Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Spatial Representation
2.2. Measurement Model
2.3. Dilution of Precision
2.4. Model of Orbits
2.5. Optimization Problem
3. Simulations
3.1. Two-Satellite Problem
3.2. Simulation Settings and Results
3.3. Analysis of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOA | Angle of Arrival |
CRLB | Cramér–Rao Lower Bound |
DOP | Dilution of Precision |
ECEF | Earth-Centered Earth-Fixed Coordinate System |
ECI | Earth-Centered Inertial Coordinate System |
GNSS | Global Navigation Satellite System |
KKT | Karush–Kuhn–Tucker Conditions |
LEO | Low Earth Orbit |
LOB | Line of Bearing |
LOS | Line of Sight |
LLH | Latitude, Longitude, Height Coordinate System |
PDOP | Position Dilution of Precision |
PQW | Perifocal Coordinate System |
Appendix A. Mathematical Notation
a | Semi-major axis of the elliptic orbit of the satellite |
Elipsoidal equatorial radius | |
c | Speed of light |
Covariance Matrix | |
Domain of the objective function | |
e | Eccentricity of the elliptic orbit of the satellite |
Eccentricity of the Earth’s ellipsoid | |
E | Emitter point |
f | Frequency of the signal |
Matrix of Fisher | |
g | Nonlinear objective function |
h | Height |
Geometric Design Matrix | |
i | Inclination of the orbit of the satellite |
Identity matrix | |
L | Total length of linear array of antennas |
m | Number of nonlinear inequality constraint conditions |
M | Number of elements of linear array of antennas |
n | Total number of satellites |
N | Auxiliary function to describe ellipsoidal Earth model |
Axes of the perifocal coordinate system | |
Position Dilution of Precision | |
r | Radius of circular orbit of the satellite |
Radius of circular orbit of the satellite (fixed value) | |
Radius of Earth (spherical model) | |
Matrix of rotation | |
s | Auxiliary variable (used in Geometric Design Matrix) |
S | Satellite point |
Signal-to-noise ratio | |
t | Time |
Constraint tolerance | |
Optimality tolerance | |
Step tolerance | |
u | Auxiliary variable (used in Geometric Design Matrix) |
Unit vector of line of bearing | |
w | Nonlinear inequality constraint function |
Set of cartesian coordinates | |
Position vector | |
Azimuth angle | |
Elevation angle | |
Angular position of Greenwich meridian | |
Spacing angle | |
Maximum angle of line of sight | |
Maximum angle of line of sight (relative) | |
Difference operation | |
Complementary of Azimuth angle | |
Complementary of Elevation angle | |
Longitude | |
Geodetic latitude | |
Geodetic latitude (fixed value) | |
True anomaly of the orbit | |
True anomaly of the orbit (relative value to Nadir alignment) | |
True anomaly of the orbit (Nadir alignment) | |
True anomaly of the orbit (fixed value) | |
Argument of perigee of the orbit of the satellite | |
Right ascension of the ascending node | |
Right ascension of the ascending node (Nadir alignment) | |
Right ascension of the ascending node (fixed value) | |
Standard deviation |
References
- Poisel, R.A. Electronic Warfare Target Location Methods, 2nd ed.; Artech House: Norwood, MA, USA, 2012; Chapters 2.2 and 3; ISBN 9781608075232. [Google Scholar]
- Poisel, R.A. Introduction to Communication Electronic Warfare Systems, 2nd ed.; Artech House: Norwood, MA, USA, 2008; Chapter 8.2.6; ISBN 9781596934528. [Google Scholar]
- De Martino, A. Introduction to Modern EW Systems, 2nd ed.; Artech House: Norwood, MA, USA, 2018; Chapters 2.1 and 4; ISBN 9781630815134. [Google Scholar]
- Poisel, R.A. Antenna Systems and Electronic Warfare Applications, 1st ed.; Artech House: Norwood, MA, USA, 2012; Chapters 1 and 9; ISBN 9781608074853. [Google Scholar]
- Wiley, R.G. ELINT: The Interception and Analysis of Radar Signals, 1st ed.; Artech House: Norwood, MA, USA, 2006; Chapters 3.5.1 and 5.3; ISBN 1580539254. [Google Scholar]
- Agrawal, A.K. Practical Aspects of Active Phased Array Antenna Development, 1st ed.; Artech House: Norwood, MA, USA, 2023; Chapters 2.5 and 2.7; ISBN 978-1-63081-989-7. [Google Scholar]
- Guo, Y.J.; Ziolkowski, R.W. Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications, 1st ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2022; Chapter 8.2; ISBN 9781119712909. [Google Scholar]
- He, G.; Gao, X.; Zhang, R.; Sun, L.; Zhou, H. Multibeam Phased Array Antennas as Satellite Constellation Ground Station; Springer Nature Singapore Pte Ltd.: Singapore, 2024; Chapter 4; ISBN 978-981-99-7909-7, 978-981-99-7910-3. [Google Scholar]
- Guo, J.; Ziolkowski, R.W. Antenna and Array Technologies for Future Wireless Ecosystems; IEEE Editorial Press, Wiley: Piscataway, NJ, USA, 2022; Chapter 12; ISBN 9781119813880. [Google Scholar]
- Martínez-Ramón, M.; Gupta, A.; Rojo-Álvarez, J.L.; Christodoulou, C. Machine Learning Applications in Electromagnetics and Antenna Array Processing; Artech House: Norwood, MA, USA, 2021; Chapters 6.4 and 6.5; ISBN 978-1-63081-775-6. [Google Scholar]
- Asciolla, M.; Dyszynski, W.; Dell’Olio, F. Simulation of the Longitude Error due to Signal Propagation in a Passive Emitter Tracking Geolocation Algorithm. In Proceedings of the 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA, 6–10 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Asciolla, M.; Cratere, A.; Dell’Olio, F. Emitter Tracking by Passive Sensors Onboard Satellites: Relativistic Error Estimation in Geolocation Algorithm. In Proceedings of the 2024 IEEE Sensors Applications Symposium (SAS), Naples, Italy, 23–25 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Mangum, J.G.; Wallace, P. Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay. Publ. Astron. Soc. Pac. 2015, 127, 74–91. [Google Scholar] [CrossRef]
- Griffiths, H.D.; Baker, C.J. An Introduction to Passive Radar, 2nd ed.; Artech House: Norwood, MA, USA, 2022; Chapter 6.2; ISBN 9781630818401. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing—Estimation Theory, 1st ed.; Prentice Hall, Pearson: Upper Saddle River, NJ, USA, 1993; Chapter 3.11; ISBN 9780133457117. [Google Scholar]
- Spilker, J.J., Jr.; Axelrad, P.; Parkinson, B.W.; Enge, P. Global Positioning System: Theory and Applications, Volume I; Aerospace Research Central: Reston, VA, USA, 1996; Chapter 11; ISBN 978-1-56347-106-3. [Google Scholar]
- Bergen, M.H.; Arafa, A.; Jin, X.; Klukas, R.; Holzman, J.F. Characteristics of Angular Precision and Dilution of Precision for Optical Wireless Positioning. J. Light. Technol. 2015, 33, 4253–4260. [Google Scholar] [CrossRef]
- Bishop, A.N.; Fidan, B.; Anderson, B.D.; Dogancay, K.; Pathirana, P.N. Optimality Analysis of Sensor-Target Geometries in Passive Localization: Part 1—Bearing-Only Localization. In Proceedings of the 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, VIC, Australia, 3–6 December 2007; pp. 7–12. [Google Scholar] [CrossRef]
- Pages-Zamora, A.; Vidal, J.; Brooks, D.H. Closed-form solution for positioning based on angle of arrival measurements. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon, Portugal, 18 September 2002; Volume 4, pp. 1522–1526. [Google Scholar] [CrossRef]
- An, D.J.; Lee, J.H. Derivation of an Approximate Location Estimate in Angle-of-Arrival Based Localization in the Presence of Angle-of-Arrival Estimate Error and Sensor Location Error. In Proceedings of the 2018 IEEE World Symposium on Communication Engineering (WSCE), Singapore, 28–30 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Le, T.K.; Ho, K.C. Joint Source and Sensor Localization by Angles of Arrival. IEEE Trans. Signal Process. 2020, 68, 6521–6534. [Google Scholar] [CrossRef]
- Xue, S.; Yang, Y. Understanding GDOP minimization in GNSS positioning: Infinite solutions, finite solutions and no solution. Adv. Space Res. 2017, 59, 775–785. [Google Scholar] [CrossRef]
- Yongcai, A.; Bo, Z.; Baozhuo, Z.; Shili, W. Change of Geometric Dilution of Precision (GDOP) for integrated system. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016; pp. 660–662. [Google Scholar] [CrossRef]
- Zhong, E.j.; Huang, T.z. Geometric Dilution of Precision in Navigation Computation. In Proceedings of the 2006 International Conference on Machine Learning and Cybernetics; 2006; pp. 4116–4119. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, K.S.; Huang, J.F.; Li, Y.R. Using Genetic Algorithms to Approximate Weighted Geometric Dilution of Precision. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Dalian, China, 13–16 August 2016; pp. 895–898. [Google Scholar] [CrossRef]
- Asciolla, M.; Dell’Olio, F. Multi-satellite spatial optimization in geolocation algorithm via passive sensors onboard satellites. In Proceedings of the 75th International Astronautical Congress, Milan, Italy, 14–18 October 2024. Session B4,7 Constellations and Distributed Systems. [Google Scholar]
- ASI. SAILS Mission, 2025. Available online: https://www.asi.it/tecnologia-ingegneria-micro-e-nanosatelliti/micro-e-nanosatelliti/il-programma-alcor/sails/ (accessed on 31 March 2025).
- Chobotov, Vladimir A. Orbital Mechanics, 3rd ed.; AIAA Education Series; Cambridge University Press: Reston, VA, USA, 2002; Chapter 3.5; ISBN 1-56347-537-5. [Google Scholar]
- Prussing, J.E.; Conway, B.A. Orbital Mechanics; Oxford University Press, Inc.: New York, NY, USA, 1993; Chapter 3.2; ISBN 0-19-507834-9. [Google Scholar]
- Zhu, J. Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 957–961. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Doc 9674 AN/946—World Geodetic System—1984 (WGS-84) Manual, 2nd ed.; International Civil Aviation Organization (ICAO): Montreal, Canada, 2002; Chapter 3. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier, Academic Press: Burlington, MA, USA, 2005; Chapter 2; ISBN 0-12-088584-0. [Google Scholar]
- Beard, R.W.; McLain, T.W. Small Unmanned Aircraft—Theory and Practice, 2nd ed.; Princeton University Press: Woodstock, UK, 2012; Chapters 2 and 13; ISBN 978-0-691-14921-9. [Google Scholar]
- Van Sickle, J. Basic GIS Coordinates, 3rd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2017; Chapter 1; ISBN 978-1-4987-7462-8. [Google Scholar]
- Zhang, J.; Lu, J. Analytical evaluation of geometric dilution of precision for three-dimensional angle-of-arrival target localization in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2020, 16. [Google Scholar] [CrossRef]
- Li, B.; Zhao, K.; Shen, X. Dilution of Precision in Positioning Systems Using Both Angle of Arrival and Time of Arrival Measurements. IEEE Access 2020, 8, 192506–192516. [Google Scholar] [CrossRef]
- Langley, R.B. Dilution of precision. GPS World 1999, 10, 52–59. [Google Scholar]
- Dempster, A. Dilution of precision in angle-of-arrival positioning systems. Electron. Lett. 2006, 42, 291–292. [Google Scholar] [CrossRef]
- Byrd, R.; Gilbert, J.; Nocedal, J. A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming. Math. Program. 2000, 89, 149–185. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization, 7th ed.; Cambridge University Press: Cambridge, UK, 2009; Chapter 5; ISBN 978-0-521-83378-3. [Google Scholar]
- Mathworks. MATLAB Optimization Toolbox User Guide R2024a, 2024. Available online: https://www.mathworks.com/help/optim/index.html (accessed on 31 March 2025).
- Fritsch, F.N.; Carlson, R.E. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
Settings | Solution [°] | Precision |
---|---|---|
< | ||
< | ||
< | ||
Reference | ||
Reference | ||
Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asciolla, M.; Blázquez-García, R.; Cratere, A.; Passaro, V.M.N.; Dell’Olio, F. Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques. Sensors 2025, 25, 3376. https://doi.org/10.3390/s25113376
Asciolla M, Blázquez-García R, Cratere A, Passaro VMN, Dell’Olio F. Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques. Sensors. 2025; 25(11):3376. https://doi.org/10.3390/s25113376
Chicago/Turabian StyleAsciolla, Marcello, Rodrigo Blázquez-García, Angela Cratere, Vittorio M. N. Passaro, and Francesco Dell’Olio. 2025. "Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques" Sensors 25, no. 11: 3376. https://doi.org/10.3390/s25113376
APA StyleAsciolla, M., Blázquez-García, R., Cratere, A., Passaro, V. M. N., & Dell’Olio, F. (2025). Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques. Sensors, 25(11), 3376. https://doi.org/10.3390/s25113376