Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Cobalt-based superalloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11477 KB  
Article
Effect of Ultrasonic Treatment on Chemical Stripping Behavior of Aluminum Coating on K6509 Co-Based Superalloy
by Yuanyuan Jin, Cheng Xie, Ke Sun, Zehuan Li, Xin Wang, Xin Ma, Hui Wang, Rongrong Shang, Xuxian Zhou, Yidi Li and Yunping Li
Materials 2025, 18(17), 3979; https://doi.org/10.3390/ma18173979 - 25 Aug 2025
Viewed by 727
Abstract
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 [...] Read more.
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 kHz) significantly improves coating removal efficiency, increasing the maximum corrosion rate by 46.49% from 2.5413 × 10−7 g·s−1·mm−2 to 4.7488 × 10−7 g·s−1·mm−2 and reducing removal time from 10 min to 6 min. This enhancement is attributed to cavitation effect of ultrasonic bubbles and the shockwave-accelerated ion diffusion, which together facilitate more efficient coating degradation and results in a smoother surface. In terms of corrosion behavior, the difference in phase composition between the outer layer and the interdiffusion zone (IDZ) plays a decisive role. The outer layer is primarily composed of β-(Co,Ni)Al phase, which is thermodynamically less stable in acidic environments and thus readily dissolves in 10% HNO3. In contrast, the IDZ mainly consists of Cr23C6, which exhibit high chemical stability and a strong tendency to passivate. These characteristics render the IDZ highly resistant to nitric acid attack, thereby forming a protective barrier that limits acid penetration and helps maintain the integrity of the substrate. Full article
Show Figures

Figure 1

21 pages, 4094 KB  
Article
Strategies for Nickel and Cobalt Mobilisation from Ni-Based Superalloy Residue Powders Using a Sustainable and Cost-Effective Bioleaching Method
by Andra D. Constantin, Stephen Hall, Fatemeh Pourhossein and Sebastien Farnaud
Processes 2025, 13(7), 2157; https://doi.org/10.3390/pr13072157 - 7 Jul 2025
Viewed by 625
Abstract
The demand for strategic elements, including nickel and cobalt, increases each year due to rapid technological advancements. However, due to their scarcity and environmental concerns, the development of sustainable recycling processes supported by green-energy technologies is becoming essential. In this study, a process [...] Read more.
The demand for strategic elements, including nickel and cobalt, increases each year due to rapid technological advancements. However, due to their scarcity and environmental concerns, the development of sustainable recycling processes supported by green-energy technologies is becoming essential. In this study, a process relying on indirect bioleaching was used to recover nickel and cobalt from three different superalloy residue powders as a second source of metals, as part of a wider study to recycle superalloys within a waste process. A comparison between the three methods was carried out to analyse the bioleaching mechanisms of the target metals. Acidolysis was selected for further study due to its set-up simplicity and superior recovery rates. Variations in agitation speed of the lixiviant processing the Ni 30167 superalloy revealed that 270 rpm achieved the optimal active metal surface–oxidising agent interaction, with 60% and 70% dissolution rates after 24 h for nickel and cobalt, respectively. For the Re 30168 superalloy, extraction rates of 60% and 50% were obtained in 48 h for nickel and cobalt, respectively. The effect of hydrogen peroxide as an additive to improve metal solubilisation and overcome passivation, are discussed together with the challenges posed by the presence of iron, the materials’ elemental complexity, and its interaction with different oxidising agents. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Graphical abstract

22 pages, 24375 KB  
Article
Effect of Heat Treatment on Microstructure and Residual Stress of a Nickel-Cobalt-Based Superalloy Produced by Laser Powder Bed Fusion
by Chengjun Wang, Renren Zheng, Xiaolong Liu, Meijuan Li and Dongfeng Chen
Metals 2025, 15(4), 405; https://doi.org/10.3390/met15040405 - 4 Apr 2025
Cited by 2 | Viewed by 1039
Abstract
This study comprehensively evaluates a non-weldable nickel-cobalt-based superalloy fabricated using laser powder bed fusion (LPBF) technology. The investigation systematically examined the impact of heat treatment, specifically solution treatment and solution treatment followed by aging treatment, on the microstructural characteristics and the evolution of [...] Read more.
This study comprehensively evaluates a non-weldable nickel-cobalt-based superalloy fabricated using laser powder bed fusion (LPBF) technology. The investigation systematically examined the impact of heat treatment, specifically solution treatment and solution treatment followed by aging treatment, on the microstructural characteristics and the evolution of residual stress within the alloy. The findings indicated that the as-built Ni-Co-based superalloy predominantly consists of equiaxed crystals and epitaxial columnar crystals, with no formation of the γ′ phase observed. After the solution treatment, the alloy experienced equiaxed columnar crystallization, recrystallization, and grain refinement. Additionally, a significant quantity of γ′ phases within the alloy exhibited a specific arrangement and precipitation. Following the aging treatment, there was an observed increase in the average dimensions of both the γ′ phase and the grains within the alloy. The evolution of residual stress distribution perpendicular to the construction direction in the alloy, both before and following heat treatment, was assessed using the contour method. The results showed that heat treatment progressively diminished the residual stress levels within the alloy. Furthermore, this study discusses the interrelationship between residual stress and the microstructural evolutions of nickel-cobalt-based superalloys throughout the heat treatment process. Full article
Show Figures

Figure 1

18 pages, 14531 KB  
Article
Oxidation Behavior of Aluminide Coatings on Cobalt-Based Superalloys by a Vapor Phase Aluminizing Process
by Kuo Ma, Cheng Xie, Yidi Li, Biaobiao Yang, Yuanyuan Jin, Hui Wang, Ziming Zeng, Yunping Li and Xianjue Ye
Materials 2024, 17(23), 5897; https://doi.org/10.3390/ma17235897 - 2 Dec 2024
Cited by 2 | Viewed by 1231
Abstract
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and [...] Read more.
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and a Cr-rich phase diffusion layer. The experimental results showed that the oxidation of the coating at 900–1100 °C all obey the parabolic law. The oxidation rate constants of the coating were between 2.19 × 10−7 and 47.56 × 10−7 mg2·cm−4·s−1. The coating produced metastable θ-Al2O3 at 900 °C and stable α-Al2O3 at 1000 and 1100 °C. As the oxidation temperature increases, the formation of Al2O3 is promoted, consuming large amount of Al in the coating, resulting in the transformation from β-(Co,Ni)Al phase to α-(Co,Ni,Cr) phase. And the decrease in the β phase in the coating led to the dissolution of the diffusion layer. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

12 pages, 32986 KB  
Article
Microstructure Control and Hot Cracking Prevention During Laser Additive Manufacturing of Cobalt-Based Superalloy
by Xuanyu Liu, Xianghui Xiao, Wenjia Xiao, Junbin Zeng, Kuanfang He and Hui Xiao
Crystals 2024, 14(12), 1043; https://doi.org/10.3390/cryst14121043 - 30 Nov 2024
Cited by 3 | Viewed by 1648
Abstract
Hot cracking is a frequent and severe defect that occurs during laser additive manufacturing of superalloys. In this work, a pulsed-wave (PW) laser modulation process was employed to control the solidification microstructure and reduce the hot cracking susceptibility of laser additive manufactured cobalt-based [...] Read more.
Hot cracking is a frequent and severe defect that occurs during laser additive manufacturing of superalloys. In this work, a pulsed-wave (PW) laser modulation process was employed to control the solidification microstructure and reduce the hot cracking susceptibility of laser additive manufactured cobalt-based superalloy. The effects of continuous-wave (CW) and PW laser processing modes on the dendrite morphology, element segregation, eutectic phase, and hot cracking of fabricated Co-based superalloys were investigated. Optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize the microstructural characteristics of samples. A two-color pyrometer was used to measure the molten pool temperature variation under different laser processing modes. The results show that coarse columnar dendrites, chain-like eutectic carbides, and hot cracks were observed in the CW sample. In contrast, the fine equiaxed crystals, discrete eutectic carbides, and low-level residual stresses were obtained to avoid hot cracks, owing to the high cooling rate and the periodic melting and solidification of the molten pool under the PW laser processing mode. This work provides a new method for controlling solidification structure and hot cracking of laser additive manufactured Co-based superalloy. Full article
(This article belongs to the Special Issue Emerging Topics of High-Performance Alloys (2nd Edition))
Show Figures

Figure 1

22 pages, 15362 KB  
Article
Effect of Heat Treatment on Structure Evolution and Mechanical Property Strengthening of Low-Cobalt Nickel-Based Superalloy
by Jia Ju, Yunfei Ma, Jiayin Chen, Liguo Shuai and Yue Zhang
Metals 2024, 14(8), 872; https://doi.org/10.3390/met14080872 - 29 Jul 2024
Cited by 5 | Viewed by 1897
Abstract
In this paper, the microstructure of an alloy was regulated by means of strengthening solution aging, and microstructure observation and composition analysis were carried out by means of an optical microscope and X-ray diffractometer. Combined with the Vickers hardness tester, electronic universal testing [...] Read more.
In this paper, the microstructure of an alloy was regulated by means of strengthening solution aging, and microstructure observation and composition analysis were carried out by means of an optical microscope and X-ray diffractometer. Combined with the Vickers hardness tester, electronic universal testing machine and high-temperature persistent creep testing machine, the mechanical properties and high-temperature properties of the alloy were tested, and the strengthening mechanism of the alloy was explored. The results showed that the dendritic morphology and structure of the alloy decreased with an increase in temperature during the solution process, and the γ′ phase morphology also changed with the solution temperature: oval → cross → cubic. The γ′ phase after solid solution at 1295 °C was closest to the cubic form. Therefore, it is believed that the 1295 °C solution treatment had the best effect. In the aging process, the uniform cubic degree of γ′ phase distribution was the highest at 1090 °C. On the basis of fixed aging temperature (1090 °C), it was found that the volume fraction of the γ′ phase increased significantly after 8 h. The γ′ phase, which was closest to the cubic form, had the largest proportion of precipitation, and the volume fraction increased to 70.3%. The minimum carbide volume was 1.0%. The hardness of the alloy reached 435.8 HV; the yield strength increased to 280.1 MPa; and the durability of the alloy under the conditions of 1000 °C/230 MPa and 870 °C/655 MPa was 99.7 h and 42.7 h, respectively, which achieved the purpose of alloy design. Full article
Show Figures

Figure 1

16 pages, 1182 KB  
Review
Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review
by Eduardo Díez, Rubén Miranda, Juan Manuel López, Arturo Jiménez, Naby Conte and Araceli Rodríguez
Separations 2024, 11(8), 232; https://doi.org/10.3390/separations11080232 - 27 Jul 2024
Cited by 7 | Viewed by 2205
Abstract
At present, cobalt belongs to what are called critical raw materials due to its scarcity and its economic importance. Cobalt is a crucial element in the development of new technologies and applications for decarbonization, with around 40% of cobalt consumption being used for [...] Read more.
At present, cobalt belongs to what are called critical raw materials due to its scarcity and its economic importance. Cobalt is a crucial element in the development of new technologies and applications for decarbonization, with around 40% of cobalt consumption being used for rechargeable battery materials. Additionally, cobalt-based catalysts are used in the production of hydrogen fuel cells, and this element is also employed in the production of superalloys for aerospace and power generation industries. For this reason, it is imperative to increase cobalt recycling by recovering from secondary sources, such as decommissioned lithium-ion batteries. Among the technologies for cobalt recovery, adsorption is a reliable alternative as it allows its recovery even at low concentrations in aqueous solutions and is relatively low in cost. Among the potential adsorbents for cobalt recovery, this paper reviews two of the most promising adsorbents for cobalt recovery from aqueous solutions: zeolitic and carbonaceous materials. Regarding zeolitic materials, the maximum adsorption capacities are reached by FAU-type zeolites. In the case of carbonaceous materials, the actual trend is to obtain activated carbons from a wide range of carbon sources, including waste, the adsorption capacities, on average, being larger than the ones reached with zeolitic materials. Additionally, activated carbons allow, in many cases, the selective separation of cobalt from other ions which are present at the same time in the aqueous solutions such as lithium. Full article
(This article belongs to the Special Issue Development and Applications of Porous Materials in Adsorptions)
Show Figures

Figure 1

17 pages, 5784 KB  
Article
Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity
by Shahriyar Keshavarz, Carelyn E. Campbell and Andrew C. E. Reid
Materials 2024, 17(10), 2458; https://doi.org/10.3390/ma17102458 - 20 May 2024
Cited by 2 | Viewed by 1666
Abstract
This study introduces an advanced computational method aimed at accelerating continuum-scale processes using crystal plasticity approaches to predict mechanical responses in cobalt-based superalloys. The framework integrates two levels, namely, sub-grain and homogenized, at the meso-scale through crystal plasticity finite element (CPFE) platforms. The [...] Read more.
This study introduces an advanced computational method aimed at accelerating continuum-scale processes using crystal plasticity approaches to predict mechanical responses in cobalt-based superalloys. The framework integrates two levels, namely, sub-grain and homogenized, at the meso-scale through crystal plasticity finite element (CPFE) platforms. The model is applicable across a temperature range from room temperature up to 900 °C, accommodating various dislocation mechanisms in the microstructure. The sub-grain level explicitly incorporates precipitates and employs a dislocation density-based constitutive model that is size-dependent. In contrast, the homogenized level utilizes an activation energy-based constitutive model, implicitly representing the γ phase for efficiency in computations. This level considers the effects of composition and morphology on mechanical properties, demonstrating the potential for cobalt-based superalloys to rival nickel-based superalloys. The study aims to investigate the impacts of elements including tungsten, tantalum, titanium, and chromium through the homogenized constitutive model. The model accounts for the locking mechanism to address the cross-slip of screw dislocations at lower temperatures as well as the glide and climb mechanism to simulate diffusions at higher temperatures. The model’s validity is established across diverse compositions and morphologies, as well as various temperatures, through comparison with experimental data. This advanced computational framework not only enables accurate predictions of mechanical responses in cobalt-based superalloys across a wide temperature range, but also provides valuable insights into the design and optimization of these materials for high-temperature applications. Full article
Show Figures

Figure 1

16 pages, 8715 KB  
Article
Investigation of TaC and TiC for Particle Strengthening of Co-Re-Based Alloys
by Eugen Seif, Joachim Rösler, Jonas Werner, Thomas E. Weirich and Joachim Mayer
Materials 2023, 16(23), 7297; https://doi.org/10.3390/ma16237297 - 23 Nov 2023
Cited by 3 | Viewed by 1389
Abstract
Cobalt-Rhenium (Co-Re)-based alloys are currently investigated as potential high-temperature materials with melting temperatures beyond those of nickel-based superalloys. Their attraction stems from the binary Co-Re phase diagram, exhibiting complete miscibility between Co and Re, whereby the melting temperature steadily increases with the Re-content. [...] Read more.
Cobalt-Rhenium (Co-Re)-based alloys are currently investigated as potential high-temperature materials with melting temperatures beyond those of nickel-based superalloys. Their attraction stems from the binary Co-Re phase diagram, exhibiting complete miscibility between Co and Re, whereby the melting temperature steadily increases with the Re-content. Thus, depending on the Re-content, one can tune the melting temperature between that of pure Co (1495 °C) and that of pure Re (3186 °C). Current investigations focus on Re-contents of about 15 at.%, which makes melting with standard equipment still feasible. In addition to solid solution strengthening due to the mixture of Co- and Re-atoms, particle strengthening by tantalum carbide (TaC) and titanium carbide (TiC) precipitates turned out to be promising in recent studies. Yet, it is currently unclear which of the two particle types is the best choice for high temperature applications nor has the strengthening mechanism associated with the monocarbide (MC)-precipitates been elucidated. To address these issues, we perform compression tests at ambient and elevated temperatures on the particle-free base material containing 15 at.% of rhenium (Re), 5 at.% of chromium (Cr) and cobalt (Co) as balance (Co-15Re-5Cr), as well as on TaC- and TiC-containing variants. Additionally, transmission electron microscopy is used to analyze the shape of the precipitates and their orientation relationship to the matrix. Based on these investigations, we show that TiC and TaC are equally suited for precipitation strengthening of Co-Re-based alloys and identify climb over the elongated particles as a rate controlling particle strengthening mechanism at elevated temperatures. Furthermore, we show that the Re-atoms are remarkably strong obstacles to dislocation motion, which are overcome by thermal activation at elevated temperatures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 6452 KB  
Article
Evolution of Recrystallization Texture in A286 Iron-Based Superalloy Thin Plates Rolled via Various Routes
by Renjie Zhang, Chi Zhang, Zeyu Wang and Jinlong Liu
Metals 2023, 13(9), 1527; https://doi.org/10.3390/met13091527 - 28 Aug 2023
Cited by 2 | Viewed by 2278
Abstract
The A286 iron-based superalloy has wide-ranging applications in replacing expensive nickel-based and cobalt-based superalloy to manufacture the turbine disk as well as the pipelines and valves of the fourth-generation supercritical water reactor (SCWR) working below 650 °C. The recrystallization texture importantly affects the [...] Read more.
The A286 iron-based superalloy has wide-ranging applications in replacing expensive nickel-based and cobalt-based superalloy to manufacture the turbine disk as well as the pipelines and valves of the fourth-generation supercritical water reactor (SCWR) working below 650 °C. The recrystallization texture importantly affects the mechanical properties and oxidation resistance of superalloys. However, very few investigations are available on the recrystallisation texture of A286 alloy. The current work reports the texture of A286 alloy fabrication using various rolling routes, including one-stage cold rolling with the rolling rates of 83% (Route I) and 91% (Route II), and two-stage cold rolling with the rolling rate of 83% + 50% (Route III). Route III is preferentially recommended to manufacture A286 alloy thin plates due to the obviously reduced work hardening as well as the weakened recrystallization texture and anisotropy; moreover, compared with other routes, the recrystallized grain size of Route III did not significantly coarsen. We also revealed the mechanism for the effect of cold rolling textures on the final recrystallization texture and the role of the deformation twin in {110} <115> grain. In this study, recrystallization texture develops through two independent mechanisms related to different deformation microstructures, including the recrystallization texture inherited from deformation texture and the recrystallization texture depended on deformation twins. Full article
(This article belongs to the Special Issue Microalloying in Ferrous and Non-ferrous Alloys)
Show Figures

Figure 1

10 pages, 4242 KB  
Article
Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy
by Jingzhe Wang, Siyu Zhang, Liang Jiang, Shesh Srivatsa and Zaiwang Huang
Materials 2023, 16(17), 5776; https://doi.org/10.3390/ma16175776 - 23 Aug 2023
Viewed by 1580
Abstract
With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments [...] Read more.
With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings. Full article
Show Figures

Figure 1

16 pages, 5650 KB  
Article
Investigation of the Layer Effects Formed by W-EDM on Electrochemical Grooving of Stellite 21
by Semih Ekrem Anil, Hasan Demirtas, Adnan Kalayci and Abdulkadir Cebi
Machines 2023, 11(8), 823; https://doi.org/10.3390/machines11080823 - 10 Aug 2023
Cited by 1 | Viewed by 1749
Abstract
Machining hard-to-cut materials, such as cobalt (Co)-based superalloys, is a common problem in manufacturing industries. Background: wire electrical discharge machining (W-EDM) is one of the widely used cutting processes that causes layer (white layer—WL and heat-affected zone—HAZ) formation, and microcracks on the material’s [...] Read more.
Machining hard-to-cut materials, such as cobalt (Co)-based superalloys, is a common problem in manufacturing industries. Background: wire electrical discharge machining (W-EDM) is one of the widely used cutting processes that causes layer (white layer—WL and heat-affected zone—HAZ) formation, and microcracks on the material’s surface. Purpose: this study investigates the effects of WL and HAZ on the electrochemical grooving (EC grooving) performance of Co-based superalloys. Two different surface types (W-EDMed and VFed) were used in the experiments. Result: the experiments showed that material removal rate (MRR) values increased up to 212.49% and 122.23% for vibratory finished (VFed) and wire-electrical-discharge-machined (W-EDMed) surfaces, respectively. Conclusion: This result indicates the presence of HAZ and WL that prevent current transition between two electrodes. However, increased voltage causes an increase in surface roughness, with increment rates at 71.13% and 36.08% for VFed and W-EDMed surfaces, respectively. Moreover, for the VFed surfaces, the groove lost its flatness at the bottom after an approximately 100 µm depth due to the different electrochemical machineabilities of HAZ and real surface texture. This result can be attributed to the different microstructures (HAZ and surface texture) showing different electrochemical dissolution rates. Therefore, high-depth distance HAZ and WL must be removed from the workpiece. Full article
(This article belongs to the Special Issue Recent Advances in Surface Processing of Metals and Alloys)
Show Figures

Figure 1

11 pages, 1725 KB  
Article
Investigations of the Density and Solubility of Ammonium Perrhenate and Potassium Perrhenate Aqueous Solutions
by Szymon Orda, Michał Drzazga, Katarzyna Leszczyńska-Sejda, Mateusz Ciszewski, Alicja Kocur, Pola Branecka, Kacper Gall, Mateusz Słaboń and Marcin Lemanowicz
Materials 2023, 16(15), 5481; https://doi.org/10.3390/ma16155481 - 5 Aug 2023
Cited by 7 | Viewed by 2368
Abstract
Rhenium is largely used as an additive to nickel- and cobalt-based superalloys. Their resistance to temperature and corrosion makes them suitable for the production of turbines in civil and military aviation, safety valves in drilling platforms, and tools working at temperatures exceeding 1000 [...] Read more.
Rhenium is largely used as an additive to nickel- and cobalt-based superalloys. Their resistance to temperature and corrosion makes them suitable for the production of turbines in civil and military aviation, safety valves in drilling platforms, and tools working at temperatures exceeding 1000 °C. The purity of commercial rhenium salts is highly important. Potassium, which is a particularly undesirable element, can be removed by recrystallization. Therefore, it is crucial to possess detailed knowledge concerning process parameters including the dissolved solid concentration and the resulting saturation temperature. This can be achieved using simple densimetric methods. Due to the fact that data concerning the physicochemical properties of ammonium perrhenate (APR) NH4ReO4 and potassium perrhenate (PPR) KReO4 are imprecise or unavailable in the scientific literature, the goal of this study is to present experimental data including the solubility and density of water solutions of both salts. In the experiments, a densimeter with a vibrating cell was used to precisely determine the densities. Although the investigated solutions did not fit into the earlier proposed mathematical model, some crucial conclusions could still be made based on the results. Full article
(This article belongs to the Special Issue Recovery of Non-ferrous Metal from Metallurgical Residues)
Show Figures

