Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Forest Cover Loss Maps
2.2.2. Global Land-Cover 2000 Dataset
2.2.3. Tx2 Tiger Conservation Landscape Data
2.2.4. Validation Data
2.3. Accuracy Assessment of Forest Cover Loss
2.4. Habitat Quality Modelling with InVEST
- Scenario 1 focused on the impact of transportation infrastructure (roads, rail), human settlements, and agricultural activities on habitat quality.
- Scenario 2 included all the identified impacts from scenario 1 but additionally considered the impacts on habitat quality from forest cover loss from Sentinel-2 satellite imagery.
3. Results
3.1. Change Detection—Mapping Forest Cover Loss
3.2. Habitat Quality Model
3.2.1. Habitat Quality Index (HQI)
3.2.2. Landscape Biodiversity Score (LBS) across Districts and Land-Cover Class
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Strategic Goals | Aichi Biodiversity Targets | EO Related EBV | EO Product Example |
---|---|---|---|
A: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society | Production forests, agriculture production and fisheries are managed sustainably. | Net primary production and secondary productivity, plant phenology; Population structure by age/size class; Disturbance regime | NDVI FPAR Land-cover change Biomass |
B: Reduce the direct pressures on biodiversity and promote sustainable use. | Tourism is sustainably managed and promotes biodiversity conservation. | Ecosystem extent and fragmentation, habitat structure | Land-cover change; Biomass |
At least 20% of terrestrial areas and inland water, and 10% of coastal and marine areas, are conserved through representative system of protected areas and other effective area-based conservation measures | Net primary production and secondary productivity; Ecosystem extent and fragmentation, habitat structure; Disturbance regime | NDVI FPAR Land-cover change Biomass | |
Poaching, illegal harvesting and illegal trade of wildlife, fish and plants are under control and significantly reduced. | Habitat structure, land-cover change, Plant phenology | Near-Real-Time land-cover change | |
C: To improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity. | Invasive alien species and pathways are identified, priority species controlled, and measures are in place to prevent their introduction and establishment. | Ecosystem extent and fragmentation; Population abundance, species distribution; species movement, physiology | Land cover and surrounding matrix; Tracking and remote observation of individuals of an ecosystem; Leaf chlorophyll and water content |
D: Enhance the benefits to all from biodiversity and ecosystem services. | Malaysia has an operational ABS framework that is consistent with the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization. | Ecosystem composition by functional type; Ecosystem extent and fragmentation | Plant functional type determine the productivity of an ecosystem |
Capacity for the implementation of the national and subnational biodiversity strategies, the CBD and other related MEAs has significantly increased. | Ecosystem composition by functional type; Ecosystem extent and fragmentation, Habitat structure, Population abundance, plant phenology and land-cover change; physiology | Plant functional types determine the productivity of an ecosystem; Biomass; Land surface phenology from/vegetation index time series, Land-cover change; Leaf chlorophyll and water content |
References
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental Science: Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and Open-Access Satellite Data Are Key to Biodiversity Conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef]
- Pettorelli, N.; Owen, H.J.F.; Duncan, C. How Do We Want Satellite Remote Sensing to Support Biodiversity Conservation Globally? Methods Ecol. Evol. 2016, 7, 656–665. [Google Scholar] [CrossRef]
- Chapin III, F.S.C.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of Changing Biodiversity. Nature 2000, 405, 6783. [Google Scholar]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.; Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the Concept of Satellite Remote Sensing Essential Biodiversity Variables: Challenges and Future Directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.; Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M. Essential Biodiversity Variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Petrou, Z.I.; Stathaki, T. Remote Sensing for Biodiversity Monitoring: A Review of Methods for Biodiversity Indicator Extraction and Assessment of Progress towards International Targets. Biodivers. Conserv. 2015, 24, 2333–2363. [Google Scholar] [CrossRef]
- Neugarten, R.A.; Langhammer, P.F.; Osipova, E.; Bagstad, K.J.; Bhagabati, N.; Butchart, S.H.; Dudley, N.; Elliott, V.; Gerber, L.R.; Arrellano, C.G.; et al. Tools for Measuring, Modelling, and Valuing Ecosystem Services; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2018; 70p, Available online: https://portals.iucn.org/library/node/47778 (accessed on 11 December 2023).
- Onyia, N.N.; Balzter, H.; Berrio, J.C. Normalized difference vegetation vigour index: A new remote sensing approach to biodiversity monitoring in oil polluted regions. Remote Sens. 2018, 10, 897. [Google Scholar] [CrossRef]
- cepf.net. CEPF. Available online: https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (accessed on 6 April 2018).
- Yong, C. Peninsular Malaysia Orang Asli Village Network (JKOASM), and SACCESS: Deforestation Drivers and Human Rights in Malaysia. Forest Peoples Programme. 2014. Available online: https://www.forestpeoples.org/en/topics/rights-land-natural-resources/publication/2014/deforestation-drivers-and-human-rights-malaysi (accessed on 1 December 2023).
- Convention on Biodiversity, Aichi Biodiversity Targets. 2020. Available online: https://www.cbd.int/sp/targets/ (accessed on 16 December 2023).
- Chanchani, P.; Noon, B.R.; Bailey, L.L.; Warrier, R.A. Conserving Tigers in Working Landscapes. Conserv. Biol. 2016, 30, 649–660. [Google Scholar] [CrossRef]
- Karanth, K.U. Estimating Tiger Panthera Tigris Populations from Camera-Trap Data Using Capture—Recapture Models. Biol. Conserv. 1995, 71, 333–338. [Google Scholar] [CrossRef]
- Hebblewhite, M.; Zimmermann, F.; Li, Z.; Miquelle, D.; Zhang, M.; Sun, H.; Mörschel, F.; Wu, Z.; Sheng, L.; Purekhovsky, A.; et al. Is There a Future for A Mur Tigers in a Restored Tiger Conservation Landscape in N Ortheast C Hina? Anim. Conserv. 2012, 15, 579–592. [Google Scholar]
- Tian, Y.; Wu, J.; Smith, A.T.; Wang, T.; Kou, X.; Ge, J. Population Viability of the Siberian Tiger in a Changing Landscape: Going, Going and Gone? Ecol. Model. 2011, 222, 3166–3180. [Google Scholar] [CrossRef]
- Linkie, M.; Chapron, G.; Martyr, D.J.; Holden, J.; Leader-Williams, N. Assessing the Viability of Tiger Subpopulations in a Fragmented Landscape. J. Appl. Ecol. 2006, 43, 576–586. [Google Scholar] [CrossRef]
- Carter, N.; Levin, S.; Barlow, A.; Grimm, V. Modeling Tiger Population and Territory Dynamics Using an Agent-Based Approach. Ecol. Model. 2015, 312, 347–362. [Google Scholar] [CrossRef]
- Bhagabati, N.K.; Ricketts, T.; Sulistyawan, T.B.S.; Conte, M.; Ennaanay, D.; Hadian, O.; McKenzie, E.; Olwero, N.; Rosenthal, A.; Tallis, H.; et al. Ecosystem Services Reinforce Sumatran Tiger Conservation in Land Use Plans. Biol. Conserv. 2014, 169, 147–156. [Google Scholar] [CrossRef]
- Ren, D.F.; Cao, A.H.; Wang, F.Y. Response and Multi-Scenario Prediction of Carbon Storage and Habitat Quality to Land Use in Liaoning Province, China. Sustainability 2023, 15, 4500. [Google Scholar] [CrossRef]
- Ash, E.; Macdonald, D.W.; Cushman, S.A.; Noochdumrong, A.; Redford, T.; Kaszta, Ż. Optimization of spatial scale, but not functional shape, affects the performance of habitat suitability models: A case study of tigers (Panthera tigris) in Thailand. Landsc. Ecol. 2021, 36, 455–474. [Google Scholar] [CrossRef]
- Rather, T.A.; Kumar, S.; Khan, J.A. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Nat. Sci. Rep. 2020, 10, 11473. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Joshi, A.R.; Dinerstein, E.; Wikramanayake, E.; Anderson, M.L.; Olson, D.; Jones, B.S.; Seidensticker, J.; Lumpkin, S.; Hansen, M.C.; Sizer, N.C.; et al. Tracking Changes and Preventing Loss in Critical Tiger Habitat. Sci. Adv. 2016, 2, e1501675. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D. Measuring Habitat Quality: A Review. Condor 2007, 109, 489–504. [Google Scholar] [CrossRef]
- Stanford University, The Natural Capital Project Habitat Quality User Manual—InVEST. Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/en/habitat_quality.html (accessed on 16 April 2018).
- Mueller, M.; Geist, J. Conceptual Guidelines for the Implementation of the Ecosystem Approach in Biodiversity Monitoring. Ecosphere 2016, 7, e01305. [Google Scholar] [CrossRef]
- King, S.; Vardon, M.; Grantham, H.S.; Eigenraam, M.; Ferrier, S.; Juhn, D.; Larsen, T.; Brown, C.; Turner, K. Linking Biodiversity into National Economic Accounting. Environ. Sci. Policy 2021, 116, 20–29. [Google Scholar] [CrossRef]
- Turner, W. Conservation. Sensing Biodiversity. Science 2014, 346, 301–302. [Google Scholar] [CrossRef]
- Bush, A.; Sollmann, R.; Wilting, A.; Bohmann, K.; Cole, B.; Balzter, H.; Martius, C.; Zlinszky, A.; Calvignac-Spencer, S.; Cobbold, C.A.; et al. Connecting Earth Observation to High-Throughput Biodiversity Data. Nat. Ecol. Evol. 2017, 1, 0176. [Google Scholar] [CrossRef]
- Hill, S.L.; Arnell, A.; Maney, C.; Butchart, S.H.; Hilton-Taylor, C.; Ciciarelli, C.; Davis, C.; Dinerstein, E.; Purvis, A.; Burgess, N.D. Measuring Forest Biodiversity Status and Changes Globally. Front. For. Glob. Chang. 2019, 2, 70. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Stibig, H.-J.; Roy, P.S.; Upik, R.; Agrawal, S.; Joshi, P.; Beuchler, R.; Hildanus; Mubareka, S. The Land Cover Map for South and South East Asia in the Year 2000. GLC2000 Database, European Commision Joint Research Centre. 2003. Available online: http://www-gem.jrc.it/glc2000 (accessed on 8 April 2018).
- Roberts, J.; Balzter, H.; Gou, Y.; Louis, V.; Robb, C. Pyeo: Automated Satellite Imagery Processing; Zenodo: Meyrin, Switzerland, 2020. [Google Scholar] [CrossRef]
- Pacheco-Pascagaza, A.M.; Gou, Y.; Louis, V.; Roberts, J.F.; Rodríguez-Veiga, P.; da Conceição Bispo, P.; Espírito-Santo, F.D.B.; Robb, C.; Upton, C.; Galindo, G.; et al. Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests. Remote Sens. 2022, 14, 707. [Google Scholar] [CrossRef]
- European Space Agency, Sentinel-2 Online User Guides: Applications: Land Monitoring. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/applications/land-monitoring (accessed on 15 December 2023).
- European Space Agency. Sentinel-2—ESA Operational EO Missions—Earth Online—ESA. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 (accessed on 11 May 2018).
- European Space Agency. Sen2Three 1.1.0 Documentation. Available online: https://step.esa.int/thirdparties/sen2three/1.1.0/sen2three-1.1.0.htmldoc/index.html (accessed on 10 August 2018).
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid Tropical Forest Disturbance Alerts Using Landsat Data. Environ. Res. Lett. 2016, 11, 034008. [Google Scholar] [CrossRef]
- Wikramanayake, E.; Dinerstein, E.; Seidensticker, J.; Lumpkin, S.; Pandav, B.; Shrestha, M.; Mishra, H.; Ballou, J.; Johnsingh, A.J.T.; Chestin, I.; et al. A Landscape-Based Conservation Strategy to Double the Wild Tiger Population. Conserv. Lett. 2011, 4, 219–227. [Google Scholar] [CrossRef]
- globalforestwatch.org Tx2 Tiger Conservation Landscapes. 2018. Available online: http://data.globalforestwatch.org/datasets/f50efdadb0234ef392c4ecd8185c1f5f_4 (accessed on 5 April 2018).
- Roberge, J.-M.; Angelstam, P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conserv. Biol. 2004, 18, 76–85. [Google Scholar] [CrossRef]
- WWF The Malayan Tiger. Available online: http://www.wwf.org.my/about_wwf/what_we_do/species_main/tiger/ (accessed on 29 June 2018).
- Hunter, M.; Westgate, M.; Barton, P.; Calhoun, A.; Pierson, J.; Tulloch, A.; Beger, M.; Branquinho, C.; Caro, T.; Gross, J.; et al. Two Roles for Ecological Surrogacy: Indicator Surrogates and Management Surrogates. Ecol. Indic. 2016, 63, 121–125. [Google Scholar] [CrossRef]
- Wikramanayake, E.D.; Dinerstein, E.; Robinson, J.G.; Karanth, U.; Rabinowitz, A.; Olson, D.; Mathew, T.; Hedao, P.; Conner, M.; Hemley, G.; et al. An Ecology-Based Method for Defining Priorities for Large Mammal Conservation: The Tiger as Case Study. Conserv. Biol. 2008, 12, 865–878. [Google Scholar] [CrossRef]
- Global Tiger Forum (GTF). Available online: http://globaltigerforum.org/why-tigers/ (accessed on 10 January 2019).
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Digital Image Interpretation and Analysis. In Remote Sensing and Image Interpretation; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2008; pp. 482–625. [Google Scholar]
- Planet Labs Inc. Planet Imagery Product Specifications; Planet Labs Inc.: San Francisco, CA, USA, 2018; Volume 57. [Google Scholar]
- Olofsson, P.; Arévalo, P.; Espejo, A.B.; Green, C.; Lindquist, E.; McRoberts, R.E.; Sanz, M.J. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 2020, 236, 111492. [Google Scholar] [CrossRef]
- Barsi, Á.; Kugler, Z.; László, I.; Szabó, G.; Abdulmutalib, H.M. Accuracy Dimensions in Remote Sensing. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the ISPRS TC III Mid-Term Symposium “Developments, Technologies and Applications in Remote Sensing”, Beijing, China, 7–10 May 2018; The ISPRS Foundation: Erode, India; Volume XLII-3. Available online: https://isprs-archives.copernicus.org/articles/XLII-3/61/2018/isprs-archives-XLII-3-61-2018.pdf (accessed on 25 December 2023).
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B. Ten GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Harwood, C.E.; Nambiar, E.K.S. Productivity of Acacia and Eucalypt Plantations in Southeast Asia. 2. Trends and Variations. Int. For. Rev. 2014, 16, 249–260. [Google Scholar] [CrossRef]
- Morris, R.J. Anthropogenic Impacts on Tropical Forest Biodiversity: A Network Structure and Ecosystem Functioning Perspective. Philos. Trans. R. Soc. Lond. B 2010, 365, 3709–3718. [Google Scholar] [CrossRef]
- Luskin, M.S.; Brashares, J.S.; Ickes, K.; Sun, I.-F.F.; Fletcher, C.; Wright, S.J.; Potts, M.D. Cross-Boundary Subsidy Cascades from Oil Palm Degrade Distant Tropical Forests. Nat. Commun. 2017, 8, 2231. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.N.; Newbold, T.; Contu, S.; Hill, S.L.L.; Lysenko, I.; De Palma, A.; Phillips, H.R.P.; Alhusseini, T.I.; Bedford, F.E.; Bennett, D.J.; et al. The Database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) Project. Ecol. Evol. 2017, 7, 145–188. [Google Scholar] [CrossRef] [PubMed]
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species. 2023. Available online: https://www.iucnredlist.org/ (accessed on 16 December 2023).
- Linkie, M.; Haidir, I.A.; Nugroho, A.; Dinata, Y. Conserving Tigers Panthera Tigris in Selectively Logged Sumatran Forests. Biol. Conserv. 2008, 141, 2410–2415. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Su, J.; Lang, X.; Liu, W.; Ou, G. Positive Relationship between Species Richness and Aboveground Biomass across Forest Strata in a Primary Pinus Kesiya Forest. Nat. Sci. Rep. 2018, 8, 2227. [Google Scholar] [CrossRef]
- O’Connor, B.; Secades, C.; Penner, J.; Sonnenschein, R.; Skidmore, A.; Burgess, N.D.; Hutton, J.M.; O’Connor, B.; Secades, C.; Penner, J.; et al. Earth Observation as a Tool for Tracking Progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 2015, 1, 19–28. [Google Scholar] [CrossRef]
- GEOBON. What Are EBVs? 2014. Available online: https://geobon.org/ebvs/what-are-ebvs/ (accessed on 16 December 2023).
Predicted Class | Row Totals | User’s Accuracy | Overall Accuracy | |||
---|---|---|---|---|---|---|
No Change | Change | |||||
Reference class | No Change | 223 | 77 | 300 | 74.33% 74.33% | |
Change | 29 126 | 271 474 | 300 600 | 90.33% 79% | ||
Column Totals | 252 349 | 348 551 | 600 900 | |||
Producer’s Accuracy | 88.49% 63.89% | 77.87% 86.02% | ||||
Overall Accuracy | 82.33% 77.44% |
LULC | Habitat Suitability | Impact Factors | ||||
Roads | Rails | Water | Tree Loss | Urban | ||
Tree cover (broadleaved, evergreen) | 1 | 0.8 | 0.7 | 0.6 | 0.9 | 0.8 |
Mosaic (tree cover, natural vegetation) | 1 | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 |
Sparse herbaceous/shrubs | 0.75 | 0.5 | 0.5 | 0.4 | 0.6 | 0.5 |
Cultivated and managed areas | 0.25 | 0.3 | 0.1 | 0.1 | 0.5 | 0.4 |
Mosaic (crops, trees, natural vegetation) | 0.5 | 0.4 | 0.3 | 0.2 | 0.5 | 0.4 |
Threat | Max Distance [km] | Weight | Decay Function |
---|---|---|---|
Roads and rails | 7 | 0.9 and 0.75 | Linear |
Waterways | 3 | 0.5 | Linear |
Forest loss | 4 | 1 | Linear |
Urban areas | 7 | 0.85 | Linear |
Zonal Statistics of Biodiversity Scores | ||||
---|---|---|---|---|
Scenario 1 (Infrastructure Only) | Scenario 2 (with Forest Cover Loss) | |||
District Name: | Mean | SD | Mean | SD |
Pasir Mas | 0.405 | ±0.167 | 0.069 | ±0.101 |
Pasir Putih | 0.389 | ±0.209 | 0.187 | ±0.118 |
Tanah Merah | 0.601 | ±0.255 | 0.078 | ±0.144 |
Tumpat | 0.272 | ±0.215 | 0.274 | ±0.189 |
Kota Bharu | 0.281 | ±0.19 | 0.165 | ±0.102 |
Machang | 0.637 | ±0.334 | 0.239 | ±0.368 |
Besut | 0.738 | ±0.299 | 0.492 | ±0.383 |
Bachok | 0.342 | ±0.174 | 0.241 | ±0.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louis, V.; Page, S.E.; Tansey, K.J.; Jones, L.; Bika, K.; Balzter, H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sens. 2024, 16, 284. https://doi.org/10.3390/rs16020284
Louis V, Page SE, Tansey KJ, Jones L, Bika K, Balzter H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sensing. 2024; 16(2):284. https://doi.org/10.3390/rs16020284
Chicago/Turabian StyleLouis, Valentin, Susan E. Page, Kevin J. Tansey, Laurence Jones, Konstantina Bika, and Heiko Balzter. 2024. "Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST" Remote Sensing 16, no. 2: 284. https://doi.org/10.3390/rs16020284
APA StyleLouis, V., Page, S. E., Tansey, K. J., Jones, L., Bika, K., & Balzter, H. (2024). Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sensing, 16(2), 284. https://doi.org/10.3390/rs16020284