Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = Copernicus Global Land Service

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 60239 KiB  
Article
Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years
by Shaopeng Li, Xiongxin Xiao, Christoph Neuhaus and Stefan Wunderle
Remote Sens. 2025, 17(1), 117; https://doi.org/10.3390/rs17010117 - 1 Jan 2025
Cited by 1 | Viewed by 1547
Abstract
In this study, the global land surface albedo namely GAC43 was retrieved for the years 1979 to 2020 using Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data onboard National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational (MetOp) satellites. We [...] Read more.
In this study, the global land surface albedo namely GAC43 was retrieved for the years 1979 to 2020 using Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data onboard National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational (MetOp) satellites. We provide a comprehensive retrieval process of the GAC43 albedo, followed by a comprehensive assessment against in situ measurements and three widely used satellite-based albedo products, the third edition of the CM SAF cLoud, Albedo and surface RAdiation (CLARA-A3), the Copernicus Climate Change Service (C3S) albedo product, and MODIS BRDF/albedo product (MCD43). Our quantitative evaluations indicate that GAC43 demonstrates the best stability, with a linear trend of ±0.002 per decade at nearly all pseudo invariant calibration sites (PICS) from 1982 to 2020. In contrast, CLARA-A3 exhibits significant noise before the 2000s due to the limited availability of observations, while C3S shows substantial biases during the same period due to imperfect sensors intercalibrations. Extensive validation at globally distributed homogeneous sites shows that GAC43 has comparable accuracy to C3S, with an overall RMSE of approximately 0.03, but a smaller positive bias of 0.012. Comparatively, MCD43C3 shows the lowest RMSE (~0.023) and minimal bias, while CLARA-A3 displays the highest RMSE (~0.042) and bias (0.02). Furthermore, GAC43, CLARA-A3, and C3S exhibit overestimation in forests, with positive biases exceeding 0.023 and RMSEs of at least 0.028. In contrast, MCD43C3 shows negligible bias and a smaller RMSE of 0.015. For grasslands and shrublands, GAC43 and MCD43C3 demonstrate comparable estimation uncertainties of approximately 0.023, with close positive biases near 0.09, whereas C3S and CLARA-A3 exhibit higher RMSEs and biases exceeding 0.032 and 0.022, respectively. All four albedo products show significant RMSEs around 0.035 over croplands but achieve the highest estimation accuracy better than 0.020 over deserts. It is worth noting that significant biases are typically attributed to insufficient spatial representativeness of the measurement sites. Globally, GAC43 and C3S exhibit similar spatial distribution patterns across most land surface conditions, including an overestimation compared to MCD43C3 and an underestimation compared to CLARA-A3 in forested areas. In addition, GAC43, C3S, and CLARA-A3 estimate higher albedo values than MCD43C3 in low-vegetation regions, such as croplands, grasslands, savannas, and woody savannas. Besides the fact that the new GAC43 product shows the best stability covering the last 40 years, one has to consider the higher proportion of backup inversions before 2000. Overall, GAC43 offers a promising long-term and consistent albedo with good accuracy for future studies such as global climate change, energy balance, and land management policy. Full article
Show Figures

Figure 1

31 pages, 12950 KiB  
Article
Exploring Trends and Variability of Water Quality over Lake Titicaca Using Global Remote Sensing Products
by Vann Harvey Maligaya, Analy Baltodano, Afnan Agramont and Ann van Griensven
Remote Sens. 2024, 16(24), 4785; https://doi.org/10.3390/rs16244785 - 22 Dec 2024
Viewed by 2175
Abstract
Understanding the current water quality dynamics is necessary to ensure that ecological and sociocultural services are provided to the population and the natural environment. Water quality monitoring of lakes is usually performed with in situ measurements; however, these are costly, time consuming, laborious, [...] Read more.
Understanding the current water quality dynamics is necessary to ensure that ecological and sociocultural services are provided to the population and the natural environment. Water quality monitoring of lakes is usually performed with in situ measurements; however, these are costly, time consuming, laborious, and can have limited spatial coverage. Nowadays, remote sensing offers an alternative source of data to be used in water quality monitoring; by applying appropriate algorithms to satellite imagery, it is possible to retrieve water quality parameters. The use of global remote sensing water quality products increased in the last decade, and there are a multitude of products available from various databases. However, in Latin America, studies on the inter-comparison of the applicability of these products for water quality monitoring is rather scarce. Therefore, in this study, global remote sensing products estimating various water quality parameters were explored on Lake Titicaca and compared with each other and sources of data. Two products, the Copernicus Global Land Service (CGLS) and the European Space Agency Lakes Climate Change Initiative (ESA-CCI), were evaluated through a comparison with in situ measurements and with each other for analysis of the spatiotemporal variability of lake surface water temperature (LSWT), turbidity, and chlorophyll-a. The results of this study showed that the two products had limited accuracy when compared to in situ data; however, remarkable performance was observed in terms of exhibiting spatiotemporal variability of the WQ parameters. The ESA-CCI LSWT product performed better than the CGLS product in estimating LSWT, while the two products were on par with each other in terms of demonstrating the spatiotemporal patterns of the WQ parameters. Overall, these two global remote sensing water quality products can be used to monitor Lake Titicaca, currently with limited accuracy, but they can be improved with precise pixel identification, accurate optical water type definition, and better algorithms for atmospheric correction and retrieval. This highlights the need for the improvement of global WQ products to fit local conditions and make the products more useful for decision-making at the appropriate scale. Full article
Show Figures

Figure 1

20 pages, 12334 KiB  
Article
Derivation and Evaluation of LAI from the ICESat-2 Data over the NEON Sites: The Impact of Segment Size and Beam Type
by Yao Wang and Hongliang Fang
Remote Sens. 2024, 16(16), 3078; https://doi.org/10.3390/rs16163078 - 21 Aug 2024
Cited by 3 | Viewed by 1588
Abstract
The leaf area index (LAI) is a critical variable for forest ecosystem processes. Passive optical and active LiDAR remote sensing have been used to retrieve LAI. LiDAR data have good penetration to provide vertical structure distribution and deliver the ability to estimate forest [...] Read more.
The leaf area index (LAI) is a critical variable for forest ecosystem processes. Passive optical and active LiDAR remote sensing have been used to retrieve LAI. LiDAR data have good penetration to provide vertical structure distribution and deliver the ability to estimate forest LAI, such as the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). Segment size and beam type are important for ICESat-2 LAI estimation, as they affect the amount of signal photons returned. However, the current ICESat-2 LAI estimation only covered a limited number of sites, and the performance of LAI estimation with different segment sizes has not been clearly compared. Moreover, ICESat-2 LAIs derived from strong and weak beams lack a comparative analysis. This study derived and evaluated LAI from ICESat-2 data over the National Ecological Observatory Network (NEON) sites in North America. The LAI estimated from ICESat-2 for different segment sizes (20, 100, and 200 m) and beam types (strong beam and weak beam) were compared with those from the airborne laser scanning (ALS) and the Copernicus Global Land Service (CGLS). The results show that the LAI derived from strong beams performs better than that of weak beams because more photon signals are received. The LAI estimated from the strong beam at the 200 m segment size shows the highest consistency with those from the ALS data (R = 0.67). Weak beams also present the potential to estimate LAI and have moderate agreement with ALS (R = 0.52). The ICESat-2 LAI shows moderate consistency with ALS for most forest types, except for the evergreen forest. The ICESat-2 LAI shows satisfactory agreement with the CGLS 300 m LAI product (R = 0.67, RMSE = 1.94) and presents a higher upper boundary. Overall, the ICESat-2 can characterize canopy structural parameters and provides the ability to estimate LAI, which may promote the LAI product generated from the photon-counting LiDAR. Full article
(This article belongs to the Special Issue LiDAR Remote Sensing for Forest Mapping)
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by Raffaele Albano, Teodosio Lacava, Arianna Mazzariello, Salvatore Manfreda, Jan Adamowski and Aurelia Sole
Remote Sens. 2024, 16(16), 3044; https://doi.org/10.3390/rs16163044 - 19 Aug 2024
Cited by 4 | Viewed by 1164
Abstract
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and [...] Read more.
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network. Full article
(This article belongs to the Special Issue Remote Sensing of Climate-Related Hazards)
Show Figures

Graphical abstract

25 pages, 22407 KiB  
Article
Analysing Land Cover Change in the Valencian Community through Landsat Imagery: From 1984 to 2022
by Jose Antonio Sobrino, Sergio Gimeno, Virginia Crisafulli and Álvaro Sobrino-Gómez
Land 2024, 13(7), 1072; https://doi.org/10.3390/land13071072 - 17 Jul 2024
Viewed by 2405
Abstract
Land cover change represents one of the most significant global transformations, which has profound impacts on ecosystems, biological diversity, and the ongoing climate crisis. In this study, our objective was to analyse land cover transformation in the Valencian Community over the last four [...] Read more.
Land cover change represents one of the most significant global transformations, which has profound impacts on ecosystems, biological diversity, and the ongoing climate crisis. In this study, our objective was to analyse land cover transformation in the Valencian Community over the last four decades. Utilising Landsat 5, 8, and 9 summer images, a Random Forest algorithm renowned for its ability to handle large datasets and complex variables, was employed to produce land cover classifications consisting of five categories: ‘Urban Areas’, ‘Dense Vegetation’, ‘Sparse Vegetation’, ‘Water Bodies’, and Other’. The results were validated through in situ measurements comparing with pre-existing products and utilising a confusion matrix. Over the study period, the urban area practically doubled, increasing from approximately 482 to 940 square kilometres. This expansion was concentrated mainly in the proximity of the already existing urban zone and occurred primarily between 1985 and 1990. The Dense and Sparse Vegetation classes exhibit substantial fluctuations over the years, displaying a subtle trend towards a decrease in their cumulative value. Water bodies and Other classes do not show substantial changes over the years. The Random Forest algorithm showed a high Overall Accuracy (OA) of 95% and Kappa values of 93%, showing good agreement with field measurements (88% OA), ESA World Cover (80% OA), and the Copernicus Global Land Service Land Cover Map (73% OA), confirming the effectiveness of this methodology in generating land cover classifications. Full article
Show Figures

Figure 1

16 pages, 8634 KiB  
Article
Exploring Spatial–Temporal Patterns of Air Pollution Concentration and Their Relationship with Land Use
by Lorenzo Gianquintieri, Amruta Umakant Mahakalkar and Enrico Gianluca Caiani
Atmosphere 2024, 15(6), 699; https://doi.org/10.3390/atmos15060699 - 9 Jun 2024
Cited by 5 | Viewed by 2187
Abstract
Understanding the spatial–temporal patterns of air pollution is crucial for mitigation strategies, a task fostered nowadays by the generation of continuous concentration maps by remote sensing technologies. We applied spatial modelling to analyze such spatial–temporal patterns in Lombardy, Italy, one of the most [...] Read more.
Understanding the spatial–temporal patterns of air pollution is crucial for mitigation strategies, a task fostered nowadays by the generation of continuous concentration maps by remote sensing technologies. We applied spatial modelling to analyze such spatial–temporal patterns in Lombardy, Italy, one of the most polluted regions in Europe. We conducted monthly spatial autocorrelation (global and local) of the daily average concentrations of PM2.5, PM10, O3, NO2, SO2, and CO from 2016 to 2020, using 10 × 10 km satellite data from the Copernicus Atmosphere Monitoring Service (CAMS), aggregated on districts of approximately 100,000 population. Land-use classes were computed on identified clusters, and the significance of the differences was evaluated through the Wilcoxon rank-sum test with Bonferroni correction. The global Moran’s I autocorrelation was overall high (>0.6), indicating a strong clustering. The local autocorrelation revealed high–high clusters of PM2.5 and PM10 in the central urbanized zones in winter (January–December), and in the agrarian southern districts in summer and autumn (May–October). The temporal decomposition showed that values of PMs are particularly high in winter. Low–low clusters emerged in the northern districts for all the pollutants except O3. Seasonal peaks for O3 occurred in the summer months, with high–high clusters mostly in the hilly and mildly urban districts in the northwest. These findings elaborate the spatial patterns of air pollution concentration, providing insights for effective land-use-based pollution management strategies. Full article
(This article belongs to the Special Issue Exposure Assessment of Air Pollution (2nd Edition))
Show Figures

Figure 1

13 pages, 6477 KiB  
Article
The Temporal-Stability-Based Irrigation MAPping (TSIMAP) Method: A Virtuous Trade-Off between Accuracy, Flexibility, and Facility for End-Users
by Jacopo Dari, Renato Morbidelli, Pere Quintana-Seguí and Luca Brocca
Water 2024, 16(5), 644; https://doi.org/10.3390/w16050644 - 22 Feb 2024
Cited by 1 | Viewed by 2146
Abstract
Remote sensing technology is an essential tool for tracking human-induced alterations on the water cycle, among which irrigation prevails. The possibility of obtaining detailed and accurate information on the actual irrigation extent through remote-sensing-based approaches is of paramount importance for water resources management. [...] Read more.
Remote sensing technology is an essential tool for tracking human-induced alterations on the water cycle, among which irrigation prevails. The possibility of obtaining detailed and accurate information on the actual irrigation extent through remote-sensing-based approaches is of paramount importance for water resources management. In this study, an update of the TSIMAP (Temporal-Stability-derived Irrigation MAPping) method, originally developed with satellite soil moisture as an input, is proposed. To demonstrate that the flexibility of the approach does not affect its main strength point (i.e., good accuracy in the face of high simplicity for users), a dual analysis relying on 1 km NDVI (Normalised Difference Vegetation Index) instead of soil moisture is carried out over the Ebro basin (Spain); data delivered by the Copernicus Global Land Service (CGLS) are used. First, results of this work are compared with outcomes from the method’s original implementation obtained over a focus area (denominated “Ebro_CATAR”) through satellite soil moisture. In the proposed configuration relying on NDVI, an overall accuracy (OA) up to 93% is found. Results highlight an increase in OA ranging from +2% to +6% depending on the validation strategy with respect to the TSIMAP implementation relying on soil moisture. Then, a basin-scale application is performed, providing performances still satisfactory (OA = 75%) notwithstanding a higher degree of heterogeneity. Full article
Show Figures

Figure 1

23 pages, 9001 KiB  
Article
Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST
by Valentin Louis, Susan E. Page, Kevin J. Tansey, Laurence Jones, Konstantina Bika and Heiko Balzter
Remote Sens. 2024, 16(2), 284; https://doi.org/10.3390/rs16020284 - 10 Jan 2024
Cited by 12 | Viewed by 3391
Abstract
Deforestation is a threat to habitat quality and biodiversity. In intact forests, even small levels of deforestation can have profound consequences for vertebrate biodiversity. The risk hotspots are Borneo, the Central Amazon, and the Congo Basin. Earth observation (EO) now provides regular, high-resolution [...] Read more.
Deforestation is a threat to habitat quality and biodiversity. In intact forests, even small levels of deforestation can have profound consequences for vertebrate biodiversity. The risk hotspots are Borneo, the Central Amazon, and the Congo Basin. Earth observation (EO) now provides regular, high-resolution satellite images from the Copernicus Sentinel missions and other platforms. To assess the impact of forest conversion and forest loss on biodiversity and habitat quality, forest loss in a tiger conservation landscape in Malaysia is analysed using Sentinel-2 imagery and the InVEST habitat quality model. Forest losses are identified from satellites using the random forest classification and validated with PlanetScope imagery at 3–5 m resolution for a test area. Two scenarios are simulated using InVEST, one with and one without the forest loss maps. The outputs of the InVEST model are maps of tiger habitat quality and habitat degradation in northeast Peninsular Malaysia. In addition to forest loss, OpenStreetMap road vectors and the GLC2000 land-cover map are used to model habitat sensitivity to threats from roads, railways, water bodies, and urban areas. The landscape biodiversity score simulation results fall sharply from ~0.8 to ~0.2 for tree-covered land cover when forest loss is included in the habitat quality model. InVEST makes a reasonable assumption that species richness is higher in pristine tropical forests than in agricultural landscapes. The landscape biodiversity score is used to compare habitat quality between administrative areas. The coupled EO/InVEST modelling framework presented here can support decision makers in reaching the targets of the Kunming-Montreal Global Biodiversity Framework. Forest loss information is essential for the quantification of habitat quality and biodiversity in tropical forests. Next generation ecosystem service models should be co-developed alongside EO products to ensure interoperability. Full article
Show Figures

Graphical abstract

19 pages, 11674 KiB  
Article
Downscaling Global Land-Use Scenario Data to the National Level: A Case Study for Belgium
by Parinaz Rashidi, Sopan D. Patil, Aafke M. Schipper, Rob Alkemade and Isabel Rosa
Land 2023, 12(9), 1740; https://doi.org/10.3390/land12091740 - 7 Sep 2023
Cited by 1 | Viewed by 2634
Abstract
Land use change scenarios, and their projected impacts on biodiversity, are highly relevant at local scales but not adequately captured by the coarse spatial resolutions of global land use models. In this study, we used the land use allocation tool of the GLOBIO [...] Read more.
Land use change scenarios, and their projected impacts on biodiversity, are highly relevant at local scales but not adequately captured by the coarse spatial resolutions of global land use models. In this study, we used the land use allocation tool of the GLOBIO 4 model to downscale the Land Use Harmonization v2 (LUH2) data from their original spatial resolution (0.25°) to 100 m and 10 m resolutions, using the country of Belgium as an example. Inputs to the tool included: (1) a reference present-day land cover map at the high spatial resolution, (2) regional land demand projections for three future scenarios, Sustainability (SSP1xRCP2.6), Regional Rivalry (SSP3xRCP6.0), and Fossil-fuelled Development (SSP5xRCP8.5), and (3) raster layers representing the suitability of the grid cells for different land use types. We further investigated the impact of using different reference land cover maps (CORINE at 100 m resolution and ESA WorldCover at 100 m and 10 m resolutions) on the downscaling outcomes. Comparison of downscaled current and future land use maps with the original LUH2 dataset showed that the use of ESA WorldCover as a reference map provides better agreement (RSR: 0.11–0.24, overall accuracy: 0.94–0.98, Kappa: 0.91–0.97) than CORINE (RSR: 0.28–0.33, overall accuracy: 0.90–0.93, Kappa: 0.90–0.91). Additionally, the validation of the present-day downscaled maps showed a good agreement with the independent Copernicus Global Land Service dataset. Our findings suggest that the choice of reference land cover map influences the degree of agreement between the downscaled and the original coarse-grain land-use maps. Moreover, the land use maps produced using our downscaling approach can provide valuable insights into the potential impacts of land use change on biodiversity and can guide local decision-making processes for sustainable land management and conservation efforts. Full article
Show Figures

Figure 1

29 pages, 44178 KiB  
Article
Cloud-Free Global Maps of Essential Vegetation Traits Processed from the TOA Sentinel-3 Catalogue in Google Earth Engine
by Dávid D. Kovács, Pablo Reyes-Muñoz, Matías Salinero-Delgado, Viktor Ixion Mészáros, Katja Berger and Jochem Verrelst
Remote Sens. 2023, 15(13), 3404; https://doi.org/10.3390/rs15133404 - 5 Jul 2023
Cited by 17 | Viewed by 5703
Abstract
Global mapping of essential vegetation traits (EVTs) through data acquired by Earth-observing satellites provides a spatially explicit way to analyze the current vegetation states and dynamics of our planet. Although significant efforts have been made, there is still a lack of global and [...] Read more.
Global mapping of essential vegetation traits (EVTs) through data acquired by Earth-observing satellites provides a spatially explicit way to analyze the current vegetation states and dynamics of our planet. Although significant efforts have been made, there is still a lack of global and consistently derived multi-temporal trait maps that are cloud-free. Here we present the processing chain for the spatiotemporally continuous production of four EVTs at a global scale: (1) fraction of absorbed photosynthetically active radiation (FAPAR), (2) leaf area index (LAI), (3) fractional vegetation cover (FVC), and (4) leaf chlorophyll content (LCC). The proposed workflow presents a scalable processing approach to the global cloud-free mapping of the EVTs. Hybrid retrieval models, named S3-TOA-GPR-1.0-WS, were implemented into Google Earth Engine (GEE) using Sentinel-3 Ocean and Land Color Instrument (OLCI) Level-1B for the mapping of the four EVTs along with associated uncertainty estimates. We used the Whittaker smoother (WS) for the temporal reconstruction of the four EVTs, which led to continuous data streams, here applied to the year 2019. Cloud-free maps were produced at 5 km spatial resolution at 10-day time intervals. The consistency and plausibility of the EVT estimates for the resulting annual profiles were evaluated by per-pixel intra-annually correlating against corresponding vegetation products of both MODIS and Copernicus Global Land Service (CGLS). The most consistent results were obtained for LAI, which showed intra-annual correlations with an average Pearson correlation coefficient (R) of 0.57 against the CGLS LAI product. Globally, the EVT products showed consistent results, specifically obtaining higher correlation than R> 0.5 with reference products between 30 and 60° latitude in the Northern Hemisphere. Additionally, intra-annual goodness-of-fit statistics were also calculated locally against reference products over four distinct vegetated land covers. As a general trend, vegetated land covers with pronounced phenological dynamics led to high correlations between the different products. However, sparsely vegetated fields as well as areas near the equator linked to smaller seasonality led to lower correlations. We conclude that the global gap-free mapping of the four EVTs was overall consistent. Thanks to GEE, the entire OLCI L1B catalogue can be processed efficiently into the EVT products on a global scale and made cloud-free with the WS temporal reconstruction method. Additionally, GEE facilitates the workflow to be operationally applicable and easily accessible to the broader community. Full article
(This article belongs to the Special Issue Remote Sensing of Vegetation Biochemical and Biophysical Parameters)
Show Figures

Figure 1

25 pages, 13670 KiB  
Article
Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations
by Jolanta Siewert and Krzysztof Kroszczynski
Remote Sens. 2023, 15(9), 2389; https://doi.org/10.3390/rs15092389 - 2 May 2023
Cited by 8 | Viewed by 3839
Abstract
Increased computing power has made it possible to run simulations of the Weather Research and Forecasting (WRF) numerical model in high spatial resolution. However, running high-resolution simulations requires a higher-detail mapping of landforms, land use, and land cover. Often, higher-resolution data have limited [...] Read more.
Increased computing power has made it possible to run simulations of the Weather Research and Forecasting (WRF) numerical model in high spatial resolution. However, running high-resolution simulations requires a higher-detail mapping of landforms, land use, and land cover. Often, higher-resolution data have limited coverage or availability. This paper presents the feasibility of using CORINE Land Cover (CLC) land use and land cover data and alternative high-resolution global coverage land use/land cover (LULC) data from Copernicus Global Land Service Land Cover Map (CGLS-LC100) V2.0 in high-resolution WRF simulations (100 × 100 m). Global LULC data with a resolution of 100 m are particularly relevant for areas not covered by CLC. This paper presents the method developed by the authors for reclassifying land cover data from CGLS-LC100 to MODIS land use classes with defined parameters in the WRF model and describes the procedure for their implementation into the model. The obtained simulation results of the basic meteorological parameters from the WRF simulation using CLC, CGLS-LC100 and default geographical data from MODIS were compared to observations from 13 meteorological stations in the Warsaw area. The research has indicated noticeable changes in the forecasts of temperature, relative humidity wind speed, and direction after using higher-resolution LULC data. The verification results show a significant difference in weather predictions in terms of CLC and CGLS-LC100 LULC data implementation. Due to the fact that better results were obtained for CLC simulations than for CGLS-LC100, it is suggested that CLC data are first used for simulations in numerical weather prediction models and to use CGLS-LC100 data when the area is outside of CLC coverage. Full article
Show Figures

Figure 1

23 pages, 6296 KiB  
Article
Fitness for Purpose of Several Fractional Vegetation Cover Products on Monitoring Vegetation Cover Dynamic Change—A Case Study of an Alpine Grassland Ecosystem
by Renjie Huang, Jianjun Chen, Zihao Feng, Yanping Yang, Haotian You and Xiaowen Han
Remote Sens. 2023, 15(5), 1312; https://doi.org/10.3390/rs15051312 - 27 Feb 2023
Cited by 11 | Viewed by 2292
Abstract
Long-time series global fractional vegetation cover (FVC) products have received widespread international publication, and they supply the essential data required for eco-monitoring and simulation study, assisting in the understanding of global warming and preservation of ecosystem stability. However, due to the insufficiency of [...] Read more.
Long-time series global fractional vegetation cover (FVC) products have received widespread international publication, and they supply the essential data required for eco-monitoring and simulation study, assisting in the understanding of global warming and preservation of ecosystem stability. However, due to the insufficiency of high-precision FVC ground-measured data, the accuracy of these FVC products in some regions (such as the Qinghai–Tibet Plateau) is still unknown, which brings a certain impact on eco-environment monitoring and simulation. Here, based on current international mainstream FVC products (including GEOV1 and GEOV2 at Copernicus Global Land Services, GLASS from Beijing Normal University, and MuSyQ from National Earth System Science Data Center), the study of the dynamic change of vegetation cover and its influence factors were conducted in the three-rivers source region, one of the core regions on the Qinghai–Tibet Plateau, via the methods of trend analysis and partial correlation analysis, respectively. Our results found that: (1) The discrepancy in the eco-environment assessment results caused by the inconsistency of FVC products is reflected in the statistical value and the spatial distribution. (2) About 70% of alpine grassland in the three-rivers source region changing trend is controversial. (3) The limiting or driving factors of the alpine grassland change explained via different FVC products were significantly discrepant. Thus, before conducting these studies in the future, the uncertainties of the FVC products utilized should be validated first to acquire the fitness of the FVC products if the accuracy information of these products is unavailable within the study area. In addition, more high-precision FVC ground-measured data should be collected, helping us to validate FVC product uncertainty. Full article
(This article belongs to the Special Issue Remote Sensing of Ecosystems)
Show Figures

Figure 1

20 pages, 3346 KiB  
Article
Supervised Classifications of Optical Water Types in Spanish Inland Waters
by Marcela Pereira-Sandoval, Ana B. Ruescas, Jorge García-Jimenez, Katalin Blix, Jesús Delegido and José Moreno
Remote Sens. 2022, 14(21), 5568; https://doi.org/10.3390/rs14215568 - 4 Nov 2022
Cited by 4 | Viewed by 2891
Abstract
Remote sensing of lake water quality assumes there is no universal method or algorithm that can be applied in a general way on all inland waters, which usually have different in-water components affecting their optical properties. Depending on the place and time of [...] Read more.
Remote sensing of lake water quality assumes there is no universal method or algorithm that can be applied in a general way on all inland waters, which usually have different in-water components affecting their optical properties. Depending on the place and time of year, the lake dynamics, and the particular components of the water, non-tailor-designed algorithms can lead to large errors or lags in the quantification of the water quality parameters, such as the suspended mineral sediments, dissolved organic matter, and chlorophyll-a concentration. Selecting the most suitable algorithm for each type of water is not a simple matter. One way to make selecting the most suitable water quality algorithm easier on each occasion is by knowing ahead of time the type of water being handled. This approach is used, for instance, in the Lake Water Quality production chain of the Copernicus Global Land Service. The objective of this work is to determine which supervised classification approach might give the most accurate results. We use a dataset of manually labeled pixels on lakes and reservoirs in Eastern Spain. High-resolution images from the Multispectral Instrument sensor on board the ESA Sentinel-2 satellite, atmospherically corrected with the Case 2 Regional Coast Colour algorithm, are used as the basis for extracting the pixels for the dataset. Three families of different supervised classifiers have been implemented and compared: the K-nearest neighbor, decision trees, and support vector machine. Based on the results, the most appropriate for our study area is the random forest classifier, which was selected and applied on a series of images to derive the temporal series of the optical water types per lake. An evaluation of the results is presented, and an analysis is made using expert knowledge. Full article
Show Figures

Graphical abstract

28 pages, 81095 KiB  
Article
Satellite-Based Flood Mapping through Bayesian Inference from a Sentinel-1 SAR Datacube
by Bernhard Bauer-Marschallinger, Senmao Cao, Mark Edwin Tupas, Florian Roth, Claudio Navacchi, Thomas Melzer, Vahid Freeman and Wolfgang Wagner
Remote Sens. 2022, 14(15), 3673; https://doi.org/10.3390/rs14153673 - 31 Jul 2022
Cited by 52 | Viewed by 6850
Abstract
Spaceborne Synthetic Aperture Radar (SAR) are well-established systems for flood mapping, thanks to their high sensitivity towards water surfaces and their independence from daylight and cloud cover. Particularly able is the 2014-launched Copernicus Sentinel-1 C-band SAR mission, with its systematic monitoring schedule featuring [...] Read more.
Spaceborne Synthetic Aperture Radar (SAR) are well-established systems for flood mapping, thanks to their high sensitivity towards water surfaces and their independence from daylight and cloud cover. Particularly able is the 2014-launched Copernicus Sentinel-1 C-band SAR mission, with its systematic monitoring schedule featuring global land coverage in a short revisit time and a 20 m ground resolution. Yet, variable environment conditions, low-contrasting land cover, and complex terrain pose major challenges to fully automated flood monitoring. To overcome these issues, and aiming for a robust classification, we formulate a datacube-based flood mapping algorithm that exploits the Sentinel-1 orbit repetition and a priori generated probability parameters for flood and non-flood conditions. A globally applicable flood signature is obtained from manually collected wind- and frost-free images. Through harmonic analysis of each pixel’s full time series, we derive a local seasonal non-flood signal comprising the expected backscatter values for each day-of-year. From those predefined probability distributions, we classify incoming Sentinel-1 images by simple Bayes inference, which is computationally slim and hence suitable for near-real-time operations, and also yields uncertainty values. The datacube-based masking of no-sensitivity resulting from impeding land cover and ill-posed SAR configuration enhances the classification robustness. We employed the algorithm on a 6-year Sentinel-1 datacube over Greece, where a major flood hit the region of Thessaly in 2018. In-depth analysis of model parameters and sensitivity, and the evaluation against microwave and optical reference flood maps, suggest excellent flood mapping skill, and very satisfying classification metrics with about 96% overall accuracy and only few false positives. The presented algorithm is part of the ensemble flood mapping product of the Global Flood Monitoring (GFM) component of the Copernicus Emergency Management Service (CEMS). Full article
Show Figures

Graphical abstract

21 pages, 36109 KiB  
Article
Retrieving Mediterranean Sea Surface Salinity Distribution and Interannual Trends from Multi-Sensor Satellite and In Situ Data
by Michela Sammartino, Salvatore Aronica, Rosalia Santoleri and Bruno Buongiorno Nardelli
Remote Sens. 2022, 14(10), 2502; https://doi.org/10.3390/rs14102502 - 23 May 2022
Cited by 12 | Viewed by 5971
Abstract
Sea surface salinity (SSS) is one of the Essential Climate Variables (ECVs), defined by the Global Climate Observing System (GCOS). Salinity is modified by river discharge, land run-off, precipitation, and evaporation, and it is advected by oceanic currents. In turn, ocean circulation, the [...] Read more.
Sea surface salinity (SSS) is one of the Essential Climate Variables (ECVs), defined by the Global Climate Observing System (GCOS). Salinity is modified by river discharge, land run-off, precipitation, and evaporation, and it is advected by oceanic currents. In turn, ocean circulation, the water cycle, and biogeochemistry are deeply impacted by salinity variations. The Mediterranean Sea represents a hot spot for the variability of salinity. Despite the ever-increasing number of moorings and floating buoys, in situ SSS estimates have low coverage, hindering the monitoring of SSS patterns. Conversely, satellite sensors provide SSS surface data at high spatial and temporal resolution, complementing the sparseness of in situ datasets. Here, we describe a multidimensional optimal interpolation algorithm, specifically configured to provide a new daily SSS dataset at 1/16° grid resolution, covering the entire Mediterranean Sea (Med L4 SSS). The main improvements in this regional algorithm are: the ingestion of satellite SSS estimates from multiple satellite missions (NASA’s Soil Moisture Active Passive (SMAP), ESA’s Soil Moisture and Ocean Salinity (SMOS) satellites), and a new background (first guess), specifically built to improve coastal reconstructions. The multi-sensor Med L4 SSS fields have been validated against independent in situ SSS samples, collected between 2010–2020. They have also been compared with global weekly Copernicus Marine Environment Monitoring Service (CMEMS) and Barcelona Expert Centre (BEC) regional products, showing an improved performance. Power spectral density analyses demonstrated that the Med L4 SSS field achieves the highest effective spatial resolution, among all the datasets analysed. Even if the time series is relatively short, a clear interannual trend is found, leading to a marked salinification, mostly occurring in the Eastern Mediterranean Sea. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop