muricata leaf extract on murine breast cancer 4T1 cells, used alone or in combination with cisplatin. Cisplatin induced intrinsic apoptosis through mitochondrial membrane disruption, up-regulation of the Bax gene and inhibition of the PI3K/AKT/mTOR signaling pathway. Cisplatin also promoted hypoxia by HIF1α gene expression, inflammation by TNFα and IL-6 gene expression, and induced cell cycle arrest at the sub-G1 phase by down-regulation of cyclin D1 and cyclin E1 genes. Annona muricata leaf extract triggered autophagy-mediated 4T1 cell death through mainly mTOR down-regulation and increased expression of Beclin1 and LC3 genes. It also induced cell cycle arrest at sub-G1 and S phases in a concentration- and time-dependent manner. When, combined with cisplatin, Annona muricata extract shifts the cell death pathway from intrinsic apoptosis toward autophagy by reduced caspase-3 gene expression and activity and enhanced LC3-I to LC3-II conversion. Moreover, Annona muricata extract attenuated cisplatin-induced inflammation by inhibiting TNFα and IL-6 gene expression and reinforced cell cycle arrest through suppression of the cyclin D1 gene. In conclusion, our results suggest that Annona muricata leaf extract exerts significant anti-tumor activity in breast cancer cells and may enhance cisplatin efficacy by shifting the signaling pathway from intrinsic apoptosis toward autophagy, and attenuating inflammation-related effects, supporting its potential use as a complementary therapeutic strategy. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

18 pages, 1992 KB  
Article
Paeonia lactiflora Callus-Derived Polynucleotides Enhance Collagen Accumulation in Human Dermal Fibroblasts
by Soyoung Hwang, Seunghye Park, Jin Woo Lee, Mira Park, Le Anh Nguyet, Yongsung Hwang, Keunsun Ahn, Hyun-young Shin and Kuk Hui Son
J. Funct. Biomater. 2026, 17(1), 56; https://doi.org/10.3390/jfb17010056 - 22 Jan 2026
Viewed by 329
Abstract
Plant-derived polynucleotides (PNs) have emerged as promising regenerative biomolecules; however, their mechanisms remain less defined than those of salmon-derived polydeoxyribonucleotides (S-PDRNs). Here, we extracted polynucleotides from Paeonia lactiflora callus (PL-PN) and evaluated their biological effects on human dermal fibroblasts. PL-PN treatment increased cell [...] Read more.
Plant-derived polynucleotides (PNs) have emerged as promising regenerative biomolecules; however, their mechanisms remain less defined than those of salmon-derived polydeoxyribonucleotides (S-PDRNs). Here, we extracted polynucleotides from Paeonia lactiflora callus (PL-PN) and evaluated their biological effects on human dermal fibroblasts. PL-PN treatment increased cell viability and pro-collagen I α1 secretion. PL-PN enhanced adenosine A2A receptor expression and activated the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway, accompanied by increased Cyclin D1 levels, retinoblastoma protein (Rb) phosphorylation, and nuclear proliferating cell nuclear antigen (PCNA) levels, indicating an accelerated G1/S transition. PL-PN also significantly reduced nuclear NF-κB localization and downregulated MMP1, MMP3, MMP9, and MMP13, suggesting attenuation of inflammatory and catabolic signaling. Furthermore, PL-PN increased TGF-β maturation, Smad2/3 phosphorylation, and the transcription of COL1A1, COL3A1, and elastin, resulting in enhanced collagen and elastin deposition. These effects are comparable to those of S-PDRN. Although the pathway specificity and in vivo relevance require further studies, our findings provide evidence that PL-PN promotes extracellular matrix regeneration via coordinated proliferative, anabolic, and anti-inflammatory actions. Thus, PL-PN represents a potential sustainable plant-based alternative to S-PDRN for dermatological regeneration. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

12 pages, 1459 KB  
Article
Targeting CDK11 in Rhabdoid Tumor of the Kidney
by Yuki Murakami, Kamhung Lam, Shinsuke Fukui, Elizabeth Helmke, Kenneth A. Iczkowski, Yueju Li and Noriko Satake
Cancers 2026, 18(2), 261; https://doi.org/10.3390/cancers18020261 - 14 Jan 2026
Viewed by 256
Abstract
Background: Rhabdoid tumor of the kidney (RTK) is a highly aggressive pediatric malignancy characterized by biallelic SMARCB1 loss, resulting in aberrant MYC pathway activation and cell cycle regulation. MYC-activated tumors are vulnerable in splicing functions and sensitive to splicing inhibitors. Therefore, in this [...] Read more.
Background: Rhabdoid tumor of the kidney (RTK) is a highly aggressive pediatric malignancy characterized by biallelic SMARCB1 loss, resulting in aberrant MYC pathway activation and cell cycle regulation. MYC-activated tumors are vulnerable in splicing functions and sensitive to splicing inhibitors. Therefore, in this study, cyclin-dependent kinase 11 (CDK11), which regulates both cell cycle and RNA splicing, was tested as a therapeutic target in RTK. Methods: CDK11A/B expression was analyzed using the TARGET-RT database. The therapeutic efficacy of the CDK11 inhibitor OTS964 was evaluated in two RTK cell lines (G401 and JMU-RTK-2) and a JMU-RTK-2 xenograft mouse model. Cytotoxicity, apoptosis, cell cycle, and RNA splicing were examined using the Sulforhodamine B assay, immunoblotting, flow cytometry, and RT-PCR. Results: CDK11B, but not CDK11A, was significantly upregulated in RTK and correlated with the poor survival. OTS964 inhibited RTK cell growth in vitro with the IC50 of 33.1 nM (G401) and 19.3 nM (JMU-RTK-2) and significantly prolonged survival in vivo (median survival: 46.5 vs. 37.0 days, p < 0.01) without marked toxicity. Mechanistically, OTS964 induced G2/M cell cycle arrest and p53 upregulation, disrupted RNA splicing via SF3B1 dephosphorylation, and ultimately led to apoptosis through caspase-3 activation. Conclusions: CDK11 inhibition by OTS964 effectively suppresses RTK growth through cell cycle arrest and RNA splicing inhibition, leading to apoptosis. OTS964 shows potent anti-tumor activity and tolerability, supporting CDK11 as a promising therapeutic target for RTK and related SMARCB1-deficient cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 436 KB  
Article
Real-World Clinical Experience of First-Line Ribociclib Combined with an Aromatase Inhibitor in Metastatic Breast Cancer
by Ana S. Cvetanović, Kristina B. Jankovic, Ana S. Stojković, Nikola D. Živković, Miloš S. Kostić and Lazar S. Popović
Cancers 2026, 18(2), 242; https://doi.org/10.3390/cancers18020242 - 13 Jan 2026
Viewed by 520
Abstract
Background/Objectives: Despite initial sensitivity to ET, most patients with HR+/HER2− breast cancer develop resistance. A key molecular mechanism of endocrine resistance in HR+ breast cancer involves dysregulation of the cyclin D–CDK4/6–Rb signaling axis, which controls the transition from the G1 to S phase [...] Read more.
Background/Objectives: Despite initial sensitivity to ET, most patients with HR+/HER2− breast cancer develop resistance. A key molecular mechanism of endocrine resistance in HR+ breast cancer involves dysregulation of the cyclin D–CDK4/6–Rb signaling axis, which controls the transition from the G1 to S phase of the cell cycle. Introducing cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) has changed therapeutic paradigms in HR+/HER2− breast cancer, as their synergistic use with endocrine therapy significantly prolongs progression-free survival (PFS) and effectively mitigates clinically relevant endocrine resistance in this patient population compared to ET alone. The aim of our study was to evaluate patients’ clinical characteristics, the clinical effectiveness of treatment, measured by progression-free survival (PFS), and the safety profile of combined ribociclib (CDK4/6i) and standard endocrine therapy (aromatase inhibitor) as a first-line treatment for patients with HR+/HER2− advanced or metastatic breast cancer at the Clinic of Oncology, University Clinical Centre Nis, Serbia. Methods: In this study, we present a retrospective prospective analysis of all patients with metastatic HR+/HER2− breast cancer treated with a combination of ribociclib and aromatase inhibitors in the first-line treatment of metastatic HR+/HER2− BC between June 2022 and January 2025, with a follow-up completed in October 2025. A total of 132 patients who met the criteria were included. Results: The median progression-free survival (PFS) in the entire group was 30 months, while the 12-, 24-, and 36-month PFS were 82.15%, 72.24%, and 28.75%, respectively. The overall response rate (ORR) was 41.7%, while the clinical benefit rate (CBR) was 89.3%. There was no statistically significant difference in PFS with respect to tumor grade (p = 0.54), Ki 67 level (<20% vs. >20%, p = 0.83), or the type of adjuvant endocrine therapy used (tamoxifen vs. AI) It is important to emphasize that female patients who had not previously received chemotherapy had a better response to ribociclib compared to those who had (33 m vs. 28 m, p = 0.05). Although a numerical difference in PFS was found in patients with bone-only metastases compared to those with metastases in other organs, the difference was not statistically significant (PFS 33 m vs. 30 m, p = 0.27;), and efficacy was consistent across menopausal status groups. The most common adverse effect was neutropenia, occurring in 89.4% of patients, 47.7% of whom presented with grade 3 or 4. As for hepatotoxicity, transaminase increase occurred in 25 patients (18.8%), 5 of whom (3.8%) were grade 3–4, and QTc interval prolongation occurred in 5.3% of patients. Conclusions: The results in terms of PFS and AEs are consistent with those of pivotal studies and real clinical practice data, but a direct comparison is not possible due to differences in patient populations. Ribociclib once again demonstrated efficacy in all patient subgroups and remains the gold standard, alongside ET, for first-line HR+/HER2-negative mBC. Full article
(This article belongs to the Special Issue Breast Cancer and Hormone-Related Therapy: 2nd Edition)
Show Figures

Figure 1

27 pages, 13431 KB  
Article
In Vitro and In Silico Assessment of the Anticancer Potential of Ethyl Acetate/Water Extract from the Leaves of Cotinus coggygria Scop. in HepG2 Human Hepatocarcinoma Cells
by Inna Sulikovska, Vera Djeliova, Ani Georgieva, Elina Tsvetanova, Liudmil Kirazov, Anelia Vasileva, Vanyo Mitev, Ivaylo Ivanov and Mashenka Dimitrova
Appl. Sci. 2026, 16(2), 740; https://doi.org/10.3390/app16020740 - 11 Jan 2026
Viewed by 338
Abstract
Cotinus coggygria Scop., a member of the Anacardiaceae family, is known for its antiseptic, anti-inflammatory, and antitumor properties. In the present study, the ethyl acetate/water leaf extract of C. coggygria was evaluated for antioxidant and anticancer activities. The extract exhibited strong radical-scavenging potential, [...] Read more.
Cotinus coggygria Scop., a member of the Anacardiaceae family, is known for its antiseptic, anti-inflammatory, and antitumor properties. In the present study, the ethyl acetate/water leaf extract of C. coggygria was evaluated for antioxidant and anticancer activities. The extract exhibited strong radical-scavenging potential, effectively neutralizing DPPH, ABTS•+, and superoxide radicals in a concentration-dependent manner. The cytotoxic effects of the extract on human hepatocellular carcinoma HepG2 cells were also investigated. Flow cytometry revealed significant S-phase cell cycle arrest, while fluorescent microscopy and annexin V-FITC/PI staining demonstrated induction of apoptosis. DNA damage was confirmed by alkaline comet assay. Molecular docking was used to evaluate the binding affinity and inhibitory potential of penta-O-galloyl-β-D-glucose, a representative of gallotannins found in C. coggygria extracts, towards cyclin-dependent kinase 2 and checkpoint kinase 1. A high inhibition ability was demonstrated, which could explain the observed cell cycle block. Collectively, these findings suggest that C. coggygria extract exerts strong antioxidant capacity and selective antiproliferative activity in HepG2 cells. The anticancer effects of C. coggygria extract were associated with DNA damage, cell cycle arrest, disruption of mitochondrial membrane potential, and apoptosis induction. The results show the potential of the herb as a natural therapeutic agent for hepatocellular carcinoma. Full article
Show Figures

Figure 1

22 pages, 5268 KB  
Article
Herba Patriniae Component Linarin Induces Cell Cycle Arrest and Senescence in Non-Small-Cell Lung Cancer Associated with Cyclin A2 Downregulation
by Wen Xie, Xia Li, Dongmei Huang, Jiana Xu, Minghan Yu, Yanping Li and Qing K. Wang
Pharmaceuticals 2026, 19(1), 111; https://doi.org/10.3390/ph19010111 - 8 Jan 2026
Viewed by 320
Abstract
Background: Non-small-cell lung cancer (NSCLC) remains a major therapeutic challenge due to its high incidence and mortality. Herba Patriniae (HP), a traditional Chinese medicine, has long been used for respiratory disorders and exhibits anti-cancer potential. However, the therapeutic effects of HP on [...] Read more.
Background: Non-small-cell lung cancer (NSCLC) remains a major therapeutic challenge due to its high incidence and mortality. Herba Patriniae (HP), a traditional Chinese medicine, has long been used for respiratory disorders and exhibits anti-cancer potential. However, the therapeutic effects of HP on NSCLC and the underlying mechanisms have not been fully elucidated. Methods: Network pharmacology was applied to identify the core active components of HP and their potential targets in NSCLC. The anti-cancer effects of the core HP component Linarin on the malignant phenotypes of NSCLC cells were characterized using Tumor Protein P53 (p53) wild-type A549 and p53-null H1299 cell lines with Cell Counting Kit-8 (CCK-8), EdU fluorescence staining, colony formation, apoptosis analysis, cell cycle analysis, and senescence-associated β-galactosidase (SA-β-gal) staining, together with molecular docking and Western blotting analyses. Results: Network pharmacology analysis identified Linarin as the core active component of HP and screened out six hub targets, including Cyclin Dependent Kinase 1/4 (CDK1/4), Cyclin A2/B1 (CCNA2/B1), and Checkpoint Kinase 1/2 (CHEK1/2), which were found to be mainly enriched in cell cycle and senescence pathways. In vitro assays showed that Linarin dose-dependently (0–200 μM) inhibited NSCLC cell proliferation, induced G0/G1 phase arrest, and promoted cellular senescence and apoptosis in both cell lines, irrespective of p53 status. Molecular docking confirmed strong binding affinities between Linarin and the hub targets, and Western blotting confirmed that Linarin downregulated CCNA2/B1 and CHEK1. Conclusions: This study demonstrates that Linarin, the core active component of HP, exerts potent anti-NSCLC effects by inducing G0/G1 arrest, senescence, and apoptosis. These effects are associated with the downregulation of key cell cycle regulators, including CCNA2/B1 and CHEK1. Together, these findings highlight the potential of Linarin as a promising therapeutic option for NSCLC. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop