Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = CubeSat missions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2422 KiB  
Article
OSIRIS4CubeSat—The World’s Smallest Commercially Available Laser Communication Terminal
by Benjamin Rödiger, Christian Roubal, Fabian Rein, René Rüddenklau, Anil Morab Vishwanath and Christopher Schmidt
Aerospace 2025, 12(8), 655; https://doi.org/10.3390/aerospace12080655 - 23 Jul 2025
Viewed by 224
Abstract
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. [...] Read more.
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. Free-space optical communication overcomes these challenges and has been successfully demonstrated, with operational systems in orbit on large and small satellites. The next step is to miniaturize the technology of laser communication to make it usable on CubeSats. Thus, the German Aerospace Center (DLR) developed, together with Tesat-Spacecom GmbH & Co. KG in Backnang, Germany, a highly miniaturized and power-efficient laser terminal, which is based on a potential customer’s use case. OSIRIS4CubeSat uses a new patented design that combines electronics and optomechanics into a single system architecture to achieve a high compactness following the CubeSat standard. Interfaces and software protocols that follow established standards allowed for an easy transition to the industry for a commercial mass market. The successful demonstration of OSIRIS4CubeSat during the PIXL-1 mission proved its capabilities and the advantages of free-space optical communication in the final environment. This paper gives an overview of the system architecture and the development of the single subsystems. The system’s capabilities are verified by the already published in-orbit demonstration results. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
Show Figures

Figure 1

23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 206
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 386
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

78 pages, 31324 KiB  
Review
An Overview of CubeSat Missions and Applications
by Konstantinos-Panagiotis Bouzoukis, Georgios Moraitis, Vassilis Kostopoulos and Vaios Lappas
Aerospace 2025, 12(6), 550; https://doi.org/10.3390/aerospace12060550 - 16 Jun 2025
Viewed by 3219
Abstract
The proliferation of CubeSats in Earth orbit has accelerated dramatically in recent years, with projections indicating continued growth in the coming decades. This review examines the evolution of CubeSat applications, from basic technology demonstrations to complex mission capabilities, including Earth observation, telecommunications, astronomical [...] Read more.
The proliferation of CubeSats in Earth orbit has accelerated dramatically in recent years, with projections indicating continued growth in the coming decades. This review examines the evolution of CubeSat applications, from basic technology demonstrations to complex mission capabilities, including Earth observation, telecommunications, astronomical research, biological experimentation, and deep-space exploration. A notable shift has occurred over the past fifteen years, with CubeSats transitioning from standalone platforms to integrated nodes within larger constellations, particularly for Earth observation and telecommunications applications. We analyze the key enabling factors behind the CubeSat revolution, including decreased launch costs, miniaturized electronics, standardized components, and institutional support frameworks. Through the examination of significant past, current, and planned missions, this paper provides a comprehensive overview of CubeSat capabilities across diverse application domains. The review highlights how these miniaturized satellite platforms are democratizing access to space while enabling innovative scientific and commercial applications previously restricted to larger spacecraft. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 6509 KiB  
Article
Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources
by Benjamin Kanda and Minkwan Kim
Aerospace 2025, 12(6), 549; https://doi.org/10.3390/aerospace12060549 - 16 Jun 2025
Viewed by 426
Abstract
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical [...] Read more.
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical moving parts, increasing overall system complexity and mission risk. A promising alternative is the use of VAT arrays, where multiple thin-layer VATs are arranged in a regularly spaced grid, thus enhancing reliability, increasing total impulse without a mechanical propellant feed system, and enabling integrated attitude control via off-axis thruster placement. However, VAT arrays require a larger power processing unit (PPU) and additional control system, posing challenges within CubeSat volume constraints. To address this, this study proposes a novel PPU design that enables the simultaneous operation of multiple VATs while minimising system mass and volume. Experimental results demonstrate the successful operation of VAT pairs using the proposed PPU concept, validating its feasibility as an efficient propulsion solution for CubeSats. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

22 pages, 5111 KiB  
Article
Multibody Simulation of 1U CubeSat Passive Attitude Stabilisation Using a Robotic Arm
by Filippo Foiani, Giulia Morettini, Massimiliano Palmieri, Stefano Carletta, Filippo Cianetti and Marco Dionigi
Machines 2025, 13(6), 509; https://doi.org/10.3390/machines13060509 - 11 Jun 2025
Cited by 1 | Viewed by 990
Abstract
Robotics plays a pivotal role in contemporary space missions, particularly in the development of robotic manipulators for operations in environments that are inaccessible to humans. In accordance with the trend of integrating multiple functionalities into a single system, this study evaluates the feasibility [...] Read more.
Robotics plays a pivotal role in contemporary space missions, particularly in the development of robotic manipulators for operations in environments that are inaccessible to humans. In accordance with the trend of integrating multiple functionalities into a single system, this study evaluates the feasibility of using a robotic manipulator, termed a C-arm, for passive attitude control of a 1U CubeSat. A simplified multibody model of the CubeSat system was employed to assess the robotic arm’s functionality as a gravity gradient boom and subsequently as a passive magnetic control mechanism by utilising a permanent magnet at its extremity. The effectiveness of the C-arm as a gravitational boom is constrained by size and weight, as evidenced by the simulations; the pitch angle oscillated around ±40°, while roll and yaw angles varied up to 30° and 35°, respectively. Subsequent evaluations sought to enhance pointing accuracy through the utilisation of permanent magnets. However, the absence of dissipative forces resulted in attitude instabilities. In conclusion, the integration of a robotic arm into a 1U CubeSat for passive attitude control shows potential, especially for missions where pointing accuracy can tolerate a certain range, as is typical of CubeSat nanosatellite missions. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

20 pages, 1816 KiB  
Article
Effects of Discrete Thrust Levels on the Trajectory Design of the BIT-3 RF Ion Thruster-Equipped CubeSat
by Alessandro A. Quarta
Appl. Sci. 2025, 15(11), 6314; https://doi.org/10.3390/app15116314 - 4 Jun 2025
Viewed by 469
Abstract
The use of continuous-thrust propulsion systems allows spacecraft to cover complex space trajectories and to complete missions that would be difficult using chemical thrusters. Among the continuous-thrust propulsion systems proposed in recent decades, solar electric thrusters occupy an important position thanks to the [...] Read more.
The use of continuous-thrust propulsion systems allows spacecraft to cover complex space trajectories and to complete missions that would be difficult using chemical thrusters. Among the continuous-thrust propulsion systems proposed in recent decades, solar electric thrusters occupy an important position thanks to the maturity reached by this technology. Technological advances in the miniaturization of spacecraft components allow an electric thruster to be installed even in a small and standardized vehicle such as a CubeSat. In this context, the BIT-3 RF ion thruster is an interesting option that has been recently employed in some space missions for the study of the lunar surface. In the recent literature, the performance of a CubeSat equipped with a propulsion system based on the BIT-3 has been studied considering a simplified model in which the thrust magnitude has a fixed value or varies continuously within a prescribed range. However, the operating levels of a BIT-3 are finite in number. This paper studies the transfer performance of a BIT-3-propelled CubeSat considering the actual operating levels that can be provided by such a thruster. The work analyzes the optimal transfer towards asteroid 2000 SG344 when the electric power is obtained through solar arrays. Full article
Show Figures

Figure 1

29 pages, 10932 KiB  
Article
On-Orbit Performance and Hyperspectral Data Processing of the TIRSAT CubeSat Mission
by Yoshihide Aoyanagi, Tomofumi Doi, Hajime Arai, Yoshihisa Shimada, Masakazu Yasuda, Takahiro Yamazaki and Hiroshi Sawazaki
Remote Sens. 2025, 17(11), 1903; https://doi.org/10.3390/rs17111903 - 30 May 2025
Viewed by 505
Abstract
A miniaturized hyperspectral camera, developed by integrating a linear variable band-pass filter (LVBPF) with an image sensor, was installed on the TIRSAT 3U CubeSat, launched on 17 February 2024 by Japan’s H3 launch vehicle. The satellite and its onboard hyperspectral camera conducted on-orbit [...] Read more.
A miniaturized hyperspectral camera, developed by integrating a linear variable band-pass filter (LVBPF) with an image sensor, was installed on the TIRSAT 3U CubeSat, launched on 17 February 2024 by Japan’s H3 launch vehicle. The satellite and its onboard hyperspectral camera conducted on-orbit experiments and successfully acquired hyperspectral data from multiple locations. The required attitude control for the hyperspectral mission was also achieved. CubeSat-based hyperspectral missions often face challenges in image alignment due to factors such as parallax, distortion, and limited attitude stability. This study presents solutions to these issues, supported by actual observational hyperspectral data. To verify the consistency of the hyperspectral data acquired by TIRSAT and processed using the proposed method, a validation analysis was conducted. Full article
(This article belongs to the Special Issue Advances in CubeSats for Earth Observation)
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 467
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

27 pages, 1004 KiB  
Article
Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques
by Marcello Asciolla, Rodrigo Blázquez-García, Angela Cratere, Vittorio M. N. Passaro and Francesco Dell’Olio
Sensors 2025, 25(11), 3376; https://doi.org/10.3390/s25113376 - 27 May 2025
Cited by 1 | Viewed by 448
Abstract
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the [...] Read more.
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the satellites minimizing the variance on the position error estimation with constraints on the line of sight (LOS). The problem is theoretically formulated for an arbitrary number of satellites in Low Earth Orbit (LEO) and target pointing attitude, focusing on minimizing the Position Dilution of Precision (PDOP) metric, providing a methodology for translating mission design requirements into problem formulation. An exemplary numerical application is presented for the operative case of the placement of a second satellite after a first one is launched. Simulation results are on angles of true anomaly, right ascension of the ascending node, and spacing angle, while accounting for orbital radius and emitter latitude. New insights on trends, parameter dependencies, and properties of symmetry and anti-symmetry are presented. The topic is of interest for new technological demonstrators based on CubeSats with AOA payload. Civil applications of interest are on interceptions of non-cooperative signals in activities of spectrum monitoring or search and rescue. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 8259 KiB  
Article
A Cloud Computing Framework for Space Farming Data Analysis
by Adrian Genevie Janairo, Ronnie Concepcion, Marielet Guillermo and Arvin Fernando
AgriEngineering 2025, 7(5), 149; https://doi.org/10.3390/agriengineering7050149 - 8 May 2025
Viewed by 791
Abstract
This study presents a system framework by which cloud resources are utilized to analyze crop germination status in a 2U CubeSat. This research aims to address the onboard computing constraints in nanosatellite missions to boost space agricultural practices. Through the Espressif Simple Protocol [...] Read more.
This study presents a system framework by which cloud resources are utilized to analyze crop germination status in a 2U CubeSat. This research aims to address the onboard computing constraints in nanosatellite missions to boost space agricultural practices. Through the Espressif Simple Protocol for Network-on-Wireless (ESP-NOW) technology, communication between ESP-32 modules were established. The corresponding sensor readings and image data were securely streamed through Amazon Web Service Internet of Things (AWS IoT) to an ESP-NOW receiver and Roboflow. Real-time plant growth predictor monitoring was implemented through the web application provisioned at the receiver end. On the other hand, sprouts on germination bed were determined through the custom-trained Roboflow computer vision model. The feasibility of remote data computational analysis and monitoring for a 2U CubeSat, given its minute form factor, was successfully demonstrated through the proposed cloud framework. The germination detection model resulted in a mean average precision (mAP), precision, and recall of 99.5%, 99.9%, and 100.0%, respectively. The temperature, humidity, heat index, LED and Fogger states, and bed sprouts data were shown in real time through a web dashboard. With this use case, immediate actions can be performed accordingly when abnormalities occur. The scalability nature of the framework allows adaptation to various crops to support sustainable agricultural activities in extreme environments such as space farming. Full article
Show Figures

Figure 1

33 pages, 3295 KiB  
Article
Integrating Model-Based Systems Engineering into CubeSat Development: A Case Study of the BOREALIS Mission
by Lorenzo Nardi, Stefano Carletta, Parsa Abbasrezaee, Giovanni Palmerini, Nicola Lovecchio, Nunzio Burgio, Alfonso Santagata, Massimo Frullini, Donato Calabria, Massimo Guardigli, Elisa Michelini, Maria Maddalena Calabretta, Martina Zangheri, Elisa Lazzarini, Andrea Pace, Marco Montalti, Dario Mordini, Liyana Popova, Saverio Citraro, Daniela Billi, Fabio Lorenzini, Alessandro Donati, Mara Mirasoli and Augusto Nascettiadd Show full author list remove Hide full author list
Aerospace 2025, 12(3), 256; https://doi.org/10.3390/aerospace12030256 - 18 Mar 2025
Viewed by 1460
Abstract
The Biofilm Onboard Radiation Exposure Assessment Lab In Space (BOREALIS) mission is a 6U CubeSat initiative funded by the Italian Space Agency under the ALCOR program, executed through a collaboration among the School of Aerospace Engineering of Sapienza University of Rome, Interdepartmental Centre [...] Read more.
The Biofilm Onboard Radiation Exposure Assessment Lab In Space (BOREALIS) mission is a 6U CubeSat initiative funded by the Italian Space Agency under the ALCOR program, executed through a collaboration among the School of Aerospace Engineering of Sapienza University of Rome, Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace) of the University of Bologna and Kayser Italia Srl. BOREALIS is equipped with a lab-on-chip payload for studying the effects of microgravity and ionising radiation on microbial biofilms, which are crucial for understanding and preventing persistent infections in space environments. The satellite will operate across multiple orbits, moving from low to medium Earth orbit, to distinctly analyse the impacts of radiation separate from microgravity. The required orbital transfer not only tests the autonomy of its on-board systems in challenging conditions but also places BOREALIS among the first and few CubeSats to have ever attempted such a complex manoeuvre. This study explores the systematic application of Model-Based Systems Engineering to satellite design, from conceptualisation to trade-offs, using a tradespace analysis approach supported by Monte Carlo simulations to optimise mission configurations against performance and cost. Additionally, the adaptability of Model-Based Systems Engineering tools and the reusability of such an approach for other satellite projects are discussed, illustrating the BOREALIS mission as a case study for small mission design considering constraints and requirements. Full article
Show Figures

Figure 1

9 pages, 5376 KiB  
Proceeding Paper
Extensible Hook System for Rendezvous and Docking of a CubeSat Swarm
by Carlos Pérez-del-Pulgar, Antonio López Palomeque, Jesús Juli and Matteo Madi
Eng. Proc. 2025, 90(1), 33; https://doi.org/10.3390/engproc2025090033 - 13 Mar 2025
Cited by 1 | Viewed by 270
Abstract
Deployment of CubeSat swarms is proposed for various missions necessitating cooperative interactions among satellites. Commonly, the cube swarm requires formation flight and even rendezvous and docking, which are very challenging tasks since they require more energy and the use of advanced guidance, navigation, [...] Read more.
Deployment of CubeSat swarms is proposed for various missions necessitating cooperative interactions among satellites. Commonly, the cube swarm requires formation flight and even rendezvous and docking, which are very challenging tasks since they require more energy and the use of advanced guidance, navigation, and control techniques. In this paper, we propose the use of an extensible hook system and its corresponding GNC architecture to mitigate these drawbacks, i.e., it allows for saving fuel and reduces system complexity by including techniques that have been previously demonstrated on Earth. This system is based on a scissor boom structure, which could reach up to five meters for a 4U CubeSat dimension, including three degrees of freedom to place the end effector at any pose within the system workspace. We simulated the dynamic behavior of a CubeSat with the proposed system, demonstrating that the required power for a 16U CubeSat equipped with one extensible hook system is considered acceptable according to the current state-of-the-art actuators. Full article
Show Figures

Figure 1

12 pages, 14337 KiB  
Proceeding Paper
The Payload Design of the CUbesat Solar Polarimeter (CUSP), for Space Weather and Solar Flares X-Ray Polarimetry
by Giovanni Lombardi, Sergio Fabiani, Ettore Del Monte, Emanuele Di Meo, Andrea Lopez, Marco Camponeschi, Marco E. Biancolini, Daniele Brienza, Immacolata Donnarumma, Silvia Natalucci, Andrea Terracciano and Emanuele Zaccagnino
Eng. Proc. 2025, 85(1), 37; https://doi.org/10.3390/engproc2025085037 - 11 Mar 2025
Viewed by 518
Abstract
The CUbesat Solar Polarimeter (CUSP) project is a CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter. CUSP is a project in the framework of the [...] Read more.
The CUbesat Solar Polarimeter (CUSP) project is a CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter. CUSP is a project in the framework of the Alcor Program of the Italian Space Agency aimed to develop new CubeSat missions. It is approved for a Phase B study. In this work we describe some design solutions adopted for the most important design drivers of the payload. In particular, we report on the payload preliminary multi-physical design, including an orbital thermal environment preliminary assessment and a implementation of the static/dynamic finite element analysis. Moreover, a method for topology optimization of relevant components is discussed. Full article
Show Figures

Figure 1

25 pages, 5912 KiB  
Article
Exploration of Earth’s Magnetosphere Using CubeSats with Electric Propulsion
by Alessandro A. Quarta
Aerospace 2025, 12(3), 211; https://doi.org/10.3390/aerospace12030211 - 6 Mar 2025
Cited by 1 | Viewed by 735
Abstract
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a [...] Read more.
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a challenging mission scenario due to the alignment of the magnetotail direction with the Sun–Earth line, which requires a continuous rotation of the apse line of the spacecraft’s geocentric orbit. This aspect makes the mission scenario particularly suitable for space vehicles equipped with propellantless propulsion systems, such as the classic solar sails which convert the solar radiation pressure into propulsive acceleration without propellant expenditure. However, a continuous rotation of the apse line of the osculating orbit can be achieved using a more conventional solar electric thruster, which introduces an additional constraint on the duration of the scientific mission due to the finite mass of the propellant stored on board the spacecraft. This paper analyzes the potential of a typical CubeSat equipped with a commercial miniaturized electric thruster in performing the rotation of the apse line of a geocentric orbit suitable for the in situ observation of the Earth’s magnetotail. The paper also analyzes the impact of the size of a thruster array on the flight performance for an assigned value of the payload mass and the science orbit’s characteristics. In particular, this work illustrates the optimal guidance laws that allow us to maximize the duration of the scientific mission for an assigned CubeSat’s configuration. In this sense, this paper expands the literature regarding the study of this interesting mission scenario by extending the study to conventional propulsion systems that use a propellant to provide a continuous and steerable thrust vector. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop