Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Coulomb torque

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5678 KB  
Article
Modeling, Dynamic Characterization, and Performance Analysis of a 2.2 kW BLDC Motor Under Fixed Load Torque Levels and Variable Speed Inputs: An Experimental Study
by Ayman Ibrahim Abouseda, Resat Doruk, Ali Emin and Ozgur Akdeniz
Actuators 2025, 14(8), 400; https://doi.org/10.3390/act14080400 - 12 Aug 2025
Viewed by 713
Abstract
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its [...] Read more.
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its speed response to various input signals. Using system identification tools, particularly those provided by MATLAB/Simulink R2024b, an approximation model of the BLDC motor was constructed to represent the motor’s dynamic behavior. The identified model was experimentally validated using various input signals, demonstrating its accuracy and generalizability under different operating conditions. Additionally, a series of mechanical load tests was conducted using the AVL eddy-current dynamometer to evaluate performance under practical operating conditions. Fixed load torques were applied across a range of motor speeds, and multiple torque levels were tested to assess the motor’s dynamic response. Electrical power, mechanical power, and efficiency of the entire system were computed for each case to assess overall system performance. Moreover, the real-time state of charge (SOC) of Lithium-ion (Li-ion) battery was estimated using the Coulomb counting method to analyze the impact of Li-ion battery energy level on the BLDC motor efficiency. The study offers valuable insights into the motor’s dynamic and energetic behavior, forming a foundation for robust control design and real-time application development. Full article
Show Figures

Figure 1

20 pages, 11957 KB  
Article
Improving Simulation Model Accuracy for Friction Stir Welding of AA 2219
by Kennen Brooks, Bryan Ramos, David J. Prymak, Tracy W. Nelson and Michael P. Miles
Materials 2025, 18(5), 1046; https://doi.org/10.3390/ma18051046 - 27 Feb 2025
Viewed by 972
Abstract
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive [...] Read more.
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those seen in the stir zone of the FSW process. As such, the current work employed a recently developed method to measure flow stresses at high strain rates and temperatures in AA 2219-T67, and these data were used in the development of a finite element (FE) simulation of FSW. Because heat generation during FSW is primarily a function of friction between the rapidly spinning tool and the plate, the choice of friction law and associated parameters were also studied with respect to FE model predictions. It was found that the Norton viscoplastic friction law provided the most accurate modeling results, for both the transient and steady-state phases of an FSW plunge experiment. It is likely that the superior performance of the Norton law was its ability to account for temperature and rate sensitivity of the plate material sheared by the tool, while the Tresca-limited Coulomb law favored contact pressure, with essentially no temperature or rate dependence of the local material properties. With optimized friction parameters and more accurate flow stresses for the weld zone, as measured by a high-pressure shear test, a 65% overall reduction in model error was achieved, compared to a model that employed a material law calibrated with hot compression or hot torsion test results. Model error was calculated as an equally weighted comparison of temperatures, torques, and forces with experimentally measured values. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 7856 KB  
Article
Torque Characteristics Analysis of Slotted-Type Axial-Flux Magnetic Coupler in the Misalignment State
by Yutang Qi, Chaojun Yang, Yiwen Zhang, Chao Guo and Amberbir Wondimu Tadesse
Machines 2024, 12(11), 751; https://doi.org/10.3390/machines12110751 - 24 Oct 2024
Cited by 2 | Viewed by 1258
Abstract
In this article, a simple and practical magnetic equivalent charge model is proposed to predict the torque of a slotted-type axial-flux magnetic coupler (SAMC) under conditions of radial misalignment, angle misalignment, and synthetic misalignment. The magnetic field generated by the permanent magnet (PM) [...] Read more.
In this article, a simple and practical magnetic equivalent charge model is proposed to predict the torque of a slotted-type axial-flux magnetic coupler (SAMC) under conditions of radial misalignment, angle misalignment, and synthetic misalignment. The magnetic field generated by the permanent magnet (PM) disk and the induced magnetic field generated by the slotted conductor sheet (CS) are equivalent to the surface magnetic charge, respectively. Particularly, the induced magnetic field produced by eddy current considering skin depth in the conductor sheet is introduced into the magnetic equivalent charge model. Combined with Coulomb’s law of magnetic field, the formulas of torque and axial force are both derived. Using this method, the torques in three cases of misalignment are calculated. Finally, the effectiveness of the model is verified by the finite element method (FEM) and experiment; the results calculated by the magnetic equivalent charge model are basically consistent with those from the finite element method and experiment. The derived formula is suitable for small air gaps, small slip rates, and small radial deflection distances. Additionally, the limitations of the method proposed are discussed, which is of great help for understanding the torque transmission of the magnetic coupler in the misalignment state. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 6266 KB  
Article
Thermal Power Calculation of Interior Permanent Magnet Eddy Current Heater Using Analytical Method
by Honglei Lu, Ling Zhang and Wenpeng Hong
Processes 2024, 12(7), 1457; https://doi.org/10.3390/pr12071457 - 12 Jul 2024
Cited by 4 | Viewed by 1165
Abstract
This paper presents an interior permanent magnet eddy current heater (IPMECH) that can be driven by wind turbine, which can realize the direct conversion of wind energy to thermal energy. A power analysis method for the IPMECH is proposed. The key to this [...] Read more.
This paper presents an interior permanent magnet eddy current heater (IPMECH) that can be driven by wind turbine, which can realize the direct conversion of wind energy to thermal energy. A power analysis method for the IPMECH is proposed. The key to this method is to consider the influence of the skin effect on the distribution of eddy currents based on Coulomb’s law, Maxwell’s equation, and the Lorentz force law. Firstly, the equivalent magnetic circuit model is established, and the mathematical analytical expressions of air gap magnetic flux density (MFD), torque and thermal power of the IPMECH are derived. Then, the air gap MFD, torque and thermal power of the IPMECH are calculated, respectively. Finally, the analytical method (AM) is verified by the finite element method (FEM) and experiments. The results show that the proposed AM is sufficient to calculate the air gap MFD and thermal power of the IPMECH. The AM provides a quick and easy way to optimize and design an IPMECH. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 11033 KB  
Article
Adaptive PI Controller for Speed Control of Electric Drives Based on Model Reference Adaptive Identification
by Yuefei Zuo, Shushu Zhu, Yebing Cui, Chuang Liu and Xiaogang Lin
Electronics 2024, 13(6), 1067; https://doi.org/10.3390/electronics13061067 - 13 Mar 2024
Cited by 2 | Viewed by 2210
Abstract
In this paper, to achieve auto-setting of PI controller gains when mechanical parameters are unknown, two adaptive PI controllers for speed control of electric drives are developed based on model reference adaptive identification. The adaptive linear neuron (ADALINE) neural network is used to [...] Read more.
In this paper, to achieve auto-setting of PI controller gains when mechanical parameters are unknown, two adaptive PI controllers for speed control of electric drives are developed based on model reference adaptive identification. The adaptive linear neuron (ADALINE) neural network is used to interpret the proposed adaptive PI controller. The effect of the low-pass filter used for the feedback speed and the Coulomb friction torque on parameter identification is analysed, and a new motion equation using filtered speed is given. Additionally, a parameter identification method based on unipolar speed reference is provided. The two proposed adaptive PI controllers and the conventional PI controller are compared based on the high-precision digital simulation using MATLAB/Simulink (version R2023a). The simulation results show that both of the two proposed adaptive PI controllers are able to identify mechanical parameters, but the adaptive PI-1 controller outperforms the adaptive PI-2 controller due to its better noise attenuation performance. Full article
(This article belongs to the Special Issue Advances in Control for Permanent Magnet Synchronous Motor (PMSM))
Show Figures

Figure 1

28 pages, 14230 KB  
Article
A Numerical Investigation of the Hydrodynamic Performance of a Pitch-Type Wave Energy Converter Using Weakly and Fully Nonlinear Models
by Sunny Kumar Poguluri, Dongeun Kim and Yoon Hyeok Bae
Energies 2024, 17(4), 898; https://doi.org/10.3390/en17040898 - 15 Feb 2024
Cited by 4 | Viewed by 1669
Abstract
In this study, the performance of a wave energy converter (WEC) rotor under regular and irregular wave conditions was investigated using 3D nonlinear numerical models. Factors such as the power take-off (PTO) load torque, wave periods, spacing of multiple WEC rotors, and wave [...] Read more.
In this study, the performance of a wave energy converter (WEC) rotor under regular and irregular wave conditions was investigated using 3D nonlinear numerical models. Factors such as the power take-off (PTO) load torque, wave periods, spacing of multiple WEC rotors, and wave steepness were analyzed. Two models were employed: a weakly nonlinear model formulated by incorporating the nonlinear restoring moment and Coulomb-type PTO load torque based on the potential flow theory, and a fully nonlinear model based on computational fluid dynamics. The results show that the average power estimated by both numerical models is consistent, with a wave steepness of 0.03 for the range of one-way and two-way PTO load torques, except for the deviations observed in the long range of the one-way PTO load torque. Furthermore, the average power of the WEC rotor under the applied PTO load torque exhibits a quadratic dependency, regardless of the wave steepness. In addition, adopting a one-way PTO load torque was more efficient than adopting a two-way PTO load torque. Therefore, the fully nonlinear model demonstrated its ability to handle a high degree of nonlinearity, surpassing the limitations of the weakly nonlinear model, which was limited to moderate wave steepness. Full article
Show Figures

Figure 1

12 pages, 1512 KB  
Article
Repeated Collision of a Planar Robotic Arm with a Surface Using Generalized Active Forces
by Ahmet Faruk Akhan, Jing Zhao, Daniela Tarnita and Dan B. Marghitu
Machines 2023, 11(8), 773; https://doi.org/10.3390/machines11080773 - 25 Jul 2023
Cited by 1 | Viewed by 1643
Abstract
The periodic impact of a planar two-arm robot is investigated in this study. Lagrange’s equations of motion are developed, and the symbolic expression of the generalized active forces are used for the control torques. The actuator torques derived with generalized active forces are [...] Read more.
The periodic impact of a planar two-arm robot is investigated in this study. Lagrange’s equations of motion are developed, and the symbolic expression of the generalized active forces are used for the control torques. The actuator torques derived with generalized active forces are compared with PD and PID controllers. The robot collides with a rebound on a rough surface. Different nonlinear functions describe the three stages of the impact: elastic compression, elasto-plastic compression, and elastic restitution. A Coulomb model describes the friction force and the sliding velocity at the impact point. At the end of the impact period, the kinetic energy of the non-impacting link is increasing, and the total kinetic energy of the robot decreases. The motion of the robot with generalized active forces controllers is periodic. The important implication of this study is the generalized forces controller and the impact with friction for the periodic robot. Full article
(This article belongs to the Special Issue Motion Optimization of Mechanical Structures)
Show Figures

Figure 1

13 pages, 3287 KB  
Article
Adaptive Multi-Parameter Estimation of Inertial Stabilization Platform with Unknown Load
by Jieji Zheng, Xin Xie, Baoyu Li, Ziping Wan, Ning Chen and Dapeng Fan
Actuators 2023, 12(4), 176; https://doi.org/10.3390/act12040176 - 18 Apr 2023
Cited by 1 | Viewed by 2265
Abstract
In order to improve the state monitoring and adaptive control capability of inertial stabilization platforms (ISPs) with unknown loads, it is necessary to estimate the dynamic parameters comprehensively online. However, most current online estimation methods regard the system as a linear dual-inertia model [...] Read more.
In order to improve the state monitoring and adaptive control capability of inertial stabilization platforms (ISPs) with unknown loads, it is necessary to estimate the dynamic parameters comprehensively online. However, most current online estimation methods regard the system as a linear dual-inertia model which neglects the backlash and nonlinear friction torque. It reduces the accuracy of the model and leads to incomplete and low accuracy of the estimated parameters. The purpose of this research is to achieve a comprehensive and accurate online estimation of multiple parameters of ISPs and lay a foundation for state monitoring and adaptive control of ISPs. First, a dual-inertia model containing backlash and nonlinear friction torque of the motor and load is established. Then, the auto-regressive moving average (ARMA) model of the motor and load is established by the forward Euler method, which clearly expresses the online identification formula of the parameters. On this basis, the adaptive identification method based on the recursive extended least squares (RELS) algorithm is used to realize the online estimation of multiple parameters. The simulation and experimental results show that the proposed adaptive multi-parameter estimation method can realize the simultaneous online identification of the moment of inertia of the load, the damping coefficient of motor and load, the transmission stiffness, the Coulomb friction torque of motor and load, and the backlash, and the steady-state error is less than 10%. Compared with the traditional linear dual-inertia model, the similarity between the model based on the proposed adaptive parameter estimation algorithm and the actual system is increased by 65.3%. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

15 pages, 9169 KB  
Article
Experimental Study on Torsional Shear Testing of Asphalt Mixture
by Guangyuan Wang, Yuhua Li, Jingyun Chen, Yiren Sun, Weiying Wang and Yongjun Liu
Appl. Sci. 2022, 12(23), 12242; https://doi.org/10.3390/app122312242 - 29 Nov 2022
Viewed by 2060
Abstract
In order to research investigations on the shear behavior of asphalt mixture, a new shear testing device is developed which can apply torque to a prismatic specimen. This test configuration incorporates a loading application and instrumentation systems to measure and record the response [...] Read more.
In order to research investigations on the shear behavior of asphalt mixture, a new shear testing device is developed which can apply torque to a prismatic specimen. This test configuration incorporates a loading application and instrumentation systems to measure and record the response of these mixtures. The loading application can be subjected to individual or combined axial and torsional loads; in particular, the axial load can be dynamically controlled to remain constant. The paper first uses the mechanical theory to analyze the stress state of a prismatic specimen under a torsional load in unconfined compression and confined compression, respectively, and illustrates the influence factor, the shear strength parameter, and the failure criterion for the torsional shear test of the asphalt mixture. Then, the size and the preparation procedure of specimen are explained, and the experimental plan is described. Finally, the torsional shear test apparatus is used to conduct two types of shear tests of asphalt mixtures. The type I test in unconfined compression consists of two conditions: under a constant loading speed (2.4 rad/min) at four temperatures (30 C, 40 C, 50 C, and 60 C), and under a constant temperature (40 C) at three loading speeds (2.4 rad/min, 4.0 rad/min, and 8.5 rad/min). The type II test in confined compression is performed under a loading speed of 2.4 rad/min and a temperature of 40 C, at 0.125 MPa, 0.200 MPa, 0.355 MPa, 0.465 MPa, and 0.570 MPa normal stress levels, respectively. The results prove that (1) temperatures, loading speeds, and normal stress levels are the issues to be considered on torsional shear testing; (2) the pure shear model can be realized by the prismatic specimen, therefore, the cohesion average value obtained is 0.519 MPa; (3) the compression-shear model can be achieved by the prismatic specimen similarly, so the cohesion and the friction angle are simulated based on the Mohr–Coulomb failure criterion, which are 0.546 MPa and 44.15°, respectively; and (4) at the high temperature and low normal stress level, the Mohr–Coulomb failure criterion does not agree well with measured data, so the nonlinear failure envelope should not be ignored. Full article
(This article belongs to the Special Issue Advanced Technologies in Asphalt Materials)
Show Figures

Figure 1

11 pages, 2338 KB  
Article
Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA
by Qitao Huang, Peng Wang, Yudong Liu and Bowen Li
Energies 2022, 15(11), 3918; https://doi.org/10.3390/en15113918 - 26 May 2022
Cited by 7 | Viewed by 2480
Abstract
The AQWA software is often used to perform hydrodynamic analysis, and it is highly convenient for performing frequency domain simulations of Pelamis-like wave energy converters. However, hydraulic power take-off (PTO) must be simplified to a linear damping model or a Coulomb torque model [...] Read more.
The AQWA software is often used to perform hydrodynamic analysis, and it is highly convenient for performing frequency domain simulations of Pelamis-like wave energy converters. However, hydraulic power take-off (PTO) must be simplified to a linear damping model or a Coulomb torque model when performing a time domain simulation. Although these simulation methods can reduce the computational complexity, they may not accurately reflect the energy capture characteristics of the hydraulic PTO. By analyzing system factors such as the flow and pressure of each branch of the hydraulic PTO, the output torque of the hydraulic cylinder to the buoy, and the electromagnetic torque of the generator, a relatively complete hydraulic PTO model is obtained, and the model is applied to AQWA using the FORTRAN language. Comparing and analyzing the simulation results of the linear damping model, the Coulomb torque model, and the hydraulic PTO, we found that the simulation results obtained by the linear damping model are quite different from those of the hydraulic PTO, while the torque characteristics, kinematic characteristics and energy capture characteristics of the Coulomb torque model are closer to those of the hydraulic PTO model. Therefore, it is more appropriate to simplify hydraulic PTO to a Coulomb torque model based on AQWA. Full article
Show Figures

Graphical abstract

24 pages, 8405 KB  
Article
Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials
by Stelian Alaci, Florina-Carmen Ciornei and Ionut-Cristian Romanu
Materials 2022, 15(7), 2518; https://doi.org/10.3390/ma15072518 - 29 Mar 2022
Cited by 2 | Viewed by 2355
Abstract
Analogous to the Amonton–Coulomb relation, which states the linear dependency between the dynamic sliding friction and the normal reaction, the rolling friction moment is commonly accepted as proportional to the normal reaction in a concentrated point contact. This hypothesis persists since it gives [...] Read more.
Analogous to the Amonton–Coulomb relation, which states the linear dependency between the dynamic sliding friction and the normal reaction, the rolling friction moment is commonly accepted as proportional to the normal reaction in a concentrated point contact. This hypothesis persists since it gives simple dynamic models and also due to difficulties met in experimental estimations of the rolling friction torques. Recent theoretical studies proved that this dependency is nonlinear even for elastic materials. A special rotor is designed, with an adjustable position for the center of mass but with constant mass and constant axial inertia moment. The pure rolling motion of the rotor on an inclined controlled small slope is studied. The angular acceleration of motion is theoretically deduced, assuming that the rolling friction torque is proportional to the normal force raised at a certain power. The deduced theoretical dynamic model evidences the influence of the eccentricity of the rotor upon the acceleration. For the particular case of linear dependency—the exponent of the power equal to one, the law of motion is independent of the configuration of the rotor. Experimental tests were made using the rotor constructed according to the theoretical model. For two positions of the center of mass, the experimental law of motion on the inclined plane is established by a non-contact method and the two different laws obtained to validate the nonlinear dependence rolling friction torque-normal force. The paper validates in an experimental manner the considered nonlinear assumption. The experimental tests concerning the microtopography of the contacting surfaces reveal that the hypothesis required by Hertzian theory, namely smooth contacting surfaces, is not satisfied. Thus, the distribution of pressure on the contact area does not obey the Hertzian semi-ellipsoidal distribution and further experimental tests are required for quantitative findings on the rolling friction torque-normal force relationship. Full article
Show Figures

Figure 1

60 pages, 6439 KB  
Review
Rotational Disruption of Astrophysical Dust and Ice—Theory and Applications
by Thiem Hoang
Galaxies 2020, 8(3), 52; https://doi.org/10.3390/galaxies8030052 - 6 Jul 2020
Cited by 31 | Viewed by 5446
Abstract
Dust is an essential component of the interstellar medium (ISM) and plays an important role in many different astrophysical processes and phenomena. Traditionally, dust grains are known to be destroyed by thermal sublimation, Coulomb explosions, sputtering, and shattering. The first two mechanisms arise [...] Read more.
Dust is an essential component of the interstellar medium (ISM) and plays an important role in many different astrophysical processes and phenomena. Traditionally, dust grains are known to be destroyed by thermal sublimation, Coulomb explosions, sputtering, and shattering. The first two mechanisms arise from the interaction of dust with intense radiation fields and high-energy photons (extreme UV), which work in a limited astrophysical environment. The present review is focused on a new destruction mechanism present in the dust-radiation interaction that is effective in a wide range of radiation fields and has ubiquitous applications in astrophysics. We first describe this new mechanism of grain destruction, namely rotational disruption induced by Radiative Torques (RATs) or RAdiative Torque Disruption (RATD). We then discuss rotational disruption of nanoparticles by mechanical torques due to supersonic motion of grains relative to the ambient gas, which is termed MEchanical Torque Disruption (METD). These two new mechanisms modify properties of dust and ice (e.g., size distribution and mass), which affects observational properties, including dust extinction, thermal and nonthermal emission, and polarization. We present various applications of the RATD and METD mechanisms for different environments, including the ISM, star-forming regions, astrophysical transients, and surface astrochemistry. Full article
(This article belongs to the Special Issue Dust Evolution in Galaxy and Galaxy Cluster Models)
Show Figures

Figure 1

16 pages, 6094 KB  
Article
Design of a New Bilayer Multipole Electromagnetic Brake System for a Haptic Interface
by Hashim Iqbal and Byung-Ju Yi
Appl. Sci. 2019, 9(24), 5394; https://doi.org/10.3390/app9245394 - 10 Dec 2019
Cited by 8 | Viewed by 6290
Abstract
This paper deals with the design, simulation and experimental verification of a new bilayer multipole electromagnetic brake. The design utilizes the superposition principle of magnetic flux across the inner and outer layers of axially-oriented electromagnetic poles to provide gradual braking about the single [...] Read more.
This paper deals with the design, simulation and experimental verification of a new bilayer multipole electromagnetic brake. The design utilizes the superposition principle of magnetic flux across the inner and outer layers of axially-oriented electromagnetic poles to provide gradual braking about the single axis of rotation. The braking principle exploits the Coulomb friction between the two rigid contact surfaces. Compared with conventional, multi-pole, multi-layer type radial brakes in haptic applications, the proposed design provides high fidelity of free motion through an absolutely disconnected rotor. The design also provides a wide operating range by delaying the saturation limit of a magnetic circuit for a wide range of input power. In this paper, the analytical model of the brake is derived and compared with the FEM-based simulation results. The optimal design obtained from multi-objective optimization was experimentally verified for its capability in haptic applications. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

12 pages, 1356 KB  
Article
Fault Tolerant Control of Electronic Throttles with Friction Changes
by Haiying Qi, Clifford Mayhew, Yujia Zhai, Shuangxin Wang, Dingli Yu, J. Barry Gomm and Qian Zhang
Electronics 2019, 8(9), 918; https://doi.org/10.3390/electronics8090918 - 22 Aug 2019
Cited by 1 | Viewed by 3186
Abstract
To enhance the reliability of the electronic throttle and consequently the vehicles driven by the internal combustion engines, a fault tolerant control strategy is developed in this paper. The proposed method employs a full-order terminal sliding mode control in conjunction with an adaptive [...] Read more.
To enhance the reliability of the electronic throttle and consequently the vehicles driven by the internal combustion engines, a fault tolerant control strategy is developed in this paper. The proposed method employs a full-order terminal sliding mode control in conjunction with an adaptive radial basis function network to estimate change rate of the fault. Fault tolerant control to abrupt and incipient changes in the throttle viscous friction torque coefficient and the throttle coulomb friction torque coefficient is achieved. Whilst the throttle position is driven to track the reference signal, the post-fault dynamics are guaranteed to converge to the equilibrium point in finite time, and the control is smooth without chattering. A nonlinear Simulink model of an electronic throttle is developed with real physical parameters and is used for evaluation of the developed method. A significant change of the throttle friction torque is simulated, and the fault tolerant control system keeps system stability and tracking the reference signal in the presence of the fault. Full article
(This article belongs to the Special Issue Fault Detection and Diagnosis of Intelligent Mechatronic Systems)
Show Figures

Figure 1

66 pages, 1419 KB  
Review
Large-scale Models Reveal the Two-component Mechanics of Striated Muscle
by Robert Jarosch
Int. J. Mol. Sci. 2008, 9(12), 2658-2723; https://doi.org/10.3390/ijms9122658 - 18 Dec 2008
Cited by 14 | Viewed by 16519
Abstract
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion [...] Read more.
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. Full article
Show Figures

Back to TopTop