Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Data and Methodology
Indicators | Definition |
---|---|
Mean error (ME) | ME = |
Mean absolute error (MAE) | MAE = |
Root-mean-square error (RMSE) | RMSE = |
Mean squared error (MSE) | MSE = |
Pearson correlation coefficient (R) | R = |
Bias error (BIAS) | BIAS = |
Normalized root-mean-square error (nRMSE) | nRMSE = |
2.2. Study Area and Synoptic Situations
2.3. WRF Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Rozbicki, T.; Kleniewska, M.; Rozbicka, K.; Majewski, G.; Gołaszewski, D. Relating Urban Development and Densification to Temporary Changes in the Air Temperature in Warsaw (Poland). Theor. Appl. Clim. Climatol. 2020, 143, 513–523. [Google Scholar] [CrossRef]
- Magdalena, K.; Krzysztof, B.; Paweł, M.; Jakub, S. Urban Climate Research in Warsaw: The Results of Microclimatic Network Measurements. Geogr. Pol. 2014, 87, 491–504. [Google Scholar] [CrossRef]
- Lorenc, H.; Mazur, A. Współczesne Problemy Klimatu Warszawy (Contemporary Problems of Warsaw Climate); IMGW: Warszawa, Poland, 2003; ISBN 83-88897-10-1. [Google Scholar]
- Lewińska, J. Klimat Miasta: Zasoby, Zagrożenia, Kształtowanie (City Climate: Resources, Threats, Formation); IGPK: Kraków, Poland, 2000; ISBN 8386847956. [Google Scholar]
- Budhiraja, B.; Pathak, P.A.; Acharya, D. Studying Surface and Canopy Layer Urban Heat Island at Micro-Scale Using Multi-Sensor Data in Geographic Information Systems. Int. J. Appl. Geospat. Res. 2018, 9, 36–56. [Google Scholar] [CrossRef]
- Rath, S.S.; Panda, J.; Sarkar, A. Distinct Urban Land Cover Response to Meteorology in WRF Simulated Pre-Monsoon Thunderstorms over the Tropical City of Kolkata. Meteorol. Atmos. Phys. 2022, 134, 76. [Google Scholar] [CrossRef]
- Weather Research and Forecasting Model. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 23 August 2022).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; (No. NCAR/TN-556+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Wang, W.; Bruyère, C.; Duda, M.; Duda, M.; Dudhia, J.; Gill, D.; Kavulich, M.; Werner, K.; Chen, M.; Lin, H.-C.; et al. Weather Research & Forecasting Model. ARW Version 4 Modeling System User’s Guide; Mesoscale and Microscale Meteorology Laboratory NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Carlos, R.-C.; Marie, L.; Fabienne, L.; Oscar, H.; de Arellano Jordi, V.-G.; David, P.; Carlos, Y.; Eric, P.R.; Román Cascón, C. Surface Representation Impacts on Turbulent Heat Fluxes in WRF (v.4.1.3). Geosci. Model. Dev. 2021, 14, 3939–3967. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Mamtimin, A.; Fan, S.; Ju, C. A New Land-Use Dataset for Theweather Research and Forecasting (WRF) Model. Atmosphere 2020, 11, 350. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 18. [Google Scholar] [CrossRef]
- Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5496–5513. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, WA, USA, 2018.
- Pineda, N.; Jorba, O.; Jorge, J.; Baldasano, J.M. Using NOAA AVHRR and SPOT VGT Data to Estimate Surface Parameters: Application to a Mesoscale Meteorological Model. Int. J. Remote Sens. 2004, 25, 129–143. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 55–74. ISBN 978-94-007-7969-3. [Google Scholar]
- Din, S.U.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (Lucc) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. [Google Scholar] [CrossRef]
- Land Cover Products-Global Land Cover Characterization (GLCC), USGS EROS Archive. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc (accessed on 18 September 2022).
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine Learning in Modelling Land-Use and Land Cover-Change (LULCC): Current Status, Challenges and Prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef] [PubMed]
- Siewert, J.; Kroszczynski, K. GIS Data as a Valuable Source of Information for Increasing Resolution of the WRF Model for Warsaw. Remote Sens. 2020, 12, 1881. [Google Scholar] [CrossRef]
- Bielecka, E.; Jenerowicz, A. Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote Sens. 2019, 11, 2017. [Google Scholar] [CrossRef]
- Bielecka, E. Gis Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends. Geosciences 2020, 10, 421. [Google Scholar] [CrossRef]
- Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. CLC2018 Technical Guidelines; Service Contract No 3436/R0-Copernicus/EEA.56665; EEA: Wien, Austria, 2017; ISBN 92-9167-511-3. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers-Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.-E.; Li, L. Copernicus Global Land Operations “Vegetation and Energy” “CGLOPS-1”, PRODUCT USER MANUAL; Zenado: Geneva, Switzerland, 2019; Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_LC100m-V2.0_I2.00.pdf (accessed on 27 February 2023).
- Copernicus Land Service: Global Land Cover/Land Use. Available online: https://zenodo.org/record/3243509#.Y_yiL0PMKUk (accessed on 27 February 2023).
- Tao, H.; Xing, J.; Zhou, H.; Pleim, J.; Ran, L.; Chang, X.; Wang, S.; Chen, F.; Zheng, H.; Li, J. Impacts of Improved Modeling Resolution on the Simulation of Meteorology, Air Quality, and Human Exposure to PM2.5, O3 in Beijing, China. J. Clean. Prod. 2020, 243, 118574. [Google Scholar] [CrossRef]
- Friedl, M.A.; Mciver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- de Meij, A.; Vinuesa, J.F. Impact of SRTM and Corine Land Cover Data on Meteorological Parameters Using WRF. Atmos. Res. 2014, 143, 351–370. [Google Scholar] [CrossRef]
- de Bode, M.; Hedde, T.; Roubin, P.; Durand, P. A method to improve land use representation for weather simulations based on high-resolution data sets—Application to Corine Land Cover data in the WRF model. Earth Space Sci. 2023, 10, e2021EA002123. [Google Scholar] [CrossRef]
- Göndöcs, J.; Breuer, H.; Pongrácz, R.; Bartholy, J. Urban Heat Island Mesoscale Modelling Study for the Budapest Agglomeration Area Using the WRF Model. Urban. Clim. 2017, 21, 66–86. [Google Scholar] [CrossRef]
- Li, H.; Claremar, B.; Wu, L.; Hallgren, C.; Körnich, H.; Ivanell, S.; Sahlée, E. A Sensitivity Study of the WRF Model in Offshore Wind Modeling over the Baltic Sea. Geosci. Front. 2021, 12, 101229. [Google Scholar] [CrossRef]
- Jiménez-Esteve, B.; Udina, M.; Soler, M.R.; Pepin, N.; Miró, J.R. Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees Using the WRF Model. Atmos. Res. 2018, 202, 49–62. [Google Scholar] [CrossRef]
- de Meij, A.; Zittis, G.; Christoudias, T. On the Uncertainties Introduced by Land Cover Data in High-Resolution Regional Simulations. Meteorol. Atmos. Phys. 2019, 131, 1213–1223. [Google Scholar] [CrossRef]
- de Meij, A.; Ojha, N.; Singh, N.; Singh, J.; Poelman, D.R.; Pozzer, A. The Impact of High-Resolution SRTM Topography and Corine Land Cover on Lightning Calculations in WRF. Atmosphere 2022, 13, 1050. [Google Scholar] [CrossRef]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of Land Cover Data on the Simulation of Urban Heat Island for Berlin Using WRF Coupled with Bulk Approach of Noah-LSM. Theor. Appl. Clim. Climatol. 2018, 134, 67–81. [Google Scholar] [CrossRef]
- Schicker, I.; Arnold Arias, D.; Seibert, P. Influences of Updated Land-Use Datasets on WRF Simulations for Two Austrian Regions. Meteorol. Atmos. Phys. 2016, 128, 279–301. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N.; Ojha, N.; Sharma, A.; Pozzer, A.; Kiran Kumar, N.; Rajeev, K.; Gunthe, S.S.; Rao Kotamarthi, V. Effects of Spatial Resolution on WRF v3.8.1 Simulated Meteorology over the Central Himalaya. Geosci. Model. Dev. 2021, 14, 1427–1443. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Land Surface Model and Land Use Data on WRF Model Simulations of Rainfall and Temperature over Lake Tana Basin, Ethiopia. Heliyon 2019, 5, e02469. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Zhang, T.; Wang, W.; Duan, H.; Liu, Y.; Ren, Y.; Pu, Z. Impacts of Land-Use Data on the Simulation of Surface Air Temperature in Northwest China. J. Meteorol. Res. 2018, 32, 896–908. [Google Scholar] [CrossRef]
- Aravind, A.; Srinivas, C.v.; Hegde, M.N.; Seshadri, H.; Mohapatra, D.K. Sensitivity of Surface Roughness Parameters on the Simulation of Boundary Layer Winds over a Complex Terrain Site Kaiga in Western India. Meteorol. Atmos. Phys. 2022, 134, 71. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Lou, W.; Cao, S. Multi-Scale Simulation of Time-Varying Wind Fields for Hangzhou Jiubao Bridge during Typhoon Chan-Hom. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 419–437. [Google Scholar] [CrossRef]
- Baier, F.; Metz-Marconcini, A.; Esch, T.; Schroedter-Homscheidt, M. Impact of Higher-Resolved Satellite-Based Land Cover Classification on near Surface Wind Speed Forecasts. Meteorol. Z. 2022, 31, 101–116. [Google Scholar] [CrossRef]
- Fu, D.; Liu, Y.; Li, H.; Liu, S.; Li, B.; Thapa, S.; Yabo, S.; Sun, X.; Tang, B.; Zuo, J.; et al. Evaluating the Impacts of Land Cover and Soil Texture Changes on Simulated Surface Wind and Temperature. Earth Space Sci. 2020, 7, e2020EA001173. [Google Scholar] [CrossRef]
- Golzio, A.; Ferrarese, S.; Cassardo, C.; Diolaiuti, G.A.; Pelfini, M. Land-Use Improvements in The Weather Research and Forecasting Model over Complex Mountainous Terrain and Comparison of Different Grid Sizes. Bound. Layer. Meteorol. 2021, 180, 319–351. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Instruments and Methods of Observation Volume I-Measurement of Meteorological Variables; WMO: Geneva, Switzerland, 2018; ISBN 978-92-63-10008-5. [Google Scholar]
- Tao, H.; Xing, J.; Zhou, H.; Chang, X.; Li, G.; Chen, L.; Li, J. Impacts of Land Use and Land Cover Change on Regional Meteorology and Air Quality over the Beijing-Tianjin-Hebei Region, China. Atmos. Environ. 2018, 189, 9–21. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European Contribution to the Generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM) Void Filled. Available online: https://earthexplorer.usgs.gov/ (accessed on 28 August 2022).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073; U.S. Department of the Interior: Mission, SD, USA; U.S. Geological Survey: Reston, VA, USA; Rolla Publishing Service Center: Rolla, MO, USA, 2011. Available online: https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf (accessed on 29 April 2023).
- Di Gregorio, A. Land Cover Classification System (LCCS) Classification Concepts and User Manual Software Version 2; UNFAO: Rome, Italy, 2005; ISBN 92-5-105327-8. Available online: https://www.fao.org/3/y7220e/y7220e00.htm (accessed on 29 April 2023).
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System: Classification Concepts and User Manual. United Nations Environment Programme and Food and Agriculture Organization of the United Nations. 2000. Available online: https://www.fao.org/3/x0596e/x0596e00.htm (accessed on 28 February 2023).
- Ladwig, W. Wrf-Python; Version 1.3.2; UCAR/NCAR: Boulder, CO, USA, 2017. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. Forecast. Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; John Wiley & Sons: Chichester, UK, 2012; ISBN 978-0-470-66071-3. [Google Scholar]
- Kendzierski, S.; Czernecki, B.; Kolendowicz, L.; Jaczewski, A. Air Temperature Forecasts’ Accuracy of Selected Short-Term and Long-Term Numerical Weather Prediction Models over Poland. Geofizika 2018, 35, 19–37. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: New York, NY, USA, 2019; ISBN 978-0-12-815823-4. [Google Scholar] [CrossRef]
- Trax Elektronik, The Automatic Road Weather Stations. Available online: https://traxelektronik.pl/new/index.php/en/ (accessed on 18 September 2022).
- Oke, T.R. Siting and Exposure of Meteorological Instruments at Urban Sites. In Air Pollution Modeling and Its Application XVII; Springer: Boston, MA, USA, 2007; pp. 615–631. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; WMO: Vancouver, BC, Canada, 2004; Available online: https://blogs.ubc.ca/toke/files/2015/12/IOM-81-UrbanMetObs.pdf (accessed on 28 February 2023).
- Institute of Meteorology and Water Management-National Research Institute, Archive of Meteorological Observations. Available online: https://danepubliczne.imgw.pl/datastore (accessed on 18 September 2022).
- The Global Forecasting System (GFS) of the National Weather Service NCEP. Available online: https://www.nco.ncep.noaa.gov/pmb/products/gfs/ (accessed on 24 November 2022).
- Kendzierski, S. A Review of Selected Parameterization Schemes of WRF Model over Poland Area in Short-Term Weather Forecast. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. EGU2020-21736 2020. [Google Scholar]
- Bauer, H.S.; Muppa, S.K.; Wulfmeyer, V.; Behrendt, A.; Warrach-Sagi, K.; Späth, F. Multi-Nested WRF Simulations for Studying Planetary Boundary Layer Processes on the Turbulence-Permitting Scale in a Realistic Mesoscale Environment. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2020, 72, 1–28. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Korobov, O.A.; Kiselev, A.V.; Russkikh, I.V.; Kolobov, D.Y.; Shikhovtsev, M.Y. Influence of Atmospheric Flow Structure on Optical Turbulence Characteristics. Appl. Sci. 2023, 13, 1282. [Google Scholar] [CrossRef]
- Ma, H.; Cao, X.; Ma, X.; Su, H.; Jing, Y.; Zhu, K. Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere 2022, 13, 2034. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Bhimireddy, S.R.; Bhaganagar, K. Performance Assessment of Dynamic Downscaling of WRF to Simulate Convective Conditions during Sagebrush Phase 1 Tracer Experiments. Atmosphere 2018, 9, 505. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Muñoz-Esparza, D.; Hu, F.; Yan, C.; Miao, S. Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments. J. Appl. Meteorol. Clim. Climatol. 2020, 59, 1481–1501. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Dörenkämper, M.; Steinfeld, G.; Curran, C. Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems. Wind. Energy Sci. 2019, 4, 563–580. [Google Scholar] [CrossRef]
- Liu, Z.; Barlow, J.F.; Chan, P.-W.; Fung, J.C.H.; Li, Y.; Ren, C.; Mak, H.W.L.; Ng, E. A Review of Progress and Applications of Pulsed Doppler Wind LiDARs. Remote Sens. 2019, 11, 2522. [Google Scholar] [CrossRef]
- Sward, J.A.; Ault, T.R.; Zhang, K.M. Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind. Energy 2023, 262, 125346. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
LC-100 Code | Land Cover Class (CGLS-LC100) | MODIS Code | MODIS Class |
---|---|---|---|
111 | Closed forest, evergreen needle leaf | 1 | Evergreen Needleleaf Forest |
112 | Closed forest, evergreen broad leaf | 2 | Evergreen Broadleaf Forest |
113 | Closed forest, deciduous needle leaf | 3 | Deciduous Needleleaf Forest |
114 | Closed forest, deciduous broad leaf | 4 | Deciduous Broadleaf Forest |
115 | Closed forest, mixed | 5 | Mixed Forest |
116 | Closed forest, unknown | 3 | Deciduous Needleleaf Forest |
121 | Open forest, evergreen needle leaf | 1 | Evergreen Needleleaf Forest |
122 | Open forest, evergreen broad leaf | 2 | Evergreen Broadleaf Forest |
123 | Open forest, deciduous needle leaf | 3 | Deciduous Needleleaf Forest |
124 | Open forest, deciduous broad leaf | 4 | Deciduous Broadleaf Forest |
125 | Open forest, mixed | 5 | Mixed Forest |
126 | Open forest, unknown | 3 | Deciduous Needleleaf Forest |
20 | Shrubs | 7 | Closed Shrublands |
30 | Herbaceous vegetation | 10 | Grasslands |
40 | Cultivated and managed vegetation/agriculture (cropland) | 12 | Croplands |
50 | Urban/built up | 13 | Urban and Build-Up |
60 | Bare/sparse vegetation | 16 | Barren or Sparsely Vegetated |
70 | Snow and Ice | 15 | Snow and Ice |
80 | Permanent water bodies | 21 | Lakes |
90 | Herbaceous wetland | 11 | Permanent Wetlands |
100 | Moss and lichen | 16 | Barren or Sparsely Vegetated |
200 | Open Sea | 17 | Water Bodies |
0 | No input data available | 255 | Unclassified |
No. | Station Name | Coordinates | No. | Station Name | Coordinates |
---|---|---|---|---|---|
1 | Bielany | 52°17′32.675″N 20°58′22.367″E | 10 | Most Polnocny | 52°20′7.439″N 20°57′41.219″E |
2 | Czecha | 52°13′32.231″N 21°9′57.347″E | 11 | Plochocinska | 52°18′23.88″N 20°57′05.84″E |
3 | Drewny | 52°7′38.892″N 21°5′48.407″E | 12 | Pulawska | 52°19′38.963″N 21°1′45.227″E |
4 | Izbicka | 52°10′45.551″N 21°13′58.368″E | 13 | Radzyminska | 52°9′12.6″N 21°1′5.231″E |
5 | Jelonki | 52°13′6.995″N 20°54′33.912″E | 14 | Siekierkowska | 52°16′45.797″N 21°4′9.691″E |
6 | Jerozolimskie | 52°12′14.615″N 20°56′26.555″E | 15 | Torwar | 52°12′9.252″N 21°3′57.887″E |
7 | Krakowska | 52°10′30.719″N 20°56′39.803″E | 16 | Wilanow | 52°13′23.412″N 21°2′39.623″E |
8 | Lazurowa | 52°14′46.5″N 20°53′52.044″E | 17 | ZOO | 52°15′14.147″N 21°1′19.596″E |
9 | Modlinska | 52°20′7.439″N 20°57′41.219″E | 18 | Zolnierska | 52°15′31.56″N 21°8′32.885″E |
Parameters | D1 | D2 | D3 |
---|---|---|---|
Spatial resolution | 2.5 × 2.5 km | 500 × 500 m | 100 × 100 m |
Surface layer scheme | Revised MM5 | Revised MM5 | Revised MM5 |
Planetary boundary layer (PBL) scheme | YSU | none | none |
Radiation scheme | RRTMG | RRTMG | RRTMG |
Microphysics | WSM6 | WSM6 | WSM6 |
Cumulus | none | none | none |
Land surface | Noah | Noah | Noah |
Topographic datasets | SRTM/GMT2010 | SRTM/GMT2010 | SRTM/GMT2010 |
Land use | CLC/CGLS-LC100/MODIS | CLC/CGLS-LC100/MODIS | CLC/CGLS-LC100/MODIS |
Average Statistics | Model Simulation | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Wind Direction (°) |
---|---|---|---|---|---|
Default | 0.98 | −11.29 | 2.15 | 36.46 | |
ME | CLC | 0.79 | −9.75 | 2.01 | 21.79 |
CGLS | 0.85 | −10.31 | 2.19 | 31.52 | |
Default | 1.80 | 15.07 | 2.28 | 80.74 | |
MAE | CLC | 1.65 | 13.97 | 2.22 | 76.43 |
CGLS | 1.68 | 14.09 | 2.35 | 76.20 | |
Default | 2.28 | 17.51 | 2.39 | 99.12 | |
RMSE | CLC | 2.11 | 16.38 | 2.35 | 90.99 |
CGLS | 2.14 | 16.51 | 2.46 | 92.49 | |
Default | 6.03 | 368.93 | 6.57 | 12,415.11 | |
MSE | CLC | 5.21 | 324.56 | 6.31 | 10,047.97 |
CGLS | 5.33 | 331.32 | 6.93 | 10,831.89 |
Average Statistics | Model Simulation | Temperature | Relative Humidity | Wind Speed | Wind Direction |
---|---|---|---|---|---|
Default | 0.81 | 0.63 | 0.46 | 0.23 | |
R | CLC | 0.82 | 0.63 | 0.36 | 0.25 |
CGLS | 0.82 | 0.64 | 0.52 | 0.23 | |
Default | 1.05 | 0.87 | 2.52 | 1.36 | |
BIAS | CLC | 1.04 | 0.89 | 2.47 | 1.27 |
CGLS | 1.02 | 0.88 | 2.56 | 1.33 | |
Default | 10.58 | 22.75 | 105.54 | 67.72 | |
nRMSE (%) | CLC | 9.77 | 21.28 | 103.67 | 62.17 |
CGLS | 9.91 | 21.46 | 108.45 | 63.19 |
Average Statistics | Model Simulation | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Wind Direction (°) |
---|---|---|---|---|---|
Default | 1.14 | −8.31 | 0.14 | 3.00 | |
ME | CLC | 0.93 | −6.78 | −0.16 | −19.00 |
CGLS | 0.94 | −7.14 | 0.20 | −1.60 | |
Default | 1.72 | 12.71 | 0.62 | 30.60 | |
MAE | CLC | 1.64 | 12.00 | 0.68 | 32.00 |
CGLS | 1.65 | 12.02 | 0.74 | 33.00 | |
Default | 2.17 | 14.99 | 0.79 | 39.66 | |
RMSE | CLC | 2.07 | 13.95 | 0.92 | 43.09 |
CGLS | 2.08 | 14.07 | 0.93 | 40.63 | |
Default | 5.52 | 264.35 | 0.62 | 1611.40 | |
MSE | CLC | 4.91 | 219.66 | 0.85 | 1931.20 |
CGLS | 4.97 | 223.48 | 0.90 | 1653.00 |
Average Statistics | Model Simulation | Temperature | Relative Humidity | Wind Speed | Wind Direction |
---|---|---|---|---|---|
Default | 0.79 | 0.62 | 0.47 | 0.94 | |
R | CLC | 0.80 | 0.64 | 0.35 | 0.88 |
CGLS | 0.79 | 0.64 | 0.52 | 0.92 | |
Default | 1.06 | 0.90 | 1.04 | 1.02 | |
BIAS | CLC | 1.05 | 0.92 | 0.98 | 0.90 |
CGLS | 1.05 | 0.92 | 1.06 | 0.99 | |
Default | 10.24 | 19.93 | 18.33 | 21.29 | |
nRMSE (%) | CLC | 9.75 | 18.54 | 21.36 | 23.13 |
CGLS | 9.82 | 18.70 | 21.55 | 21.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siewert, J.; Kroszczynski, K. Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations. Remote Sens. 2023, 15, 2389. https://doi.org/10.3390/rs15092389
Siewert J, Kroszczynski K. Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations. Remote Sensing. 2023; 15(9):2389. https://doi.org/10.3390/rs15092389
Chicago/Turabian StyleSiewert, Jolanta, and Krzysztof Kroszczynski. 2023. "Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations" Remote Sensing 15, no. 9: 2389. https://doi.org/10.3390/rs15092389
APA StyleSiewert, J., & Kroszczynski, K. (2023). Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations. Remote Sensing, 15(9), 2389. https://doi.org/10.3390/rs15092389