Figure 1

17 pages, 10326 KB  
Article
A Comparative Study on Characterization and High-Temperature Wear Behaviors of Thermochemical Coatings Applied to Cobalt-Based Haynes 25 Superalloys
by Ali Günen and Ömer Ergin
Coatings 2023, 13(7), 1272; https://doi.org/10.3390/coatings13071272 - 20 Jul 2023
Cited by 15 | Viewed by 2390
Abstract
This study investigated the characteristic properties of aluminizing, boronizing, and boro-aluminizing coatings grown on Haynes 25 superalloys and their effects on the high-temperature wear behavior. The coating processes were conducted in a controlled atmosphere at 950 °C for 3 h. Characterization studies were [...] Read more.
This study investigated the characteristic properties of aluminizing, boronizing, and boro-aluminizing coatings grown on Haynes 25 superalloys and their effects on the high-temperature wear behavior. The coating processes were conducted in a controlled atmosphere at 950 °C for 3 h. Characterization studies were performed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, nanoindentation testing, and high-temperature wear tests. It was determined that the thickness values of aluminide, boride, and boride–aluminide coatings were 140 ± 1.50 µm, 37.58 ± 2.85 µm, and 14.73 ± 1.71 µm, and their hardness values were 12.23 ± 0.9 GPa, 26.34 ± 2.33 GPa, and 23.46 ± 1.29 GPa, respectively. The hardness of the coatings resulted in reduced wear volume losses both at room temperature and at 500 °C. While the best wear resistance was obtained in the boronized sample at room temperature due to its high hardness, the best wear resistance at 500 °C was obtained in the boro-aluminized sample with the oxidation–reduction effect of Al content and the lubricating effect of B content in the boro-aluminide coating. This indicates that the presence of aluminum in boride layers improves the high-temperature wear resistance of boride coatings. The coated samples underwent abrasive wear at room temperature, whereas at 500 °C, the wear mechanism shifted to an oxidative-assisted adhesive wear mechanism. Full article
Show Figures

Figure 1

20 pages, 8487 KB  
Article
The Effects of Co on the Microstructure and Mechanical Properties of Ni-Based Superalloys Prepared via Selective Laser Melting
by Xiaoqiong Ouyang, Feng Liu, Lan Huang, Lin Ye, Heng Dong, Liming Tan, Li Wang, Xiaochao Jin and Yong Liu
Materials 2023, 16(7), 2926; https://doi.org/10.3390/ma16072926 - 6 Apr 2023
Cited by 4 | Viewed by 2678
Abstract
In this work, two Ni-based superalloys with 13 wt.% and 35 wt.% Co were prepared via selective laser melting (SLM), and the effects of Co on the microstructure and mechanical properties of the additively manufactured superalloys were investigated. As the Co fraction increased [...] Read more.
In this work, two Ni-based superalloys with 13 wt.% and 35 wt.% Co were prepared via selective laser melting (SLM), and the effects of Co on the microstructure and mechanical properties of the additively manufactured superalloys were investigated. As the Co fraction increased from 13 wt.% to 35 wt.%, the average grain size decreased from 25.69 μm to 17.57 μm, and the size of the nano-phases significantly increased from 80.54 nm to 230 nm. Moreover, the morphology of the γ′ phase changed from that of a cuboid to a sphere, since Co decreased the γ/γ′ lattice mismatch from 0.64% to 0.19%. At room temperature, the yield strength and ultimate tensile strength of the 13Co alloy reached 1379 MPa and 1487.34 MPa, and those of the 35Co alloy were reduced to 1231 MPa and 1350 MPa, while the elongation increased by 52%. The theoretical calculation indicated that the precipitation strengthening derived from the γ′ precipitates made the greatest contribution to the strength. Full article
(This article belongs to the Special Issue Recent Advances in Metal Powder Based Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop