Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = Cr(VI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3789 KiB  
Article
Rhizobium’s Reductase for Chromium Detoxification, Heavy Metal Resistance, and Artificial Neural Network-Based Predictive Modeling
by Mohammad Oves, Majed Ahmed Al-Shaeri, Huda A. Qari and Mohd Shahnawaz Khan
Catalysts 2025, 15(8), 726; https://doi.org/10.3390/catal15080726 (registering DOI) - 30 Jul 2025
Abstract
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed [...] Read more.
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed a significant tolerance to heavy metals, particularly chromium (900 µg/mL), zinc (700 µg/mL), and copper. In the initial investigation, the bacteria strains were morphologically short-rod, Gram-negative, appeared as light pink colonies on media plates, and were biochemically positive for catalase reaction and the ability to ferment glucose, sucrose, and mannitol. Further, bacterial genomic DNA was isolated and amplified with the 16SrRNA gene and sequencing; the obtained 16S rRNA sequence achieved accession no. HE663761.1 from the NCBI GenBank, and it was confirmed that the strain belongs to the Rhizobium genus by phylogenetic analysis. The strain’s performance was best for high hexavalent chromium [Cr(VI)] reduction at 7–8 pH and a temperature of 30 °C, resulting in a total decrease in 96 h. Additionally, the adsorption isotherm Freundlich and Langmuir models fit best for this study, revealing a large biosorption capacity, with Cr(VI) having the highest affinity. Further bacterial chromium reduction was confirmed by an enzymatic test of nitro reductase and chromate reductase activity in bacterial extract. Further, from the metal biosorption study, an Artificial Neural Network (ANN) model was built to assess the metal reduction capability, considering the variables of pH, temperature, incubation duration, and initial metal concentration. The model attained an excellent expected accuracy (R2 > 0.90). With these features, this bacterial strain is excellent for bioremediation and use for industrial purposes and agricultural sustainability in metal-contaminated agricultural fields. Full article
Show Figures

Figure 1

8 pages, 2473 KiB  
Proceeding Paper
Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 
by Miyu Sato, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 3; https://doi.org/10.3390/chemproc2025017003 - 29 Jul 2025
Viewed by 30
Abstract
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. [...] Read more.
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. In this study, we present a cost-effective photocatalytic approach using graphitic carbon nitride (g-C3N4) modified with 1,3,5-trihydroxybenzene via one-step thermal condensation. The modified photo-catalyst exhibited improved surface area, porosity, visible-light absorption, and a narrowed band gap, all of which contributed to enhanced charge separation. As a result, nearly complete reduction in Cr(VI) was achieved within 90 min under visible-light irradiation. Further optimization of catalyst dosage and EDTA concentration gave even higher reduction efficiency. This work offers a promising strategy for the design of high-performance photocatalysts for environmental remediation. Full article
Show Figures

Figure 1

17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 171
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 230
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

18 pages, 11678 KiB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 193
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

17 pages, 4192 KiB  
Article
Surface Modification of Poly(butyl methacrylate) with Sulfomethylated Resorcinarenes for the Selective Extraction of Dichromate Ion in Aqueous Media
by Cielo Urquijo and Mauricio Maldonado
Analytica 2025, 6(3), 24; https://doi.org/10.3390/analytica6030024 - 17 Jul 2025
Viewed by 171
Abstract
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material [...] Read more.
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material for its removal in the aqueous phase. Poly(butyl methacrylate) (PBMA) was synthesized and modified by impregnation with resorcinarenes derived from long-chain aliphatic aldehydes. To improve the affinity for the dichromate, the resorcinarenes were functionalized with sulfomethyl groups by treatment with Na2SO3. The resulting matrices were characterized using IR-ATR, 1H-NMR, and 13C-NMR, and their adsorbent performance was evaluated via UV-Vis spectroscopy in batch extraction assays. The results showed that the functionalized polymer exhibited a higher adsorption capacity than the base polymer, reaching up to 81.1% removal at pH 5.0 in one hour. These results highlight the potential of PBMA as an effective support and raise a promising research perspective for functionalized resorcinarenes in the development of new materials for the treatment of contaminated water. Full article
Show Figures

Figure 1

23 pages, 8047 KiB  
Article
Efficient Chromium(VI) Removal Through In Situ Nano-Iron Sulfide Formation at the Cathode of Microbial Fuel Cells
by Yanyun Guo, Diwen Cao, Shien Tang, Yujing Hu, Weiliang Dong and Xiayuan Wu
Water 2025, 17(14), 2073; https://doi.org/10.3390/w17142073 - 11 Jul 2025
Viewed by 282
Abstract
This study introduces an advanced strategy for improving microbial fuel cell (MFC) performance in hexavalent chromium (Cr(VI)) wastewater treatment. A high-performance nano-iron sulfide (nano-FeS) hybridized biocathode was developed by regulating glucose concentration and applying an external voltage. The combination of a glucose concentration [...] Read more.
This study introduces an advanced strategy for improving microbial fuel cell (MFC) performance in hexavalent chromium (Cr(VI)) wastewater treatment. A high-performance nano-iron sulfide (nano-FeS) hybridized biocathode was developed by regulating glucose concentration and applying an external voltage. The combination of a glucose concentration of 1000 mg/L and a 0.2 V applied voltage greatly promoted the in situ biosynthesis of nano-FeS, resulting in smaller particle sizes and increased quantities within the biocathode, leading to enhanced electrochemical performance. The MFC with the hybridized biocathode exhibited the highest power density (43.45 ± 1.69 mW/m2) and Cr(VI) removal rate (3.99 ± 0.09 mg/L·h), outperforming the control by 29% and 71%, respectively. The improvements were attributed to the following processes. (1) Nano-FeS provided additional active sites that enhanced electron transfer and electrocatalytic activity, reducing cathode passivation; (2) it protected microorganisms by reducing Cr(VI) toxicity, promoting redox-active substance enrichment and antioxidant enzyme secretion, which maintained microbial activity; (3) the biocathode selectively enriched electroactive and Cr(VI)-reducing bacteria (such as Brucella), fostering a stable and symbiotic microbial community. This study highlights the promising potential of regulating carbon source and external voltage to boost nano-FeS biosynthesis, offering a sustainable and efficient strategy for MFC-based Cr(VI) wastewater treatment with practical implications. Full article
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 754
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

17 pages, 2613 KiB  
Article
The Influence of Mixed Filter Materials on the Performance of Biological Slow Filtration in Rainwater Treatment
by Dawei Mu, Xiangzhen Meng, Huali Zhang and Zhi Luo
Appl. Sci. 2025, 15(13), 7394; https://doi.org/10.3390/app15137394 - 1 Jul 2025
Viewed by 322
Abstract
Freshwater resources are scarce in tropical island areas. Treating rainwater to produce drinking water through biological slow filtration (BSF) technology can significantly alleviate the problem of freshwater shortages. The characteristics of the filter material are the key factors determining the decontamination performance of [...] Read more.
Freshwater resources are scarce in tropical island areas. Treating rainwater to produce drinking water through biological slow filtration (BSF) technology can significantly alleviate the problem of freshwater shortages. The characteristics of the filter material are the key factors determining the decontamination performance of BSF technology. However, most existing studies focus on a single filter material. This study was conducted using volcanic rock and coconut shell activated carbon to compare their pollutant removal characteristics in slightly polluted rainwater during the early stage of BSF operation (from the start of operation to day 6, with the first sampling time being 48 h after operation) and during the stable stage (26 days later) and further explore the influence of their mixing ratio. The results show that in the early stages of operation, the pollutant removal performance of volcanic rock and coconut shell activated carbon is better than that of quartz sand. Among them, coconut shell activated carbon showed average removal rates for NH3-N, TOC, and Cr(VI) that were 6.72, 8.46, and 19.01 percentage points higher than those of volcanic rock, respectively, but its average turbidity removal rate decreased by 5.00%. The removal effect of the mixed filter material was enhanced through the synergistic adsorption mechanism, but most of the improvements were within the standard deviation range and did not exceed the removal range of the single filter material. When the mixing ratio was 1:3, the average total organic carbon removal rate of the filter material was 71.51 ± 0.64%, approximately 0.96 percentage points higher than that of coconut shell activated carbon (70.55 ± 0.42%). While coconut shell activated carbon showed the best removal effect among all single filter materials, this improvement was still within the standard deviation range. Full article
Show Figures

Figure 1

17 pages, 4765 KiB  
Article
Polyethyleneimine-Modified Magnetic Multivalent Iron Derived from Iron-Based Waterwork Sludge for Cr(VI) Adsorption and Reduction
by Jingxi Tie, Huawen Wang, Junkai Zheng, Mengjia Yan, Sihao Shao, Xiaohan Duan and Zhaoyong Ye
Water 2025, 17(13), 1945; https://doi.org/10.3390/w17131945 - 29 Jun 2025
Viewed by 287
Abstract
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption [...] Read more.
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption tests. The results demonstrated that increasing the pH from 2 to 9 significantly decreased the Cr(VI) adsorption capacity from 41.09 mg/g to 15.75 mg/g. The adsorption process was well described by both the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic in nature. The presence of anions (Cl, SO42−, and PO43−) negatively impacted Cr(VI) adsorption, with their inhibitory effects following the order Cl < SO42− < PO43−. Moreover, higher concentrations of these anions led to reduced Cr(VI) adsorption efficiency. After six cycles of use, PEI@MMI(800) retained 79.80% of its initial Cr(VI) adsorption capacity, indicating a loss of 20.20%. Based on the comprehensive characterization of the adsorbent and the results of the Cr(VI) adsorption tests, it was concluded that the removal of Cr(VI) by PEI@MMI(800) involved a combination of electrostatic adsorption, chelation of Cr(VI) by PEI, and reduction of Cr(VI) to Cr(III). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3841 KiB  
Article
Preparation of Magnetic Carbon Composite from Waste Amine-Oxime Resin and Its Adsorption Properties for Chromium
by Haoyu Wang, Xianzhuo Su, Hongdan Yu, Yuhang Yuan, Jing Wu, Wenchao Yang and Chunlin He
Materials 2025, 18(13), 3066; https://doi.org/10.3390/ma18133066 - 27 Jun 2025
Viewed by 291
Abstract
A waste amidoxime chelate resin (WAR) was converted into a magnetic composite adsorbent (MCA) via carbonization and magnetization for the effective removal of Cr(VI). Under optimized conditions (pH = 1, 30 °C, 1 h), the adsorbent achieved a maximum Cr(VI) adsorption capacity of [...] Read more.
A waste amidoxime chelate resin (WAR) was converted into a magnetic composite adsorbent (MCA) via carbonization and magnetization for the effective removal of Cr(VI). Under optimized conditions (pH = 1, 30 °C, 1 h), the adsorbent achieved a maximum Cr(VI) adsorption capacity of 197.63 mg/g. The adsorption process conformed to the pseudo-second-order kinetic model (R2 > 0.98) and Langmuir isotherm model (R2 > 0.99). The materials can be separated by magnetism. The primary mechanism for the adsorption of Cr(VI) involved monolayer chemisorption. FTIR spectroscopy confirmed the dominant role of -C=O, C-O, and Fe-O in the adsorption process. XPS spectroscopy confirmed the dominant role of -C=O and C-O in the adsorption process. The successful conversion of the WAR into an MCA not only mitigates waste accumulation but also provides a cost-effective strategy for heavy metal remediation. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 9334 KiB  
Article
Polyethyleneimine Modified Expanded Vermiculite-Supported Nano Zero-Valent Iron for Cr(VI) Removal from Aqueous Solution
by Xinyu Yang, Yan Mu, Lina Zhang, Dan Sun, Tiantian Jian and Weiliang Tian
Materials 2025, 18(13), 2930; https://doi.org/10.3390/ma18132930 - 20 Jun 2025
Viewed by 812
Abstract
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm [...] Read more.
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm that the PEI modification did not destroy the crystal configuration of EVMT, and when nano zero-valent iron (nZVI) was successfully loaded onto the PEI/EVMT surface, the value of saturation magnetic field was 41.5 emu/g, which could be separated from solution with magnet. The performance of Cr(VI) adsorption onto nZVI@PEI/EVMT was studied, showing that the ideal mass ratio for nZVI@PEI/EVMT was 1:1, and the removal capacity was largest when solution pH was 2. After four adsorption–desorption cycles, the adsorption amounts remained 40.1 mg/g. The Cr(VI) adsorption onto nZVI@PEI/EVMT was more consistent with a pseudo-second-order kinetics equation. Isotherm adsorption data accord with the Langmuir model, which suggests that the adsorption was the monolayer, the maximum adsorption amount was 116.2 mg/g at 30 °C and pH 2, and the adsorption was spontaneous and endothermic. It was inferred that the adsorption mechanisms included electrostatic attraction, reduction, chemical complexation, and co-precipitation. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

10 pages, 395 KiB  
Article
Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile
by Estefanía Bonnail, Yesenia Rojas-Lillo, T. Ángel DelValls and Edgardo Cruces
J. Mar. Sci. Eng. 2025, 13(7), 1199; https://doi.org/10.3390/jmse13071199 - 20 Jun 2025
Viewed by 354
Abstract
Seawater desalination is considered the first option to meet the domestic and industrial requirements of freshwater in desert areas, such as the Atacama Desert (Chile). However, its environmental implications remain poorly characterized. This study evaluated the effects of brine discharge from a desalination [...] Read more.
Seawater desalination is considered the first option to meet the domestic and industrial requirements of freshwater in desert areas, such as the Atacama Desert (Chile). However, its environmental implications remain poorly characterized. This study evaluated the effects of brine discharge from a desalination plant located in Caldera Bay, where fishing and tourism coexist. Sampling was conducted at increasing distances from the outfall to assess physicochemical parameters, sediment metal content, and nutrient concentrations. The results revealed a clear spatial gradient: salinity decreased from 57.75 to 34.87 PSU and nitrate from 10.49 to 4.05 µM. The sediment samples near the outfall showed elevated concentrations of Al, Fe, and Cr(VI). These findings suggest that brine discharge alters water chemistry and sediment quality. This study highlights the need for long-term environmental monitoring and regulatory frameworks to ensure sustainable desalination in sensitive coastal systems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 4367 KiB  
Article
Design of Biomass Adsorbents Based on Bacterial Cellulose and E. crassipes for the Removal of Cr (VI)
by Uriel Fernando Carreño Sayago, Vladimir Ballesteros Ballesteros and Angelica María Lozano
Polymers 2025, 17(12), 1712; https://doi.org/10.3390/polym17121712 - 19 Jun 2025
Viewed by 402
Abstract
Cellulose has been identified as a medium for heavy metal removal due to its high adsorption capacity in relation to these contaminants. Furthermore, cellulose is abundant and can be obtained in a practical and easy way. A notable example is E. crassipes biomass, [...] Read more.
Cellulose has been identified as a medium for heavy metal removal due to its high adsorption capacity in relation to these contaminants. Furthermore, cellulose is abundant and can be obtained in a practical and easy way. A notable example is E. crassipes biomass, which is abundant in wetlands and has not yet been efficiently and sustainably removed. Another biomass that has been used in heavy metal removal projects is bacterial cellulose. Generating this biomass in a laboratory setting is imperative, given its 100% cellulose composition, which ensures optimal adsorption capacities during the development of heavy metal adsorbent systems. Therefore, the objective of this project was to design biomass adsorbents that combine the properties of bacterial and E. crassipes cellulose for Cr(VI) removal. The rationale for combining these two materials is based on the premise that it will produce optimal results, a hypothesis supported by the documented efficiency of bacterial cellulose and the formidable resilience of E. crassipes biomass to elution processes. The second-order model and the Langmuir isotherm fit proved to be the most suitable, indicating that there an occurred interaction between the adsorption sites of these biomasses and Cr (VI). This suggests the presence of a significant number of active sites on the surface of these materials. The EC(50)+BC(50) biomass, with an adsorption capacity of 42 g of Cr(VI) per dollar, is the most cost-effective due to the low cost of E. crassipes and the high capacity of bacterial cellulose. It is a mixture that guarantees high adsorption capacities and facilitates up to seven reuse cycles through elutions with ethylenediaminetetraacetic acid (EDTA). This finding emphasizes the potential of this material for implementation in environmental sustainability initiatives, particularly those focused on the removal of heavy metals, including Cr(VI). Full article
Show Figures

Figure 1

13 pages, 2792 KiB  
Article
Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal
by Tran Ngo Quan, Le Phan Hoang Chieu and Pham Trung Kien
Coatings 2025, 15(6), 733; https://doi.org/10.3390/coatings15060733 - 19 Jun 2025
Viewed by 588
Abstract
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, [...] Read more.
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, 1.2), and hydrothermally treated at 180 °C for 96 h to yield C-S-H with tunable morphology and crystallinity. Comprehensive characterization using XRD, FT-IR, SEM-EDX, and UV-Vis spectroscopy revealed that a Ca/Si ratio of 1.0 produced a well-ordered tobermorite/xonotlite structure with a high surface area and fibrous network, which is optimal for adsorption. Batch adsorption experiments showed that this material achieved rapid and efficient Cr(III) removal, exceeding 90% uptake within 9 h through a combination of surface complexation, ion exchange (Ca2+/Na+ ↔ Cr3+), and precipitation of CaCrO4 phases. Morphological and structural evolution during adsorption was confirmed by SEM, FT-IR, and XRD, while EDX mapping established the progressive incorporation of Cr into the C-S-H matrix. These findings highlight the viability of upcycling industrial waste into advanced C-S-H sorbents for heavy metal remediation. Further work is recommended to address sorbent regeneration, long-term stability, and application to other contaminants, providing a foundation for circular approaches in advanced wastewater treatment. Full article
Show Figures

Figure 1

Back to TopTop