Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Survey
2.2. Analytical Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Educational, Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; United Nations: Paris, France, 2023; ISBN 9789231005763. [Google Scholar]
- Jones, E.; Qadir, M.; Van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The State of Desalination and Brine Production: A Global Outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Sola, I.; Sánchez-Lizaso, J.L.; Muñoz, P.T.; García-Bartolomei, E.; Sáez, C.A.; Zarzo, D. Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile. Water 2019, 11, 2085. [Google Scholar] [CrossRef]
- Vicuña, S.; Daniele, L.; Farías, L.; González, H.; Marquet, P.; Palma-Behnk, R.; Stehr, A.; Urquiza, A.; Fragkou, M.C.; Wagemann, E.; et al. Desalinización: Oportunidades Y desafíos Para Abordar la Inseguridad Hídrica en Chile; Comité Asesor Ministerial Científico sobre Cambio Climático; Ministerio de Ciencia, Tecnología, Conocimiento e Innovación: Santiago, Chile, 2022. [Google Scholar]
- García-Bartolomei, E.; Vásquez, V.; Rebolledo, G.; Vivallo, A.; Acuña-Ruz, T.; Rebolledo, J.; Orrego, R.; Barra, R.O. Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach. Sustainability 2022, 14, 7772. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Environmental Impacts of Desalination and Brine Treatment—Challenges and Mitigation Measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef] [PubMed]
- Thiel, M.; Macaya, E.C.; Acuña, E.; Arntz, W.E.; Bastias, H.; Brokordt, K.; Camus, P.A.; Castilla, J.C.; Castro, L.R.; Cortés, M.; et al. The Humboldt Current System of Northern and Central Chile—Oceanographic Processes, Ecological Interactions and Socioeconomic Feedback. Oceanogr. Mar. Biol. 2007, 45, 195–344. [Google Scholar]
- Marín, V.H.; Escribano, R.; Delgado, L.E.; Olivares, G.; Hidalgo, P. Nearshore Circulation in a Coastal Upwelling Site off the Northern Humboldt Current System. Cont. Shelf. Res. 2001, 21, 1317–1329. [Google Scholar] [CrossRef]
- Bonnail, E.; Díaz-García, A.; Cruces, E.; García, A.; Borrero-Santiago, A.R. Coastal Uses and Contaminant Spread in the Desert Coastal Region of Atacama. Chemosphere 2022, 288, 132519. [Google Scholar] [CrossRef]
- Clark, G.F.; Knott, N.A.; Miller, B.M.; Kelaher, B.P.; Coleman, M.A.; Ushiama, S.; Johnston, E.L. First Large-Scale Ecological Impact Study of Desalination Outfall Reveals Trade-Offs in Effects of Hypersalinity and Hydrodynamics. Water Res. 2018, 145, 757–768. [Google Scholar] [CrossRef]
- Cambridge, M.L.; Zavala-Perez, A.; Cawthray, G.R.; Statton, J.; Mondon, J.; Kendrick, G.A. Effects of Desalination Brine and Seawater with the Same Elevated Salinity on Growth, Physiology and Seedling Development of the Seagrass Posidonia Australis. Mar. Pollut. Bull. 2019, 140, 462–471. [Google Scholar] [CrossRef]
- Sola, I.; Carratalá, A.; Pereira-Rojas, J.; Díaz, M.J.; Rodríguez-Rojas, F.; Sánchez-Lizaso, J.L.; Sáez, C.A. Assessment of Brine Discharges Dispersion for Sustainable Management of SWRO Plants on the South American Pacific Coast. Mar. Pollut. Bull. 2024, 207, 116905. [Google Scholar] [CrossRef]
- Valdes, J.; Castillo, A. Evaluacion de La Calidad Ambiental de Los Sedimentos Marinos En El Sistema de Bahias de Caldera (27 S), Chile. Lat. Am. J. Aquat. Res. 2014, 42, 497–513. [Google Scholar] [CrossRef]
- Sola, I.; Santana-Anticoy, C.; Silva-García, R.; Pérez-Hernández, G.; Pereira-Rojas, J.; Blanco-Murillo, F.; Díaz, M.J.; Sáez, C.A.; Rodríguez-Rojas, F. Evaluating Physico-Chemical and Biological Impacts of Brine Discharges for a Sustainable Desalination Development on South America’s Pacific Coast. J. Hazard. Mater. 2025, 489, 137464. [Google Scholar] [CrossRef]
- Servicio de Evaluación Ambiental (SEA). Available online: https://seia.sea.gob.cl/busqueda/buscarProyectoAction.php?nombre=Planta%20Desaladora%20Bah%EDa%20Caldera (accessed on 10 June 2025).
- Ministry of Public Works of the Government of Chile. Available online: https://concesiones.mop.gob.cl/autoridades-del-mop-conocen-experiencia-de-planta-desalinizadora-de-atacama/ (accessed on 10 June 2025).
- Barrio, R.N.; Sola, I.; Blanco-Murillo, F.; del-Pilar-Ruso, Y.; Fernández-Torquemada, Y.; Sánchez-Lizaso, J.L. Application of Salinity Thresholds in Spanish Brine Discharge Regulations: Energetic and Environmental Implications. Desalination 2021, 501, 114901. [Google Scholar] [CrossRef]
- Atlas, E.L.; Gordon, L.; Hager, S.W.; Park, P.K. A Practical Manual for Use of the Technicon AutoAnalyzer in Seawater Nutrient Analyses; Technical Report 215; Department of Oceanography, Oregon State University: Corvallis, OR, USA, 1971. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- APHA. APHA–AWWA–WPCF, Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Water Works Association: Washington, DC, USA, 1993. [Google Scholar]
- Sola, I.; Fernández-Torquemada, Y.; Forcada, A.; Valle, C.; del Pilar-Ruso, Y.; González-Correa, J.M.; Sánchez-Lizaso, J.L. Sustainable Desalination: Long-Term Monitoring of Brine Discharge in the Marine Environment. Mar. Pollut. Bull. 2020, 161, 111813. [Google Scholar] [CrossRef]
- Sola, I.; Zarzo, D.; Carratalá, A.; Fernández-Torquemada, Y.; de-la-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Sánchez-Lizaso, J.L. Review of the Management of Brine Discharges in Spain. Ocean Coast. Manag. 2020, 196, 105301. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Belkin, N.; Rahav, E.; Elifantz, H.; Kress, N.; Berman-Frank, I. The Effect of Coagulants and Antiscalants Discharged with Seawater Desalination Brines on Coastal Microbial Communities: A Laboratory and in Situ Study from the Southeastern Mediterranean. Water Res. 2017, 110, 321–331. [Google Scholar] [CrossRef]
- Sirota, R.; Winters, G.; Levy, O.; Marques, J.; Paytan, A.; Silverman, J.; Sisma-Ventura, G.; Rahav, E.; Antler, G.; Bar-Zeev, E. Impacts of Desalination Brine Discharge on Benthic Ecosystems. Environ. Sci. Technol. 2024, 58, 5631–5645. [Google Scholar] [CrossRef]
- Saeed, M.O.; Ershath, M.M.; Al-Tisan, I.A. Perspective on Desalination Discharges and Coastal Environments of the Arabian Peninsula. Mar. Environ. Res 2019, 145, 1–10. [Google Scholar] [CrossRef]
- Sadiq, M. Metal Contamination in Sediments from a Desalination Plant Effluent Outfall Area. Sci. Total Environ. 2002, 287, 37–44. [Google Scholar] [CrossRef]
- Tréguer, P.J.; De La Rocha, C.L. The World Ocean Silica Cycle. Annu. Rev. Mar. Sci. 2013, 5, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination Brine Disposal Methods and Treatment Technologies—A Review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.A.; Gafni, A.; Adler, O.; Levy, O.; Bar-Zeev, E. Antiscalants Used in the Desalination Industry Impact the Physiology of the Coral Montipora Capricornis. Water Res. 2023, 229, 119411. [Google Scholar] [CrossRef]
- Rahav, E.; Belkin, N.; Reich, T.; Paytan, A.; Bar-Zeev, E. Evaluating the Effects of Desalination Antiscalants on Phytoplankton and Bacterial Communities in Oligotrophic Environments. Desalination 2024, 592, 118110. [Google Scholar] [CrossRef]
- Hall, L.W.; Anderson, R.D. The Influence of Salinity on the Toxicity of Various Classes of Chemicals to Aquatic Biota. Crit. Rev. Toxicol. 1995, 25, 281–346. [Google Scholar] [CrossRef]
- Dorn, P.B.; Raia, J.C.; Rodgers, J.H.; Jop, K.M.; Dickson, K.L. Hexavalent Chromium as a Reference Toxicant in Effluent Toxicity Tests. Environ. Toxicol. Chem. 1987, 6, 435–444. [Google Scholar] [CrossRef]
- Blanco-Murillo, F.; Díaz, M.J.; Rodríguez-Rojas, F.; Navarrete, C.; Celis-Plá, P.S.M.; Sánchez-Lizaso, J.L.; Sáez, C.A. A Risk Assessment on Zostera Chilensis, the Last Relict of Marine Angiosperms in the South-East Pacific Ocean, Due to the Development of the Desalination Industry in Chile. Sci. Total Environ. 2023, 883, 163538. [Google Scholar] [CrossRef]
- Lattemann, S.; Höpner, T. Environmental Impact and Impact Assessment of Seawater Desalination. Desalination 2008, 220, 1–15. [Google Scholar] [CrossRef]
- Bonnail, E.; Vera, S.; DelValls, T.Á. A New Disruptive Technology for Zero-Brine Discharge: Towards a Paradigm Shift. Appl. Sci. 2023, 13, 13092. [Google Scholar] [CrossRef]
- Lothmann, R.; Sewilam, H. Potential of Innovative Marine Aquaculture Techniques to Close Nutrient Cycles. Rev. Aquac. 2023, 15, 947–964. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Kitazawa, D.; Zhou, J.; Park, S.; Gao, S.; Shen, Y. Bio Mitigation Based on Integrated Multi Trophic Aquaculture in Temperate Coastal Waters: Practice, Assessment, and Challenges. Lat. Am. J. Aquat. Res. 2019, 47, 212–223. [Google Scholar] [CrossRef]
St1 | St2 | St3 | ||
---|---|---|---|---|
Distance from outfall | m | 0 | 500 | 1000 |
Coordinates | 27°04′02″ S | 27°04′25″ S | 27°04′13″ S | |
70°51′8.6″ W | 70°51′20″ W | 70°51′21″ W | ||
Depth | m | 17 | 15 | 18 |
T | °C | 15.28 ± 0.3 | 15.24 ± 0.2 | 15.25 ± 0.3 |
pH | 7.34 ± 0.2 | 7.39 ± 0.1 | 7.84 ± 0.1 | |
EC | µS/cm | 82,330 ± 3130 | 55,530 ± 2652 | 52,790 ± 2673 |
TDS | ppt | 41.16 ± 3.3 | 27.76 ± 2.5 | 26.4 ± 2.8 |
Salinity | PSU | 57.75 ± 3.8 | 36.9 ± 1.1 | 34.87 ± 0.5 |
DO | % | 66 ± 2.4 | 62.2 ± 4.3 | 59.4 ± 3.1 |
Al | mg/kg | 28,955.24 ± 5146.3 | 15,193.62 ± 4151.2 | 5307.12 ± 1280.7 |
As | mg/kg | 205.87 ± 44.1 | 398.01 ± 57.9 | 278.14 ± 64.4 |
B | mg/kg | 193.22 ± 12.8 | 288.1 ± 93.5 | 320.74 ± 33.7 |
Ba | mg/kg | 156.65 ± 21.2 | 60.82 ± 49.7 | 73.19 ± 59.9 |
Bi | mg/kg | <0.02 | <0.02 | 112.73 ± 26.7 |
Ca | mg/kg | 10,744 ± 220 | 15,866 ± 4358 | 144,436 ± 54,628 |
Cr | mg/kg | 79.07 ± 60.1 | 2.8 ± 3.2 | 13.62 ± 5.3 |
Cr(VI) | mg/kg | 94.08 ± 63.2 | 12.95 ± 6.7 | 12.03 ± 9.8 |
Fe | mg/kg | 14,981 ± 2644 | 5931 ± 966 | 4947 ± 163 |
Hf | mg/kg | 1.2 ± 0.4 | 0.6 ± 0.8 | 0.6 ± 0.1 |
Ir | mg/kg | 89.58 ± 10.7 | 166.71 ± 36.4 | 148.4 ± 57.9 |
K | mg/kg | 207 ± 12 | 1487 ± 224 | 733 ± 162 |
Li | mg/kg | 301.23 ± 3.2 | 280.22 ± 49.2 | 305.99 ± 43.5 |
Mg | mg/kg | 1747 ± 192 | 10,815 ± 1717 | 7865 ± 807 |
Mn | mg/kg | 236.96 ± 30.1 | 93.8 ± 8.8 | 510.88 ± 612.1 |
Sn | mg/kg | <0.02 | <0.02 | 3.48 ± 389.2 |
Sr | mg/kg | 687 ± 25 | 1077 ± 218 | 904 ± 398 |
Ti | mg/kg | 927.35 ± 86.1 | 583.33 ± 102.3 | 339.64 ± 87.7 |
Zn | mg/kg | <0.02 | <0.02 | 46.14 ± 26.8 |
Zr | mg/kg | 7.03 ± 0.6 | 6.68 ± 3.7 | 7.66 ± 9.4 |
Station | Nitrate (µM) | Nitrite (µM) | Acid Silicic (µM) | Phosphate (µM) | |
---|---|---|---|---|---|
St1 | av | 10.493 | 1.145 | 9.156 | 2.856 |
sd | 0.908 | 0.189 | 0.663 | 0.295 | |
St2 | av | 3.493 | 0.833 | 6.317 | 2.149 |
sd | 0.305 | 0.097 | 0.806 | 0.362 | |
St3 | av | 4.045 | 0.696 | 6.500 | 2.269 |
sd | 0.002 | 0.122 | 0.442 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnail, E.; Rojas-Lillo, Y.; DelValls, T.Á.; Cruces, E. Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. J. Mar. Sci. Eng. 2025, 13, 1199. https://doi.org/10.3390/jmse13071199
Bonnail E, Rojas-Lillo Y, DelValls TÁ, Cruces E. Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. Journal of Marine Science and Engineering. 2025; 13(7):1199. https://doi.org/10.3390/jmse13071199
Chicago/Turabian StyleBonnail, Estefanía, Yesenia Rojas-Lillo, T. Ángel DelValls, and Edgardo Cruces. 2025. "Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile" Journal of Marine Science and Engineering 13, no. 7: 1199. https://doi.org/10.3390/jmse13071199
APA StyleBonnail, E., Rojas-Lillo, Y., DelValls, T. Á., & Cruces, E. (2025). Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. Journal of Marine Science and Engineering, 13(7), 1199. https://doi.org/10.3390/jmse13071